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Abstract: With the advent of unsupervised learning, efficient training of a deep network for image
denoising without pairs of noisy and clean images has become feasible. Most current unsupervised
denoising methods are built on self-supervised loss with the assumption of zero-mean noise under
the signal-independent condition, which causes brightness-shifting artifacts on unconventional
noise statistics (i.e., different from commonly used noise models). Moreover, most blind denoising
methods require a random masking scheme for training to ensure the invariance of the denoising
process. In this study, we propose a dilated convolutional network that satisfies an invariant property,
allowing efficient kernel-based training without random masking. We also propose an adaptive
self-supervision loss to increase the tolerance for unconventional noise, which is specifically effective
in removing salt-and-pepper or hybrid noise where prior knowledge of noise statistics is not readily
available. We demonstrate the efficacy of the proposed method by comparing it with state-of-the-art
denoising methods using various examples.

Keywords: blind denoising; self-supervision; adaptive loss; J -invariant network

1. Introduction

Denoising is one of the actively studied topics in computer vision and image pro-
cessing. Images generated from various devices are prone to noise and corruption due
to limited imaging environments (e.g., low light, slow shutter speed, etc.). Conventional
denoising methods usually rely on known noise models based on specific noise distribu-
tions. For instance, image prior-based approaches, such as self-similarity [1–5], require
a specific property of pre-defined noise statistics or prior knowledge of a target image.
However, there exist many real examples that pre-defined noise statistics do not fit, such as
the coherent random noise observed in the transparent films used in electron microscopy
(EM) imaging [6]. In such cases, conventional denoising methods may not work well.

In recent years, the supervised learning of convolutional neural networks (CNNs)
which have been widely used in many tasks [7–9] using clean-noisy image pairs has
achieved superior denoising performance [10,11]. Due to the difficulty in obtaining clean–
noisy image pairs in real examples, Lehtinen et al. [12], in their seminal study, introduced
unsupervised learning of a denoiser (Noise2Noise (N2N)) using only noisy images. Even
though N2N proposed the general approach, it still suffers from the acquisition of noisy-
noisy image pairs under known noise statistics.

More recently, several new unsupervised image denoising methods [13–16] have
shown promising results with denoisers that can be trained in a self-supervised fashion.
For example, Noise2Void (N2V) [14] and Noise2Self (N2S) [15] require only the assumption
of zero-mean noise without prior knowledge of noise statistics. These methods performed
the denoising task successfully using only noisy images under a zero-mean noise condition.
Self2Self (S2S) [16] proposed a novel framework with dropout using Bernoulli-sampled
instances of a single input image. Moreover, using only a single training image, S2S outper-
formed on several famous noise distributions. Despite their potential, these approaches
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have several drawbacks. First, these self-supervised methods approximate the optimal
denoiser with a noisy distribution based on the blind-spot scheme (i.e., random masking of
pixels during training). The blind-spot scheme damages the original noisy image, and the
large masking rate leads to poor performance. Second is the weakness of the general self-
supervision loss function. Because general self-supervision training depends on only the
noisy signal, excessive noise causes CNNs to learn poorly and incorrectly. We discovered
that state-of-the-art blind denoising methods are prone to predicting the wrong brightness
level or shape if noisy images are corrupted by impulse noise (e.g., salt-and-pepper noise)
or unconventional noise (e.g., fusion noise). Even though S2S successfully removed the
pepper noise, it also predicted different brightness for salt-and-pepper noise, as shown in
Figure 1. As a result, for state-of-the-art blind denoising methods, the brightness-shifting
artifact always appears in the case of corrupted salt-and-pepper noise.

Ground Truth Noisy input N2S N2V S2S N2K

Figure 1. Denoising results on the image highly corrupted by non-zero mean salt-and-pepper noise.
Note that the results of N2S, N2V, and S2S look much darker than the ground truth. Our proposed
method (N2K) successfully removes noise without brightness shifting.

To address the above issues, we introduce a novel unsupervised-learning-based de-
noising network. The combination of dilated convolution layers and donut-shaped kernels
means it can build a specific function that satisfies theJ -invariant property [15]. In addition
to the novel network architecture, we propose a novel adaptive self-supervision (ADSS) loss
to restore the clean signal on the highly corrupted noisy image without brightness shifting.

The main contributions of our study are as follows:

1. We propose a dilated convolutional invariant network using a donut-shaped ker-
nel and dilated convolutional layers. We no longer need a special training scheme
(e.g., random masking) for blind denoising with self-supervision loss.

2. We propose an adaptive self-supervision loss, which is the pixel-level nonlinear energy,
to suppress incorrect learning from unconventional noise. We demonstrate that the
proposed adaptive loss is highly effective on corrupted noisy images (for example,
images with speckle noise, salt-and-pepper noise, and fusion noise) without any prior
knowledge of the noise model.

3. We demonstrate that the total variation regularization term can help to restore the
pixel-wise artifact, which is a drawback of the proposed method.

To the best of our knowledge, the proposed method is the first fully blind denoising
method that can prevent brightness shifting for images highly corrupted by speckle noise,
salt-and-pepper noise, and fusion noise without noise statistics and clean–noisy pairs.

2. Related Work
2.1. Conventional Denoising Methods

Total variation (TV), known as TV regularization, is a widely used denoising technique [17–20]
that adopts prior sparsity gradients in image denoising. Filtering methods [1,2,21] based
on spatial information or nonlocal self-similarity achieve better performance than TV-based
methods. The block-matching and 3D filtering (BM3D) algorithm [2] still performs well
enough to be used as a comparison for deep learning. The structure of BM3D is actively
applied to various noise types, including salt-and-pepper noise and speckle noise [22,23].
With efficient training data, learning-based methods eventually perform better than non-
learning-based ones. Before deep learning, which involves the use of large training data,
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dictionary learning (DL) and convolutional sparse coding (CSC) [24] were used to restore
the original signal using a sparse representation prior with a learned dictionary [25–28].

2.2. Non-Blind Denoising Methods

In recent years, with advances in deep learning and the related equipment, supervised
deep learning over CNNs [10,29,30] has shown great promise with its denoising perfor-
mance. However, it is not suitable to apply this method in practice because most supervised
learning methods require noise statistics to generate the training data on a clean dataset.

Recently, Noise2Noise (N2N) [12] proved that training a deep learning model is
feasible and that the expected value of noisy inputs could be equal to the clean target.
However, in situations where the noise statistics are unknown, N2N is impractical because
of the difficulty in collecting a noisy pair for the same target. With only noise statistics, these
works [31,32] perform as well as or slightly better than supervised learning. For instance,
Ref. [31] suggest concrete self-supervision losses suitable for each noise statistic, but it is
difficult to apply the proposed loss in cases with unknown noise statistics. Ref. [31] also
presented a new blind-spot network that contributes similar to the architecture presented
in the present study. However, we take a different approach to enabling self-supervision
learning using the J -invariant property. Similarly, Noisy-As-Clean (NAC) [32] suggested
a training scheme with pairs of noisy images x and x + ns where ns is a simulated noise.
The researchers demonstrated that loss function L( f (x + ns), x) can be embedded into
supervised learning. Noisier2Noise [33] presented a novel training approach with only
a single noisy realization and noise statistics. It also overcomes the drawback of N2N
that is the requirement of a prior of noise distribution. Moreover, the Noisier2Noise
approach is applicable to spatially structured noise, one of the main disadvantages of a
blind denoising method.

2.3. Blind Denoising Methods

Blind denoising approaches assume that the prior noise distribution is unknown. To
restore the clean signal without noise statistics, for instance, deep image prior (DIP) [13]
tries to use a handcrafted prior to the image processing tasks. In other words, DIP shows
that image prior can be learned by a random-initialized neural network without a specific
condition. However, the internal-image-prior-based approach has the two drawbacks of
excessive testing time and inadequate performance.

The external-image-prior-based approaches, such as N2V [14] and N2S [15], employ
the blind-spot scheme to prevent being an identity mapping function by self-supervision
loss. Furthermore, two state-of-the-art methods take the self-supervision perspective to
train the deep learning model using only noisy images. Two methods achieved significant
shortening of testing time through the external image prior. In addition, N2S [15] suggested
the J -invariant property to prove that self-supervision loss can substitute for general loss
of supervised learning.

Recently, S2S [16] proposed a novel framework based on Bernoulli dropout, a new
masking scheme in the training step, to avoid increasing the variance based on internal
image prior because a single training sample causes large variances for denoising models
such as a Bayes estimator. Even though only a single noisy image is a training sample, S2S
outperforms existing blind denoising methods based on the external image prior.

3. Method

In this section, we introduce a novel deep neural network architecture that satisfies the
J -invariant property for blind noise reduction using adaptive self-supervision learning
(Figure 2). First, we reiterate the definition of J -invariant, originally introduced in N2S [15].
Next, we demonstrate that the proposed network satisfies the J -invariant, which allows
self-supervised training without using a specific training scheme (e.g., random masking).
Finally, we suggest the adaptive self-supervision loss to overcome the drawback of the
conventional self-supervision loss.
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Figure 2. Overview of the network structure of Noise2Kernel.

3.1. Formulations

This section introduces the formal definition and proposition of J -invariant that is
required to explain the proposed network (more details can be found in N2S).

Definition 1. Let J be a partition of the dimensions {1, ..., m}. Let x be an observed noisy signal,
and xJ be a sub-sample of x restricted to J ∈ J . A function f : Rm → Rm is J-invariant if the
value of f (x)J does not depend on the value of xJ ; f is J -invariant if it is J-invariant for each
J ∈ J .

We employ self-supervision loss as follows to restore the noisy image using the J -
invariant function f .

L( f , x) = || f (x)− x||2 (1)

To demonstrate that self-supervision loss can take the place of supervised loss, we
borrow the same proposition from N2S under the J -invariant definition.

Proposition 1. Let us assume that observed image x is an unbiased estimator of y. Let f be the
J -invariant function. Then

E|| f (x)− x||2 = E|| f (x)− y||2 +E||x− y||2 (2)

Proof. Let us consider the self-supervision loss over f function.

Ex|| f (x)− x||2 = Ex,y|| f (x)− y− (x− y)||2

= Ex,y|| f (x)− y||2 + ||x− y||2 − 2〈 f (x)− y, x− y〉 (3)

The inner product term 〈 f (x)− y, x− y〉 can be considered as follows:

ΣiEy(Ex|y[( f (x)i − yi)(xi − yi)]) (4)

Because f (x)i|y and xi|y are independent due to the invariant property of f , Equation (4)
becomes ΣiEy(Ex|y[ f (x)i− yi])(Ex|y[xi− yi]). Then, the third term of Equation (3) vanishes
since Ex|y[xi − yi] is zero due to the zero-mean assumption of noise.

From this, we can infer that the general self-supervised loss would be the sum of
the general supervised loss and the variance of noise. Therefore, based on the similar
scheme of N2S, we can conclude that an invariant function f can be a general denoiser if
f is minimized using a self-supervision loss. In the following section, we introduce the
proposed network, which is an J -invariant function using a donut-shaped kernel-based
convolution layer and dilated convolutional layers.
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3.2. Dilated Convolutional J -Invariant Network

Assume that the function f is a CNN with a single donut-shaped kernel (center weight
is always zero) (see Figure 3). Based on Definition 1, function f satisfies the J -invariant
property because xi is the sum of the multiplication of the neighboring information with
the donut kernel, except xJ , for all J ∈ J where the size of the squared donut kernel K
is always an odd number. We focus on this J -invariant function in a fully convolutional
network (FCN). If only one general convolution layer is added, the invariant property is not
satisfied even though the first layer may use the donut kernel. Furthermore, the receptive
field of a single layer is too small to predict the correct pixel within the kernel.

∗ ∗ ∗

𝑥

∗ ∗

𝑦 0 = 𝑓(0)(𝑥) 𝑦 1 = 𝑓(1)(𝑦 0 ) 𝑦 2 = 𝑓(2)(𝑦 1 )

∗

Figure 3. An example of dependency between the pixels in the input (x) and the output (y) im-
ages with one 3× 3 donut convolution filter and d-dilated convolution. Each row represents the
dependency visualization with two 2-dilated convolution and two 3-dilated convolution layers,
respectively. The green pixels indicate the pixel locations that have dependency with xi,j (the center
pixel in x). The red pixels represent the trainable variables of the convolution kernels. The blue pixels
indicate the area independent of xi,j. This figure shows the intermediate convolution processes of
y = f (x) = f (2)( f (1)( f (0)(x))) from the input image to the output prediction.

Let f be a network as a function that consists of d-dilated convolution f (k) ([34]) for
all k ∈ [1, n] where the size of the kernel is 3 × 3. We infer the function f as f (x) =
f (n)( f (n−1)(... f (1)( f (0)(x)))) where f (0) and x are a convolution layer of the K× K donut-
shaped kernel and an input noisy image, respectively, and y(k) is the output features for
each k-th convolution layer. We then need to demonstrate that f (x)J does not depend on xJ
for all J ∈ J .

Proposition 2. The proposed network f is J -invariant if d ≥ dK/2e.

Proof. Without loss of generality, we consider a one-dimensional case to prove this propo-
sition. Let us choose one pixel xJ where J ∈ J . Because of the donut convolution layer f (0),
xJ information moves to the neighboring region {J − bK/2c, ..., J − 1, J + 1, ..., J + bK/2c}
as shown in Figure 3. Let us suppose that the receptive field of xJ in y(k) is RF(y(k), xJ).
Then,

RF(y(k), xJ) =
⋃

j∈{−d,0,d}
{i + j|i ∈ RF(y(k−1), xJ)} (5)

where RF(y(0), xJ) = {J − bK/2c, ..., J − 1, J + 1, ..., J + bK/2c} for all k ∈ [1, n]. By this
recurrence relationship, we can infer that bK/2c − d < 0 and −bK/2c + d > 0 lead to
exclude an element J in RF(y(n), xJ). In other words, the f (x)J never consists of the
information of xJ if d ≥ dK/2e.

The combined structure of the donut convolution layer and dilated convolution layer,
as shown in Figure 2, always guarantees the existence of the J -invariant property if
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d ≥ dK/2e and the size of the square kernel of donut convolution layer K is an odd number.
In addition, as shown in Figure 2, there are two paths that both consist of 2-dilated or
3-dilated convolutional layers only. Because each path satisfies the J -invariant condition,
the proposed network is J -invariant. According to Equation (5), the combination of
two receptive fields of 2-dilation and 3-dilation paths can supplement each other the
missing regions (i.e., blue pixels in Figure 3) of a 2-dilated convolutional architecture while
increasing the field-of-view. To preserve the first prediction computed by a donut kernel,
we added a skip connection after the dilated convolution operation. We discovered that
the skip improved the convergence speed and image quality. In addition to its model
architecture, another important benefit of the proposed method is that it no longer requires
the masking scheme. A masked input x̃ of the noisy image x with the dimension J ⊂ J
(chosen randomly) is defined as

x̃ =

{
0 for j ∈ J

xj for j /∈ J (6)

Then, the general self-supervision loss with the masking scheme is defined as follows:

min
θ

N

∑
i

∑
J⊂J
||( f (x̃i; θ)J − xi

J)||2 (7)

Because random pixel discarding in the masking scheme introduces defects in image
(x̃), N2V and N2S fill in these missing pixels by copying from random locations or through
interpolation from neighboring pixels. Unlike such existing methods, the dilation convolu-
tion architecture of the proposed network can be trained using only the original x and the
general self-supervision loss without a masking scheme shown below:

L( f , x) = || f (x)− x||2 (8)

3.3. Adaptive Self-Supervision Loss

In the unsupervised denoising problem, the zero-mean noise is considered a default
noise model. However, the zero-mean condition is too strict to be used on blind denoising
with self-supervision loss. For example, in the case of salt noise (i.e., random white dots),
the general self-supervision loss may falsely treat the correct prediction as a noisy label due
to large differences between the predicted and noisy pixel values, which causes brightness
shifting toward white. This implies that self-supervision may fail to work on highly
corrupted impulse noise. An additional constraint is required to avoid the convergence
to the biased estimator. To address such limitations of standard self-supervision loss, we
propose ADSS loss using the focusing parameter λ as follows:

Ladap( f , x) = Ej[wj( f (x)j − xj)
2] (9)

wj =
1

1 + λ| f (x)j − xj|
(10)

where xj is a pixel indicated by an index j. The ADSS loss adjusts the proportion of
difference between x and f (x) adaptively. The main idea behind ADSS is that, if the
prediction is significantly different from the input pixel value, it is highly likely that the
input pixel is noise. Therefore, during the training process, backpropagation from such
pixels should be suppressed (i.e., the correct predictions should not be shifted toward the
noise pixel values) by adaptive control of the weight in the loss function. The ADSS loss is
equivalent to the self-supervision loss when λ = 0. Intuitively, λ controls the extent of the
influence of discrimination. We expect the ADSS loss can avoid unnecessary learning from
unpredictable noise.
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4. Results

To assess the performance of the proposed method, we tested it on various noise
models, such as those with additive white Gaussian noise (AWGN), speckle noise, and salt-
and-pepper noise. In particular, because we focus on highly corrupted noisy images by
unconventional noise in the blind aspect, the noise should be modeled by unknown distri-
bution. To simulate this, we built a fusion noise model by mixing AWGN, speckle noise,
and salt-and-pepper noise. We compared our method with several state-of-the-art blind de-
noising methods (N2V, N2S, and S2S). In addition, we also compared our proposed method
with conventional denoising methods, such as BM3D [2], SAR-BM3D [23], and AT2F [35],
known for the best performing filter-based denoising method specifically designed for each
noise model. We implemented Noise2Clean (N2C) on using the same network structure as
shown in Figure 2, with a regular 3× 3 convolution kernel for supervised training using
the clean–noisy pairs introduced in Section 4.2. Please note that N2C is a supervised learn-
ing method, which serves as the upper bound for the performance of the learning-based
denoising method.

For all training (except for N2C), we used only noisy images corrupted by simulated
noise. We chose the same dataset, BSD400, of gray scale images used in [10,14] as a training
dataset. For more detail, we applied augmentation using rotation and mirroring for all
learning-based methods. For testing the performance, we employed the BSD68 and Set14
datasets. In particular, S2S experiments on BSD68 were excluded because S2S is inner-prior-
based denoising approach that causes the large computational cost. We used the BSD68
dataset for the ablation study as a validation set.

We used TensorFlow [36] (version 2.0.0) to implement the proposed architecture,
as shown in Figure 2. For stable performance, we applied an exponential learning rate decay
with an RAdam [37] optimizer. We used batch size 64 and 0.03 as the initial learning rate and
λ = 10 for Equation (10). For a fair comparison, we used the default parameter settings from
the authors’ code for other blind denoising methods. We picked the best hyperparameters
for experimental comparison methods when the setting of a hyperparameter was required.
Because the denoiser should satisfy rotation invariance, we rotated each test image by 90
degrees and made two mirrored versions. The average of the inverse of eight outputs was
the final prediction.

To evaluate the image quality, we employ two full-reference image quality assessment
(FR-IQA) metrics such as peak signal-to-noise ratio (PSNR) and structural similarity index
metric (SSIM) defined as follows:

PSNR(ŷ, y) = 20log10(
MAXy√

MSE(ŷ, y)
), (11)

where MAXx is the maximum possible pixel value of the image, MSE is the mean squared
error. y and ŷ are the ground-truth and restored image, respectively. SSIM is defined as
follows:

SSIM(ŷ, y) =
(2µyµŷ + c1)(2σy,ŷ + c2)

(µ2
y + µ2

ŷ + c1)(σ2
y + σ2

ŷ + c2)
, (12)

where µy, µŷ are the average of each image, σy,ŷ is the covariance of y and ŷ, and σy, σŷ

are the variance of each image. For the constants c1 = (k1L)2 and c2 = (k2L)2, we set to
k1 = 0.01 and k2 = 0.03. L is the dynamic range of pixel values.

4.1. Denoising Results on Known Noise Models
4.1.1. Additive White Gaussian Noise (AWGN)

AWGN is a popular statistical noise model with a zero-mean characteristic as follows:

y = x + n, n ∼ N (0, σ2
g) (13)



Sensors 2022, 22, 4255 8 of 16

whereN is a normal distribution with standard deviation σg. For the baseline performance,
we chose BM3D, which is known for being the best performing method for this noise model.
For a fair comparison, we used the standard deviation σg (i.e., noise level) of the given
noise-corrupted images only for the case of BM3D (without the noise level prior, BM3D
does not produce correct results). Figure 4 shows the quantitative performance comparison
of denoisers over various noise levels, σg from 20 to 70. The proposed method achieves
similar or better performance than N2V and N2S, whereas S2S and BM3D outperformed
the proposed method. We expect that the proposed method has no significant performance
improvement compared with blind denoising methods on additive white Gaussian noise
distribution that satisfy the zero-mean condition. Therefore, we conclude that under the
zero-mean noise constraint, our method is comparable to most of the blind denoising
methods except S2S.
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Figure 4. Quantitative performance comparison of various denoising methods on known noise
models in the BSD68 and Set14 dataset. Left to right: AWGN, speckle noise, and salt-and-pepper,
respectively. Top to bottom: BSD68 and Set14.

4.1.2. Speckle Noise

Signal-dependent multiplicative speckle noise, often observed in synthetic aperture
radar and ultrasound images, can be modeled as follows:

y = x + n ∗ x, n ∼ U (0, σ2
s ) (14)

where U is the uniform distribution with a zero mean and a standard deviation of σs. We
chose SAR-BM3D [23], one of the conventional denoising methods specifically designed
for speckle noise, as the baseline method to compare with our proposed method. We
conducted the denoising experiment over various noise levels σs from 5 to 50. Interestingly,
blind denoising methods outperformed SAR-BM3D, as shown in the second column of
Figure 4. Please note that the proposed method consistently outperformed the other blind
denoising methods for all noise levels σs we tested (see the middle graph in Figure 4).
Furthermore, the performance gap between blind denoising methods and SAR-BM3D
increases as the noise level increases, which implies that blind denoising methods are more
robust to strong speckle noise than SAR-BM3D. The proposed approach achieved the best
difference compared to other blind denoisers (by around 4.55 dB higher) on the foreman
image in the Set14 dataset (the second row of Figure 5). Moreover, the overall intensity
distribution in the predicted image of the proposed method is closer to that of the ground
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truth; those of other blind denoisers (N2V, N2S, and S2S) suffer from brightness shifting
due to the non-zero-mean noise characteristic.

33.20 dB20.66 dB20.37 dB21.10 dBAT2F / 29.62 dB 8.56 dB

25.35 dB27.83 dB24.82 dB25.00 dBBM3D / 27.52 dB 14.70 dB

16.16 dB  16.12 dB 20.93 dB16.38 dBSAR-BM3D 

/ 17.75 dB

8.78 dB

Noisy Conventional N2V N2S S2S Proposed

Figure 5. Qualitative performance comparison of various denoising methods on three noise types.
Top to bottom row: AWGN (σg = 50), speckle noise (σs = 50), and salt-and-pepper noise (d = 50),
respectively. The best PSNR in each case is highlighted in bold. Each row indicates the results of
AWGN, speckle noise, and salt-and-pepper noise, respectively.

4.1.3. Salt-and-Pepper Noise

In this experiment, we employed salt-and-pepper noise, defined as follows:

y = fspn(x, d) (15)

where fspn is the projection function set to 0 or 1 with probability d. Conventional nonlinear
denoising methods for salt-and-pepper noise, such as median filter or AT2F, work well on
this noise model. We conducted the experiment using various noise levels from 5% to 50%.
For the salt-and-pepper noise, our proposed method performed better than state-of-the-art
methods because of its ability to overcome the problem of brightness shifting, as shown in
Figure 5 (third row). Please note that other blind denoising methods (N2V, N2S, and S2S)
performed poorly on this noise model. Furthermore, our proposed method outperformed
AT2F when d ≥ 15 on Set14, as shown in Figure 5. Similar to speckle noise, blind denoising
methods (i.e., N2V, N2S, and S2S) failed to restore the image contrast of the clean image
but our method successfully preserved the contrast and brightness of the original image.
Moreover, the proposed method shows better performance as the noise level increases.
Note also that the results of AT2F look much blurrier than those of the proposed method.

4.2. Denoising Results on Fusion Noise (Unknown Noise Statistics)

In this section, we compare the performance of denoising methods when the prior
knowledge of noise statistics is not available. For this, we generated the fusion noise, which
is a mixture of different noise models. We combined three known noise models, AWGN,
speckle noise, and salt-and-pepper noise, with σg, σs, and d to simulate this fusion noise,
which is formally defined as follows:

y = fspn((x + ng) + ns ∗ (x + ng), d) (16)

ng ∼ N (0, σ2
g) , ns ∼ U (0, σ2

s ) . (17)
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To compare the results on various noise levels, we selected σg ∈ {25, 50}, σs ∈ {5, 25},
and d ∈ {5, 25}.

We compare our proposed method with three well-known blind denoisers (N2V, N2S,
and S2S), along with N2C (supervised denoiser) as a baseline. For highly corrupted images
such as fusion noise, the image prior knowledge related to gradient can improve the
denoising performance to restore structured artifact that could be restored by total variation
minimization. The structured artifact was also reported in N2V, and remains as a limitation
of the proposed method in this paper. Hence, to resolve this limitation, we employed a TV
regularization term as shown below:

L( f , x) = Ej[wj( f (x)j − xj)
2] + α|| f (x)||TV (18)

We empirically found the value (1× 10−7) of alpha that the scale of total variation can
reach similar to the scale of adaptive loss. As shown in Figure 6, all other blind denoising
methods inaccurately reconstructed the black color to brighter gray color. N2S and S2S
also suffered from structural artifacts as well as incorrect brightness (Figure 6 last row). We
observed that our model predicted the clean image more accurately while preserving the
image contrast and details well as compared with N2S, N2V, and S2S. Furthermore, the TV
added version, called N2K+TV, effectively removed noise while preserving sharp edges.

Tables 1 and 2 summarize the results for various noise levels and denoising methods;
our proposed method with total variation (N2K+TV) achieved the highest PSNR compared
with the state-of-the-art blind denoising methods. It is clearly shown that the TV regular-
ization effectively improves SSIM, especially for the higher noise levels. We also observed
that the performance gap between our method and the others becomes larger as the noise
level increases. In summary, we conclude that the proposed method with total variation
regularization overcomes the problems caused by the fusion noise that affects most other
denoising methods.

Table 1. Performance of baselines, the proposed method and the proposed method+TV on the BSD68
test set. Boldface denotes the best among all except N2C.

Noise Level σg = 25, σs = 5, d = 5 σg = 25, σs = 5, d = 25 σg = 25, σs = 25, d = 5 σg = 25, σs = 25, d = 25

Method\Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

N2C 26.99 0.7588 26.24 0.7303 24.68 0.6673 23.96 0.6353

N2V 24.61 0.6817 20.96 0.5908 21.88 0.5940 19.29 0.5111

N2S 24.42 0.6789 21.16 0.5879 21.49 0.5727 19.03 0.4896

N2K (ours) 25.28 0.6892 24.52 0.6435 22.42 0.5580 21.46 0.4869

N2K+TV
(ours) 25.13 0.6853 24.42 0.6513 22.61 0.6043 21.86 0.5673

Noise Level σg = 50, σs = 5, d = 5 σg = 50, σs = 5, d = 25 σg = 50, σs = 25, d = 5 σg = 50, σs = 25, d = 25

Method\Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

N2C 25.21 0.6782 24.38 0.6391 23.85 0.6225 22.96 0.5810

N2V 22.64 0.5930 19.83 0.5337 20.57 0.5444 18.48 0.4794

N2S 22.00 0.5746 19.71 0.4999 19.95 0.5141 18.41 0.4404

N2K (ours) 23.40 0.6038 22.55 0.5471 20.49 0.5063 19.73 0.4321

N2K+TV
(ours) 23.40 0.6149 22.67 0.5786 20.59 0.5635 19.82 0.5195
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29.20 dB 

Noisy N2C N2V N2S S2S Proposed Proposed+TV

14.90 dB 26.39 dB 25.91 dB 25.86 dB 28.22 dB 27.14 dB 

28.37 dB 11.64 dB 25.91 dB 25.57 dB 25.85 dB 25.79 dB 26.24 dB 

25.89 dB 10.40 dB 21.58 dB 21.33 dB 21.38 dB 24.63 dB 24.33 dB 

23.50 dB 9.14 dB 19.90 dB 19.12 dB 19.82 dB 21.33 dB 21.62 dB 

25.23 dB 12.81 dB 23.19 dB 22.77 dB 23.23 dB 24.06 dB 23.88 dB 

24.06dB 9.56 dB 18.89 dB 18.97 dB 18.93 dB 22.63 dB 22.67 dB 

20.22 dB 10.14 dB 17.55 dB 17.26 dB 17.57 dB 17.81 dB 17.76 dB 

29.07 dB 9.04 dB 18.53 dB 11.60 dB 18.55 dB 27.39 dB 27.17 dB 

Figure 6. Qualitative performance comparison of various denoising methods on fusion noise. Top to
bottom (σg, σs, d): (25,5,5), (25,5,25), (25,25,5), (25,25,25), (50, 5, 5), (50, 5, 25), (50, 25, 5), (50, 25, 25),
respectively. The best PSNR is highlighted in bold, except N2C.
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Table 2. Performance of baselines, the proposed method and the proposed method+TV on the Set14
test set. Boldface denotes the best among all except N2C.

Noise Level σg = 25, σs = 5, d = 5 σg = 25, σs = 5, d = 25 σg = 25, σs = 25, d = 5 σg = 25, σs = 25, d = 25

Method\Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

N2C 28.06 0.7749 27.23 0.7476 25.61 0.6918 24.79 0.6615

N2V 25.51 0.7074 20.93 0.6089 22.59 0.6199 19.32 0.5335

N2S 24.06 0.6683 20.40 0.5805 21.34 0.5797 18.68 0.4971

S2S 25.72 0.7256 20.88 0.5951 22.58 0.6252 19.27 0.5149

N2K (ours) 26.42 0.7169 25.46 0.6674 23.25 0.5782 22.19 0.4992

N2K+TV
(ours) 26.26 0.7163 25.33 0.6791 23.52 0.6372 22.67 0.5966

Noise Level σg = 50, σs = 5, d = 5 σg = 50, σs = 5, d = 25 σg = 50, σs = 25, d = 5 σg = 50, σs = 25, d = 25

Method\Metric PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

N2C 26.16 0.7029 25.19 0.6631 24.66 0.6497 23.62 0.6082

N2V 23.01 0.6192 19.67 0.5572 20.88 0.5699 18.31 0.5005

N2S 21.65 0.5714 19.07 0.4994 19.26 0.5103 17.76 0.4438

S2S 23.31 0.6441 19.64 0.5361 21.04 0.5725 18.35 0.4748

N2K (ours) 24.24 0.6305 23.22 0.5708 21.20 0.5248 20.38 0.4438

N2K+TV
(ours) 24.24 0.6471 23.35 0.6076 21.31 0.5944 20.49 0.5452

4.3. Ablation Study

In this section, we empirically show the difference in the performance of ADSS loss
against the general self-supervision loss. In this experiment, we used the same network
structure for all test cases; however, the network was trained using different loss functions
to see how they affected the performance. The baseline model was trained using the general
self-supervision L2 loss Equation (1).

Table 3 shows the results of the previously introduced models when tested on the
BSD68 dataset. It can be seen that the ADSS loss, which suppresses training from outliers,
outperforms the general self-supervision loss at various levels of fusion noise except the
case of σg = 50, σs = 5, and d = 5. In addition, ADSS+TV achieved higher PSNR and SSIM
than the baseline and ADSS alone. As the general self-supervision loss considers all pixels to
be training data, it is more sensitive to highly corrupted noisy pixels. The study result also
confirms that the performance gap between baseline and ADSS is bigger for higher noise
levels (d = 25). As shown in the unknown noise statistics experiment, we observed that the
TV loss helped to increase PSNR and SSIM in highly corrupted images. In this ablation
study, we demonstrated that the ADSS loss outperformed the general self-supervision loss.
We also observed that the TV regularization was highly effective at further improving the
image quality. Additionally, TV can reduce the artifact from structured noise, which is the
weakness of the proposed method.
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Table 3. Comparison of ADSS and general self-supervision loss. Average PSNR and SSIM for fusion
noise on BSD68 validation set. The baseline uses only the structure of the proposed method with
general self-supervision L2 loss. Boldface denotes the best performance among Baseline, ADSS, and
ADSS +TV.

Model Baseline ADSS ADSS + TV

Noise
Level\Metric PSNR SSIM PSNR SSIM PSNR SSIM

σg = 25, σs = 5,
d = 5 24.54 0.6761 25.28 0.6892 25.13 0.6853

σg = 25, σs = 5,
d = 25 20.93 0.5577 24.52 0.6435 24.42 0.6513

σg = 25, σs =
25, d = 5 21.66 0.5679 22.42 0.5580 21.61 0.6043

σg = 25, σs =
25, d = 25 19.22 0.4850 21.46 0.4869 21.86 0.5673

σg = 50, σs = 5,
d = 5 22.54 0.5872 23.40 0.6038 23.40 0.6149

σg = 50, σs = 5,
d = 25 19.71 0.5162 22.55 0.5471 22.67 0.5786

σg = 50, σs =
25, d = 5 20.59 0.5390 20.49 0.5063 20.59 0.5635

σg = 50, σs =
25, d = 25 19.22 0.4850 21.46 0.4869 21.86 0.5673

4.4. Analysis for ADSS

The basic concept of the ADSS loss is to reduce the unnecessary training from noisy
pixels which have a large mean squared error. We now show simple examples highly
related to decrease of redundant training. The following examples provide more insights
into the properties of the proposed ADSS loss.

First, we should assume that the large gap between xj and f (x)j for an arbitrary given
j implies learning from xj disturb the denoising performance of the function f (i.e., f is
close to an ideal denoiser). Then, we simply reduce the loss forcibly by clipping of the
loss as

Lclip( f , x) = Ej[clip(( f (x)j − xj)
2, 0, ε)], ε > 0, (19)

over the clip function that limits the loss exceeds a threshold ε. We conducted an additional
experiment to analyze ADSS loss indirectly through the clipping method under the same
conditions of salt-and-pepper noise experiments as Section 4.1.3. On the top row of Figure 7,
trained denoisers by adjusted loss with ε ∈ {0.2, 0.4, 0.6} successfully recovered white
background, unlike the results of state-of-the-art blind denoising methods reported in
Section 4.1.3. Additionally, the loss clipping led to better PSNR compared with state-of-the-
art blind denoising approaches, as shown in Figure 8. We discovered that the reduction of
the loss from the pixels with a large gap between xj and f (x)j boosts the performance on
salt-and-pepper noise. Unfortunately, the clipping method requires proper value of ε to
obtain correct restoration result. Moreover, ε should be found for each pixel locally instead
of global thresholding. On the bottom row of Figure 7, we discovered an over emphasized
contrast on the pepper surface for significant loss clipping (where ε = 0.2 and 0.4). In
summary, we empirically showed that the reduction of the loss can prevent unnecessary
learning from unpredictable noise (e.g., salt-and-pepper noise and fusion noise) in the
general self-supervision loss. Moreover, the ADSS loss can successfully adjust the size of
self-supervision loss adaptively and automatically for each pixel.
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Ground Truth Noisy input ADSS𝜀 = 0.2 𝜀 = 0.4 𝜀 = 0.6 𝜀 = 0.8

20.12 dB 22.47 dB 22.08 dB 13.57 dB 24.52 dB

32.92 dB18.32 dB 21.59 dB 22.44 dB 20.19 dB8.44 dB

6.86 dB

Figure 7. Effect of the loss clipping for various threshold values on salt-and-pepper noise (d = 50).
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Figure 8. Average PSNR graph of loss clipping on Set 14 in terms of ε.

5. Conclusions

We introduced a novel unsupervised denoising method based on the dilated con-
volutional J -invariant network, allowing for efficient kernel-based training without the
masking scheme. The absence of preprocessing further pushes the performance in terms
of training efficiency. We also proposed an adaptive self-supervision loss that is highly
effective in preserving overall brightness and structures in the image, even with the ex-
tremely high noise level and even if the zero-mean assumption and prior knowledge of
noise statistics are not present. Using simulations of known and unknown noise statis-
tics, we showed that the proposed method leads to better denoising quality than other
state-of-the-art methods of blind denoising.

We believe the proposed work will be useful in improving highly corrupted noisy
images where noise statistics are not readily available. Extending the proposed architecture
to general image enhancement problems, such as blind image super-resolution, is another
interesting future work. As a limitation, we found no significant performance improvement
on AWGN experiment and low-level noisy images such as DND [38] dataset. In the
future, we plan to develop more improved ADSS loss, such as the exponential form to
outperform the state-of-the-art blind denoising methods on AWGN and real noisy dataset.
Furthermore, we plan to explore applications of our method, especially in the biomedical
imaging domain.
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