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ABSTRACT

Steroid hormones are pivotal modulators of patho-
physiological processes in many organs, where they
interact with nuclear receptors to regulate gene tran-
scription. However, our understanding of hormone
action at the single cell level remains incomplete.
Here, we focused on estrogen stimulation of the well-
characterized GREB1 and MYC target genes that re-
vealed large differences in cell-by-cell responses,
and, more interestingly, between alleles within the
same cell, both over time and hormone concentra-
tion. We specifically analyzed the role of receptor
level and activity state during allele-by-allele regu-
lation and found that neither receptor level nor ac-
tivation status are the determinant of maximal hor-
monal response, indicating that additional pathways
are potentially in place to modulate cell- and allele-
specific responses. Interestingly, we found that a
small molecule inhibitor of the arginine methyltrans-
ferases CARM1 and PRMT6 was able to increase,
in a gene specific manner, the number of active
alleles/cell before and after hormonal stimulation,
suggesting that mechanisms do indeed exist to mod-

ulate hormone receptor responses at the single cell
and allele level.

INTRODUCTION

Steroid hormones, like estrogen (E2), control a myriad of
physiological processes. In target cells, they interact with
nuclear receptors (e.g. estrogen receptor (ER)) and bind
to specific DNA sequences that facilitate the recruitment
of coregulator complexes to regulate gene transcription
and establish/maintain cell phenotypes (1,2). Genome-wide
studies have identified hundreds of ER target genes and
thousands of ER binding sites on DNA (3–5), while other
studies described scores of ER cofactors that impinge upon
gene transcription (6,7). However, there is a paucity of in-
formation on how estrogen regulates transcription of en-
dogenous genes at the level of individual cells, or individ-
ual target gene alleles. Recent studies have begun address-
ing this issue by single cell RNA-seq (8) and by dynamic
live-imaging of an engineered model featuring CRISPRed-
in MS2 repeat units at the TFF1 estrogen target gene (9),
identifying novel descriptors of ER action such as pervasive,
bimodal gene expression, and long refractory periods be-
tween transcriptional bursts. In recent years, the field of sin-
gle cell gene transcription regulation (10–15) supports the
notion of transcription as a stochastic phenomenon that in-
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volves bursts of RNA synthesis of varied frequency and am-
plitude. Transcriptional bursting can be modulated by: cell
volume (11), nuclear retention and transport of transcripts
(16,17), mitochondrial content (18,19), enhancer strength
and DNA looping (20), cell cycle (15), transcription fac-
tor levels and localization or signaling pathway activation
(21–23). Compared with recent studies (8,9) that focused
on either steady state or transcriptional bursting, we si-
multaneously analyzed both by using single molecule RNA
FISH (smFISH) and image analysis. We report that E2 reg-
ulates target gene expression with heterogeneous responses
in both a cell- and allele-specific manner based upon hor-
mone dosage and length of exposure. This diverse response
is maintained across cell lines with variable number of al-
leles and is also apparent for other steroid receptors (AR,
GR and PR) and ligand classes (i.e. hormones, phytoestro-
gens, endocrine disruptors). By modulating ER levels (over-
expression and knock-down), we show that very little ER is
required for gene activation while the total level of the re-
ceptor per cell only minimally correlates with the number of
active alleles. More interestingly, when all the cellular ER is
rendered constitutively active by introducing the clinically
relevant Y537S mutation (24), the allele-by-allele variabil-
ity in response was preserved indicating that the activation
status of ER is not the main determinant of allele-specific
activation. With advances in genome-wide analysis by in-
tron smFISH (25) it will soon be possible to have a com-
plete picture of estrogen action on the nascent transcrip-
tome at the single allele level. Finally, we propose that vari-
ation of allele-by-allele hormonal response can be modu-
lated through coregulators, as we identified a small molecule
inhibitor of CARM1/PRMT6 arginine methyltransferases
(MS049) is capable of increasing the number of active alle-
les per cell both basally and under hormonal stimulation in
a gene and cell type-specific manner.

MATERIALS AND METHODS

Cell culture

Cell lines (MCF-7, T47D, ZR-75-1, BT474, MCF-
7/TamR) were obtained from BCM Cell Culture Core,
which routinely validates their identity by genotyp-
ing, or ATCC. A validated ER-shRNA pGIPZ clone
(V2LMM 136277, Open Biosystems, Huntsville, Al,
USA) was used to construct a doxycycline (dox)-inducible
pINDUCER-shER lentiviral vector, as previously de-
scribed (50). Virus production, cell infection, selection, and
induction of ER-shRNA in the stable MCF-7/ER-shRNA
cells were performed as previously described (51). MCF-
7/CARM1 KO cells were generated and obtained from
Dr Xu (U. Wisconsin) and have been previously published
(48). MCF-7/Y537S cells were generated and validated by
Drs Gu and Fuqua, with the help from BCM C-BASS Core
(manuscript in preparation). GFP-ER�:PRL-HeLa cells
were previously described (46,47). All cell lines except the
CARM1 KO tested mycoplasma negative as determined
by DAPI staining. Cell lines were routinely maintained in
their standard media, as recommended by ATCC, except
phenol red free. Three days prior to experiments, cells were
plated in media containing 5% charcoal–dextran stripped
and dialyzed FBS-containing media.

Single molecule RNA FISH (smFISH)

Cells were fixed on ice in 4% purified formaldehyde (Elec-
tron Microscopy Sciences) in ribonuclease (RNase)-free
PBS for 15 min, washed in PBS and then permeabilized
with 70% ethanol in RNase-free water at 4◦C for a min-
imum of 2 h. Cells were washed in 1 ml of wash buffer
(2× saline sodium citrate [SSC] plus 10% formamide) fol-
lowed by overnight hybridization with RNA FISH probes
at 37C (Stellaris probes; LGC Biosearch Technologies) in
hybridization buffer. Next, cells were rinsed in one change
in wash buffer (30 min at 37◦C), and a second wash
in buffer containing 1 �g/ml DAPI (10 min at 37◦C),
as described (52) For experiments performed on poly-
lysine coated coverslips, Vectashield (Vector Laboratories)
was used as mounting medium, and sealed with nail pol-
ish. All probes were designed and synthesized by LGC
Biosearch Technologies. Exon-probes (labeled with Quasar
570®) were custom designed against the common cod-
ing sequence of GREB1 mRNAs, using mRNA variant
NM 014668.3, nts 143–457, 755–1459 as the defined tar-
get region (VSMF-2158-5). Intron probes (labeled with
Quasar 670®) were designed against 7.5 kb of introns #4
to #10 (NG 029429.1). MYC probes were available as pre-
designed by LGC Biosearch Technologies.

Immunofluorescence and IF/FISH

Immunofluorescence experiments were completed as previ-
ously described (53). Briefly, cells were fixed in 4% formalde-
hyde in PBS, quenched with 0.1 M ammonium chloride for
10 min, and permeabilized with 0.5% Triton X-100 for 30
min. Cells were incubated at room temperature in blotto
for 1 h, and then specific antibodies were added overnight
at 4◦C prior to 30 min of secondary antibody (Alex-
aFluor conjugates; Molecular Probes) and DAPI staining.
The primary anti-ER� antibodies used were: mouse (in-
house generated), rabbit (Millipore 04-820), and rat (H-222,
Santa Cruz Biotechnology). The methyl MED12 (CARM1
methylation specific site) antibody was kindly provided by
Dr Mark Bedford (UT-MD Anderson-Smithville).

The protocol for IF/FISH sequentially followed the IF
protocol described above, except that 2× SSC was used in-
stead of blotto and the primary and secondary antibodies
incubations were for 1 h at 37◦C and room temperature, re-
spectively, and the dilution was increased to 1:500. After
post-fix (4% PFA for 10 min), the samples were washed in
RNA FISH wash buffer (LGC Biosearch Technologies) fol-
lowed by hybridization with the FISH probes.

High resolution and high throughput microscopy

High quality/high resolution imaging was performed on
a GE Healthcare DVLive epifluorescence image restora-
tion microscope using an Olympus PlanApo 60×/1.42 NA
objective and a 1.9k × 1.9k sCMOS camera. Z stacks
(0.25 �m) covering the whole nucleus (∼10 �m) were ac-
quired before applying a conservative restorative algorithm
for quantitative image deconvolution. Max intensity projec-
tions were generated and used for image analysis.
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Figure 1. Cell-by-cell and allele-by-allele variation in estrogenic response. (A) Representative images of E2 treated MCF-7 cells over time, hybridized with
probes detecting GREB1 (mature, GREB1ex, green; nascent, GREB1in, red), top panels, and MYC (mature, MYCex, green; nascent, MYCin, red), bottom
panels, by single molecule RNA FISH. Scale bar: 10 �m. Inset shows a magnified cell (inset: 5 �m). (B, C) distribution of cells with 0–4 (or more in the
case of MYC) active alleles, after E2 time course. (D–H) average number of active alleles in E2 time course and dose-response experiments. (E–I) fraction
of activated cells (two or more active alleles) over time and dose of E2 treatment. (F–G) distribution of cells with 0–4 (or more for MYC) active alleles after
E2 dose-response. >200 cells/treatment in ≥3 biological replicates.

Image and statistical analysis

Nuclear segmentation, spot identification, and intensity ex-
traction were performed on maximum projection images us-
ing basic image analysis routines in Matlab, PipelinePilot
(Biovia) (54), CellProfiler and Fiji. Apoptotic and mitotic
cells were filtered out based on DAPI intensity and mor-
phology. Visual inspection of the images validated counts
of transcriptionally active alleles by determining overlap be-
tween exonic and intronic probe sets. Between 200 and 1000
cells/treatment/biological replicate were imaged and ana-
lyzed for the smFISH experiments, for IF studies, >1000
cells were analyzed. Every experiment was performed in two

to four technical replicates and repeated for a minimum of
three biological replicated. Only for visualization purposes,
spots were enhanced by histogram stretching, equally across
treatments, post acquisition in Fiji.

GraphPad Prism 5.0 was used to construct graphs and
dose-response curves, calculate EC50, and perform statisti-
cal tests. Data in every figure is either represented as me-
dian ± standard deviation or as box plots, with the box
representing 25th to 75th percentile of the data. For mul-
tiple groups comparison, we used non-parametric Kruskal-
Wallis test with Dunn’s post test (significance level at 95%
confidence); correlation analysis was done using Spear-
man’s r (non parametric); while for comparing two groups
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Figure 2. Allele-by-allele variation in response is independent of cell model, compound, and number of alleles. (A) MCF-7 cells were pretreated with
fulvestrant (Fulv), bazedoxifene (Baz), actinomycin D (ActD) or flavopiridol (Flavo) for 1 h prior to addition of 10 nM of E2. Distribution of active
GREB1 alleles is represented as heatmap. (B) The indicated cell lines were treated with E2 10 nM for 1 h prior to GREB1 smFISH. Gray boxes indicate
that the particular cell line has a lower number of GREB1 alleles. (C) MCF-7 were treated for 1 h with E2 10 nM, dexamethasone (Dex, 100 nM),
dihydroxytestosterone (DHT, 100 nM), bisphenol A (BPA, 1 �M), or genistein (GEN, 100 nM), and then smFISH was performed for GREB1 and MYC.
(D) GREB1 and MYC exon probes smFISH was performed over an E2 time course in MCF-7 and individual mature RNAs/cell were counted and
visualized by box-plot.

only, we used non-parametric t-test (Mann–Whitney test)
reporting a two-tailed P-value. Heatmaps and hierarchical
clustering was performed using Orange Data Mining (55).

RESULTS

Allele-by-allele regulation of E2 target genes in breast cancer
cells

The Estrogen Receptor (ER) regulates hundreds of target
genes with various response patterns (e.g. up- and down-
regulated, time- and dose-dependent, (3,8,26)); however,
less is known about hormonal actions at the single cell and,
especially, at the level of individual alleles (8,9). We used
smFISH to analyze the effects of the natural ER agonist,
17�-estradiol (E2), on two well-characterized ER target
genes with different time courses of response and gene struc-
ture (GREB1 and MYC). GREB1 and MYC are ER pri-
mary target genes that are involved in cell proliferation and
other cellular functions and have been shown to be stimu-
lated with different time courses, GREB1 being sustained
over time, while MYC being transient (3,26–28). GREB1
has also been used to predict ER-mediated phenotypic re-
sponses (29). We used spectrally-separated probe sets for
each gene hybridizing to either intronic or exonic sequences
(12) in order to quantify both nascent and mature RNA,
with GREB1 being a long gene (>100 kb) that contains

multiple introns, whereas MYC, being a short gene (∼4 kb),
has only two introns. Visible overlap between the two probe
sets was used to determine which alleles were active in every
cell.

We treated synchronized (measured by EdU labeling af-
ter 48 h in charcoal-stripped media, not shown) MCF-7
breast cancer cells with 10 nM E2 for varying amounts
of time (5 min to 4 h) to cover both early and sustained
responses without impacting ER protein turnover and
estrogen-mediated changes in cell cycle progression (Figure
1). Next, we counted the number of active alleles/cell and
mature RNA/cell using semi-automated deconvolution mi-
croscopy and analysis (Figure 1A shows random fields for
each gene target at each time point–GREB1 on top and
MYC on bottom panels).

MCF-7 cells have four copies of chromosome 2 contain-
ing the GREB1 gene (30), while there are up to six copies of
the MYC gene (31), hence a maximal response to E2 would
result in four or more alleles being active in the same cell
depending on the target gene. However, by counting over-
lapping intron and exon signals (i.e. transcriptionally active
alleles), we observed that not all cells responded to hor-
mone during the four hours of treatment (Figure 1), and
clearly not all at the same time. From the acquired images
(as seen in Figure 1A), a large variability in the number of
active alleles is apparent within each nucleus. Analysis of the
number of active alleles per cells shows a gene-specific shift
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Figure 3. ER levels do not correlate with activation of GREB1 at the single cell level. (A) 20× image of ER immunofluorescence in MCF-7 cells. DAPI
marks cell nuclei, scale bar is 100�m. Inset shows single cell quantitation of ER levels over >50 000 cells. (B) ER/GREB1 (intron + exon) and ER/MYC
(intron + exon) IF/FISH 60× images (deconvolved and max projected) after 1 h of E2 treatment, scale bar is 20 �m. (C, D) Single cell analysis of
experiments, as in panel B, where cells are stratified by either number of active alleles (C), or by ER levels (bottom 25th (low), 25th–75th (medium) and
top 75th (high) percentiles) to show correlation between ER levels and transcriptional output.

Figure 4. ER levels are not the sole determinants of allele-by-allele variation in responses to E2. (A, B) MCF-7/shER stable cells were treated with
doxycycline to induce reduction in ER levels. Images were captured at 20× (scale bar: 100 �m) and quantified by automated image analysis. (C, D)
GREB1 smFISH was performed in MCF-7/shER cells after 1 h of E2 treatment. Heatmap indicates fraction of cells with 0–4 GREB1 active alleles. (E)
graph shows fraction of active cells before and after doxycycline treatment. (F) MCF-7 overexpressing GFP-ER were treated with E2 for 1 h before GREB1
smFISH. Heatmap indicates fraction of cells with 0–4 GREB1 active alleles.

in distribution over time as depicted by heatmaps in Fig-
ure 1B and C. For example, after a 1 h exposure to E2, for
GREB1, 12% of the cells had no active alleles, 15% of cells
had one, 22% of cells had two, 25% of cells had three, and
25% of cells had four, indicating a large variability in allele-
by-allele responses. The same variability was true for MYC
and for each individual time point (and dose of hormone,
as shown below). As an ensemble measure, we also repre-
sented the same data as average number of active alleles/cell

(Figure 1D) that clearly shows the different time course of
allele activation between the two target genes, in keeping
with RNA-seq and microarray data, and the clear lack of
saturated response to hormone (i.e. all cells with all active
alleles).

We also calculated the percentage of ‘activated cells,’ de-
fined here as cells with two or more active alleles at each
time point (Figure 1E), based on the fact that in vehicle
treated cells, the vast majority of them has zero or one ac-
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Figure 5. Constitutively active ER is not sufficient to activate all alleles simultaneously. (A) Representative images and box-plot quantifying ER single
cell immunofluorescence in wild type and Y537S MCF-7 cells. (B) Representative images of GREB1 RNA FISH (exon, green; intron, red) in MCF-7 and
MCF-7/ERY537S cells after vehicle or E2 1 h, scale bar 20 �m. (C, D) Quantitation (>200 cells from panel C) showing the fraction of cells containing
0–4 GREB1 active alleles, or as a box-plot with the number of mature GREB1 mRNAs/cell.

tive alleles. For example, at the 30-minute time point, com-
pared to vehicle treated cells, the percentage of activated
cells increased ∼3–5-fold for GREB1 (20–53%) and MYC
(14–66%), respectively, but far from the maximum possible
response (100%); while at the four hour time point, the pop-
ulation of activated cells reached a plateau of ∼70–80% for
GREB1 while decreasing to 35% for MYC (Figure 1E), in
keeping with the expected time course for both genes.

This variability in allele and cell responses was also true
in dose-response experiment (E2 concentration range: 1 pM
to 1 �M, Figure 1F–I), where we measured an EC50 of ∼10
pM after 1 h of E2 exposure for GREB1, and ∼6 pM after
30 min of treatment for MYC, comparable to bulk popu-
lation assays (32). We then confirmed that the observed re-
sponses were transcription- and ER-dependent (Figure 2A)
by pre-treating MCF-7 cells for 1 h prior to E2 with the well-
established ER antagonists, fulvestrant and bazedoxifene;
and, with two transcription inhibitors with different mech-
anisms, flavopiridol and actinomycin D. Indeed, as shown
in the heatmap in Figure 2A, all the inhibitors completely
blocked E2-mediated GREB1 stimulation.

The total number of gene loci/cell was not a determi-
nant of the cell-to-cell or allele-by-allele response to hor-
mone, as we observed similar differences in GREB1 ac-
tivation in other breast cancer cell lines containing two

(T47D), three (ZR75-1) or four (BT474) copies of the locus
(Figure 2B).

This allele-by-allele response was not specific to E2, as
other steroid hormones (i.e. androgens – dihydroxystestos-
terone (DHT), glucocorticoids – dexamethasone) and en-
docrine disrupting chemicals/phytoestrogens (bisphenol A
(BPA) and genistein), elicited, at the 1-hour time point,
similar allele-by-allele variable responses, albeit with differ-
ent magnitude and distribution of active alleles for both
GREB1 and MYC (Figure 2C). In the heatmaps, com-
pounds are ordered based on clustering analysis highlight-
ing similarities in response. For GREB1, a gene commonly
stimulated by all steroid hormones, the active population
(>2 active alleles/cell) was 70% for E2, between 60% and
75% for BPA ad genistein, 45% for dexamethasone and only
20% for DHT, only a slight increase compared to 13% in ve-
hicle treated cells. In the case of DHT, GREB1 stimulation
is delayed, starting to ramp up after 4 h of treatment (data
not shown). For MYC, the active population was around
50% for E2 treatment (at 1 h), with BPA being very similar
and genistein showing higher activity. However, both dex-
amethasone and DHT were completely inactive; confirming
the gene specific effects of steroid hormones.

As expected from many other studies in disparate cell
models (12,17,25), the cell-to-cell variation was also true
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Figure 6. The CARM1 and PRMT6 inhibitor MS049 enhances ER-mediated GREB1 induction. (A) Representative images of GREB1 smFISH in MCF-
7 cells treated with MS049 (10 �M, overnight pretreatment) with or without E2 10 nM for 1 h. (B) Data shows the fraction ± standard deviation of cells
with 0–4 active GREB1 alleles (eight independent experiments). (C) single cell quantitation of ER levels after vehicle or MS049 treatment. (D) single cell
quantitation of methylated MED12 after vehicle or MS049 treatment. (E) Heatmap showing distribution of GREB1 active alleles in MCF-7 treated with
the indicated combinations of compounds. (F) Multiple cell lines were treated with MS049 with and without E2 10nM for 1 h and smFISH for GREB1
was performed. Data is represented as a heatmap. (G) smRNA GREB1 FISH quantitation of MCF-7 wt and MCF-7/CARM1 KO cells after treatments.
Scale bar for all images is 10 �m.

for both GREB1 and MYC steady state RNA as mea-
sured by counting the number of mRNA particles (marked
by exon-specific probes) per cell (Figure 2D). In keeping
with microarray, RNA-seq data and transcriptionally active
alleles/cell, the time course of E2 response was also different
between the two target genes, being sustained for GREB1
and transient for MYC, but with a delayed response as com-
pared to allele activation, as expected.

ER levels alone do not fully explain allele-by-allele gene reg-
ulation

We sought to determine if the variability of response to
hormone was simply the result of cell-to-cell differences in
ER protein levels. First, we performed immunofluorescence

and single cell analysis of ER expression in MCF-7 cells
and found to be >100-fold difference between cells (Fig-
ure 3A, inset shows box-plot analysis of >85 000 cells).
Importantly, the cell-to-cell variation in ER levels was not
epitope-dependent as co-immunolabeling with three differ-
ent ER antibodies showed high correlation (r > 0.9, Sup-
plementary Figure S1A and B). To establish a direct rela-
tionship between ER nuclear levels and gene activation, we
first optimized the IF/FISH protocol, using a novel high
throughput hybridoma screen (33), to identify antibodies
that would work comparably following RNA FISH proto-
cols, ultimately identifying two antibodies that can be used
in this assay as described in materials and methods.

We performed IF/FISH for ER and both GREB1 and
MYC after 1 h and 30 min of E2 treatment, respectively
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(Figure 3B), and imaged them with semi-automated decon-
volution microscopy.

In Figure 3C, we stratified cells based on the number of
active alleles and determined the ER levels for each class.
We found poor correlation (Spearman’s) between ER levels
and the number of active GREB1 or MYC alleles (r = 0.16–
0.18). However, by ANOVA, there is a statistically higher
ER level in cells that have the highest number of active al-
leles for both genes. We then divided the cell population
based on ER levels as low (below 25th percentile), medium
(25th–75th) and high (above 75th) and evaluated the frac-
tion of each subpopulation containing 0–4 active alleles for
GREB1 or MYC (Figure 3D). For GREB1, there was no
difference in the active cell population (>60%) between cells
with medium or high levels of ER; however, cells in the bot-
tom 25th percentile for ER expression showed a reduced
response (Figure 3D) with 47% active cells, largely due to
a 50% reduction is cells with all four active alleles. A very
similar situation was observed for MYC.

In keeping with the above observations, transiently low-
ering ER levels (∼50% in the total cell population, Figure
4A and B) with an inducible, stable shRNA, reduced the
fraction of responding cells (50% versus 70% at 1 h, Fig-
ure 4C–E) and changed the distribution of the number of
active alleles in the population. Interestingly, the bottom
25th percentile of the shRNA (dox-treated) cells, which con-
tains ∼5% of ER expressed in the wild type population, still
showed E2 induction of GREB1, with ∼25% of cells with
two or more actively-firing alleles, further indicating that
very little ER protein per cell is needed to initiate transcrip-
tional responses, whereas higher levels are required for max-
imal responsiveness. Importantly, the opposite was not true,
as overexpression of GFP-ER did not change the fraction
of active GREB1 alleles after hormone stimulation (Figure
4F).

Constitutively active ER is not sufficient to maximize hor-
monal responses

Because ER levels alone did not explain the cell-to-cell
variation in GREB1 activation, we used CRISPR/Cas9
to knock-in the Y537S mutation in the ER gene, which
has been shown to render the receptor constitutively ac-
tive (34–36), thus directly querying if the ‘activation status’
of ER was the main controlling factor. The homozygous
ER/Y537S MCF-7 cell line expressed <50% of the levels
of ER compared to wild type cells (Figure 5A), in keeping
with previous observations showing that Y537S mutant has
higher protein turnover rate (37).

In the ER/Y537S cell line we observed, as expected, a
ligand-independent activation of GREB1, similar to wild
type cells after 1 hour of E2 treatment (Figure 5B and C).
However, the distribution of the number of active GREB1
alleles between cells was comparable to E2-treated wild type
cells, without reaching full activation capacity. The same
was also true for mature mRNA levels (Figure 5D). This in-
dicated that while ER levels and activation status are essen-
tial for stimulating GREB1 transcription, they are not the
only parameters controlling allele-by-allele variation during
the hormonal response, as no maximal response (i.e. all al-

leles active) is observed by either the Y537S mutant alone,
or after E2 treatment.

The small molecule MS049 enhances ER-mediated allele-by-
allele responses

As ER-regulated transcription depends upon the dynamic
recruitment of coregulator complexes (6,38,39), we sought
to determine if their activity would be important in mod-
ulating the allele-by-allele response to hormone. We de-
veloped and used a high throughput microscopy-based
ER/GREB1 IF/FISH approach to test ∼60 small molecule
inhibitors (SMIs) from several classes of epigenetic modu-
lators. Surprisingly, a few compounds increased the frac-
tion of E2-induced GREB1 active alleles, indicating that
mechanisms exist to control the magnitude of the hormonal
response through allelic regulation. In this study, we fo-
cused on MS049, an inhibitor of two protein methyl argi-
nine methyltransferases, CARM1 and PRMT6 (40), both
of which have been linked to ER activity (41–44). We found
that combining MS049 with E2 increased the fraction of ac-
tive cells (86% versus 69%) while more than doubling the
fraction of cells with four active alleles (46% versus 20%)
(Figure 6A and B), with no change in ER levels (Figure
6C). Interestingly, MS049 treatment without hormone ad-
dition was also capable of activating GREB1 transcription
in an ER-dependent manner (Figure 6E) as demonstrated
by complete block of its action by cotreatment with the
ER antagonist fulvestrant. MS049 was further validated
by measuring the nuclear level of methylated MED12, a
bona fide CARM1 direct target (Figure 6D) (45). However,
MS049 did not promote direct ER binding to DNA, as ev-
idenced by the lack of response in an ER biosensor cell line
(46,47) (Supplementary Figure S2) where stable expression
of GFP-ER that targets an engineered multi-copy visible
array of the estrogen-responsive prolactin gene only when
treated with E2, or any known estrogenic or anti-estrogenic
compound. Testing MS049 in other ER positive breast can-
cer cell models revealed that the effects were consistent
across cell lines, except in Her2-overexpressing BT474 cells,
where no effect was observed, possibly indicating that cell
specific signaling pathways might play a role in controlling
the effect of the methyltransferase inhibitor (Figure 6F).
Also, importantly MS049 had no effect on MYC induc-
tion, suggesting a gene-specific mechanism of action. As we
recently published a CARM1 ChiP-seq dataset in MCF-7
cells treated with E2 (45), we checked if there were any dif-
ferences in CARM1 recruitment to the MYC and GREB1
loci. Genome browser tracks (Supplementary Figure S2D)
clearly highlight major CARM1 peaks only at the GREB1
locus, strengthening the notion that the gene specific ef-
fects of MS049 can be linked to CARM1 genomic local-
ization. To determine if MS049 was acting mainly through
CARM1, we employed MCF-7 CARM1 knock-out cells
(48) that, interestingly, have acquired a fifth copy of the
GREB1 locus and express higher ER protein (2.5 fold, Sup-
plementary Figure S2C) than wild type MCF-7. Further,
GREB1 alleles were basally more active in CARM1 KO
cells (41% versus 12%), and this increased after E2 treat-
ment (94% versus 73% with two or more active alleles)
(Figure 6G). Importantly, loss of CARM1 partially mim-
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icked the effect of MS049 in wild type cells (41% versus
54% active cells), suggesting a novel role for CARM1 in
controlling allele specific transcriptional activation. How-
ever, the fraction of active alleles still increased when
CARM1 KO cells were treated with MS049, indicating that
PRMT6 and/or other unrelated factors also likely play a
role.

DISCUSSION

In this study, we examined the effects on steroid hormones,
specifically of estrogens, on target genes with different gene
structure and time-course of stimulation, at the single cell
and single allele level in breast cancer cells. By using single
molecule RNA FISH, we simultaneously measured the cell-
to-cell variability of steady state RNA and, more interest-
ingly, in allele-by-allele responses in the same cell, to mon-
itor two estrogen receptor target genes, GREB1 and MYC.
The choice of these two genes stems from studies (3,26) that
showed them as primary ER targets with very different gene
length and intron/exon structure, and with distinct tempo-
ral stimulation patterns, with MYC being a transient re-
sponse, while GREB1 exhibits a more sustained response
over time. Through time- and dose-series, we showed that
hormone activation occurs quickly (15 min or earlier), in
line with GRO-seq data (3). Importantly, smRNA FISH af-
forded us the opportunity to determine cell to cell variation,
but also directly measure the number of active alleles/cell.
We found that all cells did not respond synchronously to
hormone simulation (i.e. one allele at a time), and they also
never reached capacity both in terms of fraction of active
cells (defined as having two or more active alleles, maxi-
mum was 80% in the time frame studied) or number of ac-
tive alleles/cell (reaching a maximum lower than three/cell
for GREB1, which has four alleles in MCF-7 cells). This
was true for both genes studied and independent of the cell
model, number of alleles/cell and stimulant tested, whether
natural or synthetic.

We then explored the impact of ER levels on the allele-by-
allele regulation of its target genes by performing correla-
tive studies via immunofluorescence/RNA FISH, by down-
regulating and overexpressing ER, and finally by generating
a constitutively active endogenous ER via CRISPR/Cas9
to introduce the Y537S mutation in the endogenous alle-
les. The combination of these studies highlighted the fact
that neither the level or the activation status of the recep-
tor is the main determinant of allele-by-allele variation, as
probably best demonstrated in the Y537S mutant cell line
where there is lower ER expression and the allele-by-allele
variation is virtually identical to estrogen-treated wild type
cells.

After DNA binding, ER serves as a platform for many
coregulator complexes (6) that alter chromatin structure
and facilitate transcription initiation (49). For this reason,
we performed a survey of small molecule inhibitors of epi-
genetic modulators (mostly HDAC, KDM and KAT in-
hibitors) and identified MS049, a PRMT6/CARM1 in-
hibitor, as capable of increasing the number of active
alleles/cell after hormone stimulation (roughly doubling
the number of cells with max active alleles), in an ER-
dependent manner and specifically for GREB1. We val-

idated the inhibitor action by using CARM1 knock-out
MCF-7 cells and monitoring methylated MED12, a compo-
nent of the Mediator complex recently identified as a central
component of CARM1-mediated transcriptional activation
(45).

In conclusion, we present a heretofore unrecognized reg-
ulatory mode of hormone/nuclear receptor-induced gene
transcription at the single cell and allele level. We further
show that the variation in allele-by-allele responses is not
directly linked to ER protein levels. More importantly, the
inability of a constitutively active ER to cause activation of
all GREB1 alleles in every cell indicates that mechanisms
exist to fine-tune responses to hormone independently of
the receptor activation status.

This study also highlights a new role for nuclear recep-
tor coregulators in controlling hormone-dependent gene
transcription. We suggest that protein arginine methyl-
transferases may play an important, previously unrecog-
nized role in fine-tuning hormonal responses, maintaining
both cell-to-cell variability (which is evolutionarily advan-
tageous) and preventing saturation of responses at the sin-
gle cell and/or population levels. The mechanistic under-
pinning of their action warrants further exploration and
may include modulation by intracellular signaling path-
ways, post-translational modifications, chromatin remodel-
ing and DNA repair, and/or assembly/disassembly dynam-
ics of coregulator complexes (42). These new observations
further advance the notion of nuclear receptor coactivators
as multi-functional components of dynamic large protein
complexes that participate in a myriad of expected and, as
shown here, novel mechanistic processes that regulate hor-
monal control of gene expression.
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31. Rummukainen,J., Kytölä,S., Karhu,R., Farnebo,F., Larsson,C. and
Isola,J.J. (2001) Aberrations of chromosome 8 in 16 breast cancer cell
lines by comparative genomic hybridization, fluorescence in situ
hybridization, and spectral karyotyping. Cancer Genet. Cytogenet.,
126, 1–7.

32. Dahlman-Wright,K., Cavailles,V., Fuqua,S.A., Jordan,V.C.,
Katzenellenbogen,J.A., Korach,K.S., Maggi,A., Muramatsu,M.,
Parker,M.G. and Gustafsson,J.-A. (2006) International union of
pharmacology. LXIV. estrogen receptors. Pharmacol. Rev., 58,
773–781.

33. Szafran,A.T., Mancini,M.G., Nickerson,J.A., Edwards,D.P. and
Mancini,M.A. (2016) Use of HCA in subproteome-immunization
and screening of hybridoma supernatants to define distinct antibody
binding patterns. Methods, 96, 75–84.

34. Weis,K.E., Ekena,K., Thomas,J.A., Lazennec,G. and
Katzenellenbogen,B.S. (1996) Constitutively active human estrogen
receptors containing amino acid substitutions for tyrosine 537 in the
receptor protein. Mol. Endocrinol., 10, 1388–1398.

35. Harrod,A., Fulton,J., Nguyen,V.T.M., Periyasamy,M.,
Ramos-Garcia,L., Lai,C.-F., Metodieva,G., de Giorgio,A.,
Williams,R.L., Santos,D.B. et al. (2016) Genomic modelling of the
ESR1 Y537S mutation for evaluating function and new therapeutic
approaches for metastatic breast cancer. Oncogene, 36, 2286–2296.

36. Gelsomino,L., Gu,G., Rechoum,Y., Beyer,A.R., Pejerrey,S.M.,
Tsimelzon,A., Wang,T., Huffman,K., Ludlow,A., Andò,S. et al.
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