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Despite causing pandemics and yearly epidemics that result in significant morbidity

and mortality, our arsenal of options to treat influenza A virus (IAV) infections remains

limited and is challenged by the virus itself. While vaccination is the preferred intervention

strategy against influenza, its efficacy is reduced in the elderly and infants who are

most susceptible to severe and/or fatal infections. In addition, antigenic variation of IAV

complicates the production of efficacious vaccines. Similarly, effectiveness of currently

used antiviral drugs is jeopardized by the development of resistance to these drugs. Like

many viruses, IAV is reliant on host factors and signaling-pathways for its replication,

which could potentially offer alternative options to treat infections.While host-factors have

long been recognized as attractive therapeutic candidates against other viruses, only

recently they have been targeted for development as IAV antivirals. Future strategies to

combat IAV infections will most likely include approaches that alter host-virus interactions

on the one hand or dampen harmful host immune responses on the other, with the use

of biological response modifiers (BRMs). In principle, BRMs are biologically active agents

including antibodies, small peptides, and/or other (small) molecules that can influence the

immune response. BRMs are already being used in the clinic to treat malignancies and

autoimmune diseases. Repurposing such agents would allow for accelerated use against

severe and potentially fatal IAV infections. In this review, we will address the potential

therapeutic use of different BRM classes to modulate the immune response induced

after IAV infections.

Keywords: influenza, treatment, response modifiers, antiviral, immune response, immunomodulators

INTRODUCTION

Influenza viruses (IVs) are responsible for significant morbidity and mortality in the human
population with∼500,000 annual deaths worldwide. IVs can cause severe acute respiratory disease
especially in high-risk populations like children, the elderly and the immunocompromised. While
both influenza A and B viruses (IAV and IBV, respectively) cause annual epidemics, the majority of
severe human infections are caused by IAV.

IVs have segmented negative-sense single-stranded RNA genomes. The lack of proof-reading
activity of the viral RNA-dependent RNA polymerase (RdRp) and successive replication can lead to
the accumulation of nucleotide mutations which drive antigenic drift. In addition, the segmented
nature of their genome allows genetic reassortment between IV’s to take place, which can produce
novel strains that have acquired alternative antigenically distinct hemagglutinin, also known as
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antigenic shift. Both antigenic drift and antigenic shift contribute
to the IV’s ability to evade pre-existing host immunity induced by
previous infections.

Early recognition and responses to IV infection are largely
mediated by innate immune sensors expressed by its primary
target, the alveolar epithelial cells (1, 2). Recognition of IVs is
mediated by pattern recognition receptors (PRRs) that include
Toll like receptors (TLRs), retinoinc acid inducible gene-I (RIG-
I), and nucleotide oligomerization domain (NOD)-like receptor
family pyrin domain containing 3 (NLRP3); all of which can
recognize viral RNAs during various stages of the infection cycle
(3–5). Activation of these sensors triggers signaling cascades that
lead to the production of interferons as well as pro-inflammatory
cytokines and chemokines ultimately resulting in an antiviral
state within the surrounding cells/tissue (6). Accordingly, IVs
have multiple mechanisms to evade these responses mediated
by the viral nonstructural 1 protein (NS1), polymerase basic 1
protein (PB1), polymerase basic 2 protein (PB2), polymerase
acidic (PA) and nucleoprotein (NP) [reviewed in van de Sandt
et al. (1) and Chen et al. (2)].

In otherwise healthy individuals, IAV infections are mild and
the ensuing pro- and anti-inflammatory responses are balanced.
In contrast, a “cytokine storm” is typically associated with severe
infections including those caused by highly pathogenic IV strains.
During a cytokine storm, chemokine and cytokine responses are
dysregulated in both intensity and kinetics resulting in excessive
damage to the host due to infiltration of inflammatory immune
cells. Acute lung injury (ALI) caused by this inflammatory
response is typically characterized by significant damage or
destruction of the respiratory epithelium leading to acute
respiratory distress syndrome (ARDS) (7, 8).

Clinical treatment options for severe influenza virus infections
remain limited and relying heavily on the administration of
antiviral neuraminidase inhibitors (NAIs) and supportive critical
care (9). However, NAIs have not been effective in patients
with severe H7N9 or H5N1 infections and there is evidence
that fatal outcomes are associated with development of antiviral
resistance in patients (10–12). While virus-targeted therapies
remain the standard approach, IV’s mutability and adaptation to
current antivirals has highlighted the need for new therapeutic
options that target host factors that regulate IV infections and
resulting immune responses. In either approach, the focus is
to prevent or limit damage to the lung epithelium due to
exaggerated or dysregulated immune cell responses. Biological
response modifiers (BRMs) can alter the immune response
thereby offering an additional therapeutic approach to treating
severe infections. In this review, we highlight several studies that
have shown the viability of BRMs as potential treatment options.
For clarity, BRMs are categorized based on the type of biological
agent (Table 1).

BIOLOGICAL RESPONSE MODIFIERS

Therapeutic Antibodies
IAV infections and some vaccines elicit broadly-neutralizing
antibodies (Abs) that target the viral HA-stem. However, their
abundance and immune-subdominance is overshadowed by Abs

targeting the HA-head domain. The effectiveness of these HA-
stem Abs against a broad range of IAV subtypes, makes them
an attractive target not only for vaccine development but also as
antivirals. Indeed, several HA-stem specific human monoclonal
Abs are now being evaluated in clinical trials [reviewed in
Davidson (34)]. MHAA4549A, MEDI8852, and VIS410 are
human monoclonal Abs that have been shown to control viral
replication and improve symptoms of human patients in phase 2
clinical trials (13–15).

While virus-specific Abs aim to reduce antigenic load, Abs to
host targets aim at limiting the secondary wave of cytokines and
reduce prolonged damaging cellular infiltration during severe
infections. Host-target directed antibodies have been utilized
to target key regulators of this inflammatory wave and could
potentially be used to dampen these overt responses.

Angiopoietin-like 4 (ANGPTL4) is a soluble angiogenic-
regulating protein. Following proteolytic cleavage, the C-
terminal portion (cANGPTL4) is involved in integrin-dependent
wound repair and can regulate vascular permeability (35,
36). ANGPTL4 was significantly elevated in lung biopsies
from IAV-induced pneumonia patients (16). In mouse studies,
neutralizing anti-ANGPTL4 Abs reduced pulmonary tissue
leakiness significantly accelerating lung recovery and improved
lung tissue integrity (16).

Neutrophil infiltration into the alveolar space occurs within 1
day following IAV infections (37). Neutrophil extracellular traps
(NETs) released during IAV-induced pneumonia into the alveolar
space caused alveolar damage (38). The complement protein C5a
was shown to induce NETs release and administration of anti-
C5a Abs (IFX-1) reduced H7N9-induced ALI due to reduced
infiltration of lung macrophages and neutrophils as well as
reduction of viral load in African green monkeys (17, 39).

Tumor necrosis factor alpha (TNFα) is a key cytokine
for controlling severe IAV infections. It regulates two main
antiviral functions: the induction of (i) the NFkB pathway, which
ultimately controls expression of several inflammatory cytokines
and (ii) apoptosis through multiple signaling cascades (40, 41).
TNF upregulation during IAV infections correlates with infection
severity, especially following highly pathogenic IAV-infections
(42–44). Mice treated with anti-TNF Abs showed reduced disease
burden; however, the authors of that study reported no effect on
viral replication (20).

TNF-related apoptosis inducing ligand (TRAIL) can
trigger apoptosis in IAV-infected cells. IAV-infected human
epithelial cells are sensitized to TRAIL-mediated apoptosis
while peripheral blood mononuclear cells upregulate TRAIL
expression. Moreover, administration of monoclonal Abs against
TRAIL increases survival rate following IAV infections in mouse
studies (18, 19).

Therapeutic Peptides
Antimicrobial peptides (AMPs) are host proteins that have
direct antibacterial and antiviral activities and can modulate
immune responses to infections. While the literature is largely
focused on the antibacterial aspects of AMPs, several studies
have highlighted the antiviral potential of AMPs against several
viruses including IVs [reviewed in Hsieh and Hartshorn (45)
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TABLE 1 | Biological response modifiers discussed.

BRM class Target Therapy Activity IAV strain References

Therapeutic

antibodies

HA MHAA4549A,

MEDI8852 and

VIS410

– Reduced viral replication.

– Improved symptoms of human patients in phase 2

clinical trials

– Circulating seasonal (2015/16) IAV;

Seasonal IAV (H3N2) challenge

(13–15)

ANGPTL4 Anti-ANGPTL4 – Reduced pulmonary tissue leakiness, significantly

accelerated lung recovery and improved lung tissue

integrity in mice.

– Mouse-adapted laboratory IAV (H1N1) (16)

C5a IFX-1 antibody – Reduced viral load and virus-induced ALI due to

reduced infiltration of lung macrophages and

neutrophils in IAV-infected African green monkeys.

– Highly-pathogenic avian IAV (H7N9) (17)

TRAIL Anti-Trail – Increased survival rate following IAV infections in

mouse studies.

– Mouse-adapted laboratory IAV (H1N1

and its derivative H3N2)

(18, 19)

TNFα Anti-TNFα – Reduced disease burden in mouse studies.

– No effect on viral replication.

– Mouse-adapted laboratory IAV

(H1N1-derived H3N2)

(20)

Therapeutic

peptides

AMP LL-37 – Reduced morbidity and mortality to similar levels as

zanamivir in mice.

– Mouse-adapted laboratory IAV (H1N1) (21)

Influenza A virus TAT-Kα2 – Complete protection of infected mice.

– Direct virocidal activity.

– Highly-pathogenic avian IAV (H5N1) (22)

Therapeutic

small

molecules

JNK1/JNK2 SP600125,

AS601245

– Reduced levels of pro-inflammatory cytokines and

reduced viral titers in mice.

– Highly-pathogenic avian IAV (H7N7);

2009 pandemic IAV (H1N1)

(23, 24)

p38 SB202190,

SB203580

– Mice were protected from lethal H5N1 infection

exhibiting reduced mortality and

pro-inflammatory responses.

– Highly-pathogenic avian IAV (H5N1) (25)

MEK CI-1040 – Reduced lung viral load and mortality of

IAV-infected mice.

– 2009 pandemic IAV (H1N1) (26)

NFkB SC75741 – Reduced mortality and morbidity in mice following

highly pathogenic IAV infections.

– Similar results prophylactically.

– Highly-pathogenic avian IAV (H7N7

and H5N1)

(27)

GRK2 Paroxetine – Reduced viral load.

– No effect on mortality in IAV-infected mice.

– 2009 Pandemic IAV (H1N1) (28)

SphK1/SphK2 SK-1I, SK-2I,

and Pan-SKI

– Prolonged survival of mice following lethal

IAV infection.

– Mouse-adapted laboratory IAV (H1N1) (29)

PAR1 SCH79797 – Increased survival and a decrease in inflammatory

responses in H5N1 or H1N1 infected mice.

– Similar effect when administered 48–72 h

after infection.

– Mouse-adapted IAVs (H1N1 and H3N2);

Oseltamivir-resistant 2009 pandemic

IAV isolate (H1N1); highly-pathogenic

avian IAV (H5N1)

(30)

PPARα/PPARγ Gemfibrozil

(PPARα),

Pioglitazone

(PPARγ)

– Improved symptoms and increased survival of IAV

infected mice. ed survival after H1N1 or H5N1

mouse infections.

– 1957 Pandemic IAV (H2N2);

mouse-adapted laboratory IAV (H1N1);

2009 pandemic IAV (H1N1)

(31–33)

and Albericio and Kruger (46)]. LL-37 is a human cathelicidin
derived AMP that is found predominantly in neutrophils and
its expression can also be induced in epithelial cells and
macrophages (47). Aerosol administration of either human LL-
37 or its mouse counterpart mCRAMP led to reduced morbidity
and mortality to similar levels as the neuraminidase inhibitor
zanamivir that is used for the treatment of human influenza
patients (21).

Both cellular and viral FADD-like IL-1β-converting enzyme-
inhibitory protein (cFLIP and vFLIP, respectively) protect cells
from death receptor mediated apoptosis. Kα2 is a vFLIP-derived
peptide that consists of 10 amino acids from the α2 helix of the
Kaposi’s sarcoma herpes virus (KSHV) death effector domain
1 protein. A synthetic version of this peptide, TAT-Kα2, was
generated by fusing Kα2 to a portion of the HIV TAT protein

(22, 48). In mouse challenge studies, intranasal administration
of TAT-Kα2 at the time of infection with highly pathogenic
avian H5N1 virus resulted in protection of the treated mice. No
replicating virus was detected in the lungs at either 3 or 5 days
after infection suggesting complete protection from infection
(22). It should be noted that this effect is largely due to direct
destabilization of the virions by the TAT-Kα2 peptide and it
is likely that infection in treated mice was not established;
the efficacy of this AMP has not been determined during an
established infection and warrants further investigation.

Therapeutic Small Molecules
Host kinases regulate not only IAV entry and replication but also
initiate antiviral signaling cascades that regulate expression of
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pro-inflammatory chemokines and cytokines during infections
and present viable targets for intervention (24, 49–58).

IAV infection has been shown to upregulate c-Jun N-terminal
kinases 1 and 2 (JNK1/JNK2). These kinases directly regulate
the induction of pro-inflammatory responses. IAV-induced
JNK1/JNK2 activation mediates production of chemokines and
cytokines including TNF-α, interferon β (IFN-β), and interleukin
6 (IL-6) (24). In vivo inhibition of JNK1/JNK2 resulted in reduced
levels of pro-inflammatory cytokines and reduced viral titers
(23, 24).

The mitogen activated protein kinase (MAPK), p38, regulates
viral entry and replication (55, 59). Furthermore, p38 regulates
IFN stimulated gene (ISG) gene expression and ultimately
cytokine production via STAT1 phosphorylation (25). Using
either of two specific p38 inhibitors (SB 202190 or SB 203580),
mice were protected from lethal H5N1 infection exhibiting
reduced mortality and pro-inflammatory responses (25).
Activation of another MAPK, MEK, is required for efficient IAV
replication and its inhibition results in viral ribonucleoprotein
(vRNP) retention and reduced titers of progeny virus (26, 60, 61).
Importantly, treatment of mice with the clinically approvedMEK
inhibitor (CI-1040) showed reduced lung viral load andmortality
of mice following infection with a lethal dose of pandemic H1N1
IAV; interestingly, this inhibitor significantly out-performed the
clinically recommended oseltamivir in these studies (26).

Another central regulator of immune responses at the
epithelium as well as immune cells is the NF-κB signaling
pathway. Accordingly, IAV has evolved several mechanisms
to modulate this pathway to counteract antiviral responses
including directly targeting the IkB kinase (IKK) (62, 63).
SC75741 is a potent NFkB inhibitor that functions by reducing
the ability of the p65 subunit of the NFkB complex to bind DNA;
thereby limiting its transcription-regulating functions (64, 65). In
vivo administration of SC75741 at 4 days after lethal infection
with either H5N1 or H7N7 avian viruses resulted in significant
protection with most mice surviving and showing little to no
clinical symptoms; similar results were obtained by prophylactic
administration (27).

G-protein coupled receptor kinase 2 (GRK2) is best
known for its phosphorylation of GPCRs in cardiac tissue
resulting in recruitment of β-arrestin to facilitate rapid
receptor internalization and lysozomal degradation (66). Recent
phosphoproteomic studies identified GRK2 as a potentially
proviral host protein for IAV that plays a major role in virion
uncoating (28). Although in vivo inhibition of GRK2 using
paroxetine led to a significant reduction in upper respiratory
tract viral load and to a modest reduction in lower respiratory
tract titers at 4 days post infection, this inhibition was not
protective from lethal infections (28). However, it is possible that
the route of administration (intraperitoneal vs. intranasal) and
dosing regimen influenced the results.

Sphingosin kinases (SphK) are lipid kinases that mediate
conversion of sphingosine to bioactive lipid sphingosine 1-
phosphate (S1P) (67), a known modulator of central apoptotic
pathways (68). IAV infections leads to increased expression and
activation of SphK1 and SphK2 (29) and in vitro inhibition
of SphK1 was shown to decrease IAV RNA synthesis via

suppression of NFkB activation (69). Treatment of mice with
specific inhibitors to either SphK1 or SphK2 or a pan-SphK
inhibitor led to prolonged survival of mice following lethal IAV
infection (29).

Peroxisome proliferator-activated receptors (PPARα, PPARβ,
and PPARγ) regulate metabolic homeostasis and are important
mediators of the inflammatory response. Several PPAR agonists
have been investigated for efficacy during IAV infections with
varying results. Gemfibrozil (PPARα agonist) not only improved
symptoms when administered 4 days after infections with an
H2N2 virus, but also increased survival of IAV infectedmice (31).
Prophylactic treatment of H1N1-infected mice with pioglitazone
(PPARγ agonist) resulted in increased survival (32). Combined
activation of PPARγ and its downstream target AMPK improved
survival of mice infected with pandemic IAV strains (33).

Protease activated receptor (PARs) link protease activity
to inflammatory cellular responses (70). PAR1 expression is
upregulated in the mouse airways following IAV infections (71).
Intranasal administration of a PAR1 antagonist (SCH79797) at
the time of infection with various IAV strains including highly
pathogenic avian H5N1 and pandemic H1N1 viruses led to
increased survival and a decrease in inflammatory responses.
Moreover, this effect was also observed when SCH79797 was
administered 48–72 h after infection (30).

The use of statins, angiotensin II receptor blockers (ARBs)
and angiotensin converting enzyme inhibitors (ACEi) has been
proposed to regulate the IAV-induced cytokine storm in severe
infections (72, 73). Retrospective studies conducted separately in
Mexico, Netherlands, UK and USA reported an association of
reduced IAV-related pneumonia and lower case fatality due to
lower respiratory tract IAV infections with statin treatment (74–
77). However, this association was contested in two additional
studies that found no benefit of statin treatment on IAV-
induced disease burden (78, 79). This uncertainty regarding
the IAV therapeutic potential of these widely used compounds
warrants further investigations at the basic science level and in
clinical trials.

PERSPECTIVES AND FUTURE
DIRECTIONS

The continuous accumulation of adaptive mutations and
the introduction of novel viruses in the human population
continue to pose a threat to public health, especially to
individuals at high risk to influenza. The emergence of strains
resistant to existing classes of antiviral drugs and reduced
vaccine effectiveness highlights the need for the development
of alternative intervention strategies. Therefore, therapeutic
approaches that can diminish the potential for drug-resistance
while being effective against multiple IAV subtypes/strains
are highly desirable. Targeting host cell factors meets these
criteria and is more likely to avoid overtly robust immune
responses thereby reducing disease severity and improve patient
outcome (Figure 1).

A large effort has been made in recent years to identify host
proteins to serve as intervention targets against IV infections.
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FIGURE 1 | Biological response modifiers (BRMs). Potentially therapeutic BRMs that have shown antiviral/immunomodulatory effects during in vivo IV infections.

Schematic organizing BRMs based on BRM class, host/virus targets, compounds used in cited studies (from innermost to outermost ring). FDA-approved BRMs

cited in this review are in bold and italics.

Several genetic and proteomic screens have identified several
promising hits with potential roles in the IV replication cycle
(80–90). In addition to these genome-wide screens, viral and host
protein interactions can be mapped into networks that can also
be used to identify host factors critical for IV replication (91, 92).
Interestingly, meta-analysis of some these studies shows limited
overlap in the genes/proteins identified as required host factors
(87, 93–95). This is likely due to study-specific variations in
IV types/strains and cell-lines used, inclusion/exclusion criteria,
limited hit-validations and methods used to “knock-down/out”
these genes.

Local microenvironment within a given tissue can dictate
the quality and intensity of an immune response. Inhibition

or activation of critical signaling pathways expressed in both
respiratory tract epithelial and immune cells by BRMs can have
opposite and unintended consequences. As discussed above,
TRAIL regulates immune cell-mediated apoptosis of infected
cells and several studies have shown that blocking TRAIL
signaling by genomic deletion or depletion by monoclonal
antibody administration can improve infection outcome in IAV-
infected mice. Indeed inhibition of TRAIL signaling in alveolar
macrophages and other monocytes limits their ability to induce
apoptosis in alveolar cells, prevents lung tissue damage and
promotes survival (19, 96, 97). However, CD8+ T cells from
TRAIL−/− mice are less able to protect mice from severe
infections, consistent with impaired TRAIL-mediated effector
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functions of CD8+T cells (18). Similarly, opposing beneficial and
detrimental outcomes have also been observed in studies using
Bcl-2 inhibitors to treat IAV infections (98, 99).

BRM delivery should be guided by immune system
“compartmentalization” to ensure they elicit balanced immune
responses. Ideally, mucosal delivery deposits BRMs that
reduce viral titers at the site of IAV replication; however,
systemic delivery of certain BRMs might be required to dampen
dysregulated responses. This not only depends on the BRMs used
but also on the timing of their administration. Moreover, the
duration of treatment with BRMs must be considered because
sustained inhibition of certain inflammatory responses can result
in an immune status that increases susceptibility to secondary
opportunistic infections.

Repurposing of clinically approved drugs could potentially be
used as BRMs for the treatment of severe IAV infectious and
should be explored (86, 89, 90). Considering that susceptibility
to severe IAV infections is influenced by host genetics and host-
specific immune responses, selection of therapeutic BRMs should
be carried out using in vivomodel systems that are representative

of the immune status spectrum and underlying conditions of
high-risk influenza patients (young, immunocompromised, non-
naive, obese, pregnant, or aged). Using these model systems
will increase the likelihood of identifying BRMs with clinically
relevant antiviral and immunomodulatory potentials.
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