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A B S T R A C T   

Background: Recent studies on COVID-19 have demonstrated that poverty, comorbidities, race/ 
ethnicity, population density, mobility, hygiene and use of masks are some of the important 
correlates of COVID-19 outcomes. In fact, weather conditions also play an important role in 
enhancing or eradicating health issues. Based on Chinese experience, the development of SARS 
and COVID-19 is partially associated with alterations in climate that align with the seasonal shifts 
of the “24 solar terms.” However, the applicability of this pattern to other countries, particularly 
the United States, which has the highest global incidence and mortality rates, remains subject to 
ongoing investigation. We need to find more evidence to in the U.S. states verify the relationship 
between meteorological factors and COVID-19 outcomes to provide epidemiological and envi-
ronmental support for the COVID-19 pandemic prevention and resource preservation. 
Objective: To evaluate the relationship between meteorological factors and Coronavirus Disease 
2019 (COVID-19) mortality. 
Methods: We conducted an ecological cross-sectional study to evaluate the relationship between 
meteorological factors (maximum temperature, minimum temperature, humidity, wind speed, 
precipitation, atmospheric pressure) and COVID-19 mortality. This retrospective observational 
study examines mortality rates among COVID-19 patients in the three US states, California, Texas, 
and New York, with the highest fatality numbers, between March 7, 2020 and March 7, 2021. The 
study draws upon data sourced from the publicly accessible Dryad database. The daily corre-
sponding meteorological conditions were retrieved from the National Oceanic and Atmospheric 
Administration Global Meteorological website (https://www.ncei.noaa.gov/maps/hourly/). This 
study employed multivariate linear regression analysis to assess the correlation between six 
meteorological factors and COVID-19 mortality. Gaussian distribution models were utilized to 
generate smooth curves for examining the linear association between maximum or minimum 
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temperature and mortality. Additionally, breakpoint analysis was conducted to evaluate the 
threshold effect of temperature. 
Results: We found that the death toll of patients with COVID-19 decreased with an increase in the 
highest and lowest ambient temperatures (p < 0.001). In our study, we observed a seasonal 
difference in mortality rates, with a higher number of deaths occurring during winter months, 
particularly in January and February. However, mortality rates decreased significantly in March. 
Notably, we found no statistically significant correlation between relative humidity, average 
precipitation, and average wind speed with COVID-19 mortality (all p > 0.05). Daily COVID-19 
death was negatively correlated with the maximum temperature (β = − 22, 95% CI, − 26.2 to 
− 17.79 –, p < 0.01), while the maximum temperature was below 30 ◦C. Similarly, the number of 
deaths was negatively correlated with the minimum temperature (β = − 27.46, 95% CI, − 31.48 to 
− 23.45, p < 0.01), when the minimum temperature was below 8 ◦C. Our study found a significant 
association between temperature and COVID-19 mortality, with every 1 ◦C increase in maximum 
or minimum temperature resulting in a decrease of 22 and 27 deceased cases, respectively. The 
relationship between atmospheric pressure and COVID-19 mortality was not fully elucidated due 
to its complex interaction with maximum temperature. 
Conclusions: This empirical study adds to the existing body of research on the impact of climate 
factors on COVID-19 prevention and resource allocation. Policymakers and health scientists may 
find these findings useful in conjunction with other social factors when making decisions related 
to COVID-19 prevention and resource allocation.   

1. Introduction 

Since late 2019, coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2), has rapidly spread worldwide [1]. Based on the data from August 2021, there were over 202 million global 
COVID-19 cases, with over four million deaths globally. The highest percentage of cumulative cases correlated with the COVID-19 
burden and was concentrated in America, Europe, and Asia [2]. 

Fig. 1. The names and time divisions of Chinese “24 solar terms”.  
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The transmission of COVID-19 infections and the resulting mortality rates are influenced by a multitude of factors. Some studies 
focusing on neighborhood social contexts have demonstrated that poverty, comorbidities, and race/ethnicity are some of the 
important correlates of COVID-19 outcomes [3]. Previous studies have suggested that patient outcomes may be impacted by a range of 
environmental, socioeconomic, and politico-cultural factors, including but not limited to population density, population mobility, 
lockdown policies, use of masks, air pollution, and access to quality medical care [4–6]. In addition, weather conditions also play an 
important role in enhancing or eradicating health issues. 

During the Han Dynasty over two thousand years ago, Chinese ancestors established a connection between the position of the sun 
on the ecliptic throughout the year and the evolution of climate. This linkage was reflected in the annual movement of the sun and 
became known as “the 24 solar terms” theory. The year was divided into 24 equal parts based on different seasons and climatic 
conditions, each lasting approximately 14 days (Fig. 1). There was a proverb that summarizes the laws of pandemic development, 
indicating that pandemics often begin during “Greater snow,” start at “The winter solstice,” are born at “Lesser cold,” grow during 
“Great cold,” flourish at “The beginning of spring,” weaken at “Rain water,” decline during “The waking of insects,” end at the “Spring 
equinox,” and are extinguished at “Pure brightness.” Different solar terms are distinguished by various climatic characteristics, such as 
temperature, humidity, precipitation, wind speed, atmospheric pressure, and other parameters. The Severe Acute Respiratory Syn-
drome (SARS) outbreak in China in 2003 followed this law of development, with the earliest cases occurring in Guangdong in 
December around the time of “Greater snow,” peaking during “Great cold,” and gradually decreasing after “Rain water.” Some clinical 
examinations suggested that COVID-19 patients are similar to those of SARS [7]. Reviewing the epidemic trend of COVID-19 from the 
end of 2019, it somewhat followed the same pattern of fluctuations with climate change [8]. In 2021, a new variant strain of COVID-19, 
Omicron, emerged in South Africa during the winter season, as well. 

What is the relationship between climate factors and COVID-19 incidence and mortality? Numerous studies have examined the 
impact of temperature, humidity, wind speed, and other meteorological factors on the rates of pneumonia [9], SARS [10], and 
COVID-19 [11–13]. While most studies have found that high temperature and high humidity can partially reduce the reproduction and 
mortality rates of COVID-19, some have failed to identify a significant association. The discrepant results may be attributed to regional 
differences, inconsistent climate parameters, exposure assessments, policy interventions, socioeconomic status, and public health 
services [14,15]. 

To mitigate the influence of geographic, economic, and policy disparities across various nations on COVID-19 mortality, this 
investigation solely concentrates on patients within the United States, one of the countries that experienced a high fatality rate due to 
COVID-19. A retrospective analysis of data was carried out to examine the correlation between meteorological parameters and COVID- 
19 mortality. Additionally, the study aimed to confirm the applicability of the epidemiological laws of the 24 solar terms in China to 
the United States. 

To the best of our knowledge, most studies have examined the relationship between climatic factors, especially temperature, and 
the incidence, not mortality of COVID-19 in the United States, with time span usually less than six months [16–18]. Carson R.T. et al. 
[19] concluded that COVID-19 death counts are strongly influenced by changes in maximum daily temperature. However, Karimi S.M 
[20] collected weather data of 3141 US counties, including minimum and maximum daily temperature, precipitation, ozone 

Fig. 2. Comparative histogram of COVID-19 deaths in states of America from March 7, 2020 to March 7, 2021.  
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concentration, PM2.5 concentrations, and U.V. light index, and found the association between weather changes and US COVID-19 
fatality rates only appeared to be associated with minimum temperature and ozone levels. Some studies discussed about the rela-
tionship between one or more weather parameters comprising of humidity [21,22], wind speed [23], precipitation and air pressure 
[24] with the COVID-19 death rate. However, the specific effect of each meteorological parameter on COVID-19 incidence and 
mortality remains unclear and may vary across different regions. Commonly used statistical methods include Spearman’s rank cor-
relation, descriptive statistics, and generalized additive models, with only a few studies using linear regression analysis to analyze 
continuous meteorological data and COVID-19 mortality [25]. 

The highlight of this study is the selection of one-year-long meteorological data (maximum temperature, minimum temperature, 
humidity, wind speed, precipitation and air pressure) and the top-three-state (California, Texas, and New York) death toll data in the 
United States (Fig. 2). Multiple regression models were employed to investigate the potential threshold effect between maximum and 
minimum temperature and COVID-19 mortality. The study’s findings may contribute to the development of more effective strategies 
for COVID-19 prevention and resource management from an epidemiological and environmental perspective [26]. 

2. Methods 

2.1. COVID-19 deaths data 

We conducted a retrospective observational study of mortality in patients with COVID-19 in the United States from March 7, 2020, 
to March 7, 2021, through the Dryad public database. This database contains the daily number of positive nucleic acid detection tests, 
hospitalizations, and COVID-19 deaths in each state of the USA. 

2.2. Meteorological materials 

The corresponding daily meteorological conditions were retrieved from the National Oceanic and Atmospheric Administration 
(NOAA) Global Meteorological website(https://www.ncei.noaa.gov/maps/hourly/). Three states, including California, Texas, and 
New York, were chosen as the study objects because of the highest death toll, representative weather conditions, and complete 
meteorological data. For our analysis, we utilized data from the ten nearest weather stations to each state and selected the records that 
were most comprehensive. Occasionally, missing values are replaced by the average of the two days before and after. Since the number 
of deaths in Texas had not been recorded until March 17, 2020, we summarized meteorological data from March 17, 2020, to March 7, 
2021. The indicators include maximum temperature, minimum temperature, relative humidity, air pressure, precipitation, and wind 
speed. We collected meteorological parameters every morning at 07:59:00 a.m. for each state. For analysis, we utilized the highest and 
lowest values of maximum and minimum temperatures observed in the three states on the same day, while average values were 
employed for relative humidity, atmospheric pressure, precipitation, and wind speed at the same time point. Daily death tolls were 
calculated by summing the numbers from the aforementioned states. 

2.3. Statistical methods 

All analyses were performed using the statistical software packages R (http://www.R-project.org, The R Foundation) and Free 
Statistics Version 1.7 (Beijing, China). The normality of the data was assessed. Means (standard deviation [SD]) or medians (25th 

Fig. 3. Scatter chart of the number of deaths in California, Texas, and New York at one year.  
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percentile, 75th percentile) and proportions were calculated for the baseline characteristics. Normally distributed variables are pre-
sented as mean (SD), while skewed variables are presented as medians (interquartile range, 25%–75%). A one-way analysis of variance 
for continuous variables with normality was applied to compare the characteristics of COVID-19 deaths among the four seasons of the 
year. Tukey’s method was used for multiple comparisons. Multivariate linear regression analysis was used to evaluate the relationship 
between climatic factors and COVID-19 mortality. To assess confounding, we entered covariance into a regression model in the basic 
model one by one and compared the regression coefficients. We conducted a Gaussian distribution model to develop smooth curves 
with maximum and minimum temperatures as independent variables, respectively, and the number of deaths as dependent variable. 
Meanwhile, the breakpoints were tested by segmentation function to determine the threshold effects of temperatures, adjusted by 
other parameters as relative humidity, daily precipitation, and wind speed. Statistical significance was set at P < 0.05. 

3. Results 

According to the records, from March 7, 2020, to March 7, 2021, 515 151 individuals died of COVID-19 in 56 states of the U.S. As 
can be seen in Fig. 2, California, Texas, and New York have the largest number of deaths. In California, for example, 54 124 individuals 
died in one year, with an average daily death toll of nearly 148. To explore the seasonal distribution of deaths, we divided the number 
of deaths by season: March 21 to June 21 as spring; June 22 to September 22 as summer; September 23 to December 21 as autumn; and 
December 22 to March 20 as winter. Figs. 3 and 4 demonstrate that COVID-19 mortality rates followed a similar pattern to “the 24 solar 
terms” observed in China. Specifically, the mortality rates increased during the “Great Cold” period in January and subsequently 
declined around the time of “The Waking of Insects” and “The Spring Equinox” in March. We further compared the independent death 
tolls of the three states as shown in Fig. 5. According to the line chart, the death toll in each state was still the highest in January and 
February and gradually decreased after April and May, except that New York State had an unexpectedly small peak in April. We also 
saw the August short peaks of death in California and Texas. In winter, the death tolls in December rose again. 

Table 1 displays the monthly COVID-19 death tolls and corresponding meteorological parameters. Data from March 7, 2020, to 
March 16, 2020, were not included because of missing death data in the Dryad database. Based on the two public database sources, the 
relationship between meteorological factors and COVID-19 mortality was further studied using univariate Gaussian regression 
(Table 2). The death toll of COVID-19 was closely related to the daily maximum temperature, minimum temperature, and average 
atmospheric pressure (all p < 0.01). There was no significant correlation between relative humidity, average precipitation, and 
average wind speed (all p > 0.05). Next, we conducted a multiple regression analysis of maximum, minimum temperature, and at-
mospheric pressure with the death toll. With adjustment for other climate factors, the relationship remained significant between daily 
maximum temperature (β = − 22, 95% CI -26.2 to − 17.79, p < 0.01), minimum temperature (β = − 27.46, 95% CI -31.48 to − 23.45, p 
< 0.01), and COVID-19 death (Table 3). For every 1 ◦C increase in maximum or minimum temperature, the number of deceased cases 
decreased by 22 and 27 individuals, respectively. However, the relationship between atmospheric pressure and COVID-19 mortality 
was no longer stable after adjusting for the maximum temperature parameter, which may indicate an interaction between atmospheric 

Fig. 4. COVID-19 monthly distribution histogram of total death tolls in California,Texas,and New York.  
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pressure and temperature. The adjusted parameters are provided as explanatory notes below the table. 
Based on the multivariable adjusted restricted cubic splines presented in Fig. 6a and b, along with the breakpoints estimated in 

Table 4, our study identified threshold effects of temperature after adjusting for relative humidity, daily precipitation, and wind speed. 
These results suggest that mortality rates gradually decreased as maximum temperatures increased; however, this correlation was no 
longer significant once the temperature exceeded 30 ◦C. In addition, we observed a significant negative correlation between minimum 

Fig. 5. Death tolls comparison between the three states: California (CA), Texas (TX), and New York (NY).  

Table 1 
Meteorological characteristics and daily deaths from March 17, 2020, to March 7, 2021.  

Months Daily deaths, 
Median (IQR) 

MaxT, Mean ±
SD (◦C) 

MinT, Mean ±
SD (◦C) 

RH, Mean ±
SD (%) 

AP, Mean ± SD 
(hPa) 

DP, Median (IQR) 
(mm) 

WS, Mean ± SD 
(m/s) 

Total (356 
days) 

281.0 (156.0, 
550.8) 

28.1 ± 7.0 4.1 ± 6.7 82.2 ± 6.2 1016.2 ± 3.9 1.7 (0.0, 16.2) 3.5 ± 0.9 

Jan (n = 31) 1030.0 (783.0, 
1186.0) 

20.4 ± 3.0 − 4.3 ± 3.8 83.2 ± 5.1 1018.5 ± 4.3 6.7 (1.0, 32.6) 3.4 ± 0.7 

Feb (n = 28) 734.0 (533.0, 
979.8) 

20.9 ± 4.2 − 5.1 ± 3.9 80.8 ± 4.7 1019.1 ± 4.2 2.2 (0.0, 6.3) 3.1 ± 1.4 

Mar (n = 22) 194.0 (38.5, 390.5) 24.0 ± 3.8 − 0.6 ± 4.9 83.3 ± 6.8 1018.2 ± 3.5 14.5 (1.0, 27.2) 3.6 ± 0.8 
Apr (n = 30) 630.5 (540.2, 

772.0) 
25.9 ± 5.9 2.5 ± 3.0 84.7 ± 5.9 1014.0 ± 2.8 5.2 (1.2, 20.0) 4.0 ± 1.1 

May (n = 31) 266.0 (176.5, 
315.0) 

32.1 ± 4.0 7.8 ± 4.6 81.3 ± 5.6 1014.8 ± 1.9 2.7 (0.4, 25.9) 3.9 ± 1.0 

Jun (n = 30) 118.5 (97.2, 139.2) 33.5 ± 1.7 10.7 ± 2.2 80.3 ± 8.1 1014.0 ± 4.1 0.0 (0.0, 7.8) 3.9 ± 0.7 
Jul (n = 31) 235.0 (157.5, 

302.5) 
37.3 ± 2.3 11.4 ± 1.1 83.0 ± 4.7 1012.8 ± 1.5 0.7 (0.0, 14.2) 3.7 ± 0.6 

Aug (n = 31) 361.0 (226.5, 
427.5) 

37.6 ± 2.3 10.3 ± 2.1 80.9 ± 4.5 1012.9 ± 2.4 0.0 (0.0, 5.3) 3.4 ± 0.5 

Sep (n = 30) 224.5 (124.2, 
271.8) 

29.9 ± 3.9 8.9 ± 3.2 87.3 ± 4.2 1016.2 ± 3.6 0.0 (0.0, 4.6) 2.9 ± 0.9 

Oct (n = 31) 157.0 (97.0, 178.0) 26.0 ± 6.6 5.5 ± 4.6 83.7 ± 4.8 1016.8 ± 2.5 1.7 (0.0, 26.6) 3.2 ± 0.8 
Nov (n = 30) 202.0 (129.0, 

249.0) 
24.7 ± 2.3 2.8 ± 3.7 81.0 ± 6.8 1019.5 ± 2.6 1.0 (0.0, 13.4) 3.6 ± 0.8 

Dec (n = 31) 479.0 (355.5, 
638.0) 

22.5 ± 2.6 − 2.4 ± 3.7 77.6 ± 7.0 1018.7 ± 3.1 3.3 (0.0, 14.8) 3.6 ± 1.0 

P value <0.001 <0.001 <0.001 <0.001 <0.001 0.003 <0.001 

Meteorological factors in this table refer to: MaxT = Maximum temperature, MinT = Minimum temperature, RH = relative humidity, AP = atmo-
spheric pressure, DP = daily precipitation, WS = wind speed. Rendered data are the mean values of three cities: California, Texas, and New York, 
except MaxT and MinT. The meteorological data come from different stations in each state, with a little difference in longitude and latitude. The data 
on March are from March 17 to March 31, 2020, and March 1 to March 7, 2021, less than one year, due to the lack of details on COVID-19 deaths in the 
original Dryad database. 
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temperatures and mortality rates, particularly when temperatures fell below 8 ◦C. 

4. Discussion 

As early as 2000 years ago, it was recorded in the Inner Canon of the Yellow Emperor, the earliest medical classic in ancient China, 
that the health of humankind was adapted to the four seasons of the earth. It is believed that periodic rhythmic changes in nature 
directly or indirectly affect the human body, and the human body forms many life activity rhythms in the process of adapting to nature. 
These periodic changes are reflected in human physiology and pathology, which can be roughly divided into four categories: circadian 
rhythm, monthly rhythm, annual rhythm, and super annual rhythm. The annual rhythm includes the rise and fall rhythm of Yin and 
Yang, death rhythm, and onset rhythm in the four seasons [27]. Since the 1980s, research on time medicine has been conducted 
worldwide [28,29]. Many studies have shown that death due to respiratory diseases, such as lung cancer and spontaneous pneumo-
thorax, is related to Chinese solar terms, which divide one year into 24 time periods by meteorological factors [30,31]. The World 

Table 2 
Association between meteorological factors and COVID-19 deaths by univariate regression 
analysis.  

Item β (95% CI) P 

MaxT, ◦C − 20.94 (− 25.12, − 16.76) <0.001 
MinT, ◦C − 27.12 (− 31.11, − 23.12) <0.001 
RH, % − 2.56 (− 7.88, 2.76) 0.344 
AP, hPa 14.79 (6.54, 23.05) <0.001 
DP, mm 0.42 (− 0.7, 1.54) 0.464 
WS, m/s 15.54 (− 20.05, 51.13) 0.391  

Table 3 
Association between meteorological factors and COVID-19 deaths in multiple regression model.  

Variable Model 1 (unadjusted) Model 2 (adjusted) Model 3 (adjusted) 

N β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value 

MaxT, ◦C 356 − 20.94 (− 25.11 to − 16.77) <0.001 − 22.75 (− 27.58 to − 17.93) <0.001 − 22 (− 26.2 to -17.79) <0.001 
MinT, ◦C 356 − 27.12 (− 31.1 to − 23.14) <0.001 − 30.81 (− 35.49 to − 26.13) <0.001 − 27.46 (− 31.48 to -23.45) <0.001 
AP, hPa 356 14.79 (6.57 to 23.02) <0.001 − 2.89 (− 11.86 to –6.08) 0.528 − 11.5 (− 19.95 to -3.04) 0.008 

Model 1: unadjusted. 
Model 2: MaxT adjust for relative humidity, atmospheric pressure, daily precipitation, and wind speed; MinT adjust for relative humidity, atmo-
spheric pressure, daily precipitation, and wind speed; AP adjusts for Max temperature, relative humidity, daily precipitation, and wind speed. 
Model 3: MaxT adjust for relative humidity, daily precipitation, and wind speed; MinT adjust for relative humidity, daily precipitation, and wind 
speed; AP adjusts for Min temperature, relative humidity, daily precipitation, and wind speed. 
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Fig. 6. Linear relationships between COVID-19 death tolls and temperature values.  
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Health Organization estimates that between 2030 and 2050, there will be approximately 250 000 deaths caused by climate change 
worldwide every year [32]. 

Excluding the influence of other social factors, meteorological factors may also have some degree of correlation with COVID-19 
outcomes [33,34]. In Bangladesh, analyses showed that with a decrease in temperature and increase in wind speed, the infection 
rate and death increased significantly [35]. Some studies revealed negative correlation between the number of daily COVID-19 deaths 
and humidity in Oman, Kuwait, Qatar, Bahrain, the United Arab Emirates, Saudi Arabia, China and India [28,36–38], while few studies 
showed positive association [16]. A study in China found that higher average temperatures and more precipitation were beneficial for 
the recovery rate of COVID-19 but not correlated with wind speed and relative humidity [39]. In contrast, some studies have reported 
that no climate factors correlated with daily COVID-19 deaths [21,40]. A bidirectional causality between COVID-19 cases and 
meteorological factors, such as air pressure, humidity, and temperature, has been confirmed in other studies [41]. In our study, the 
death toll in winter was higher than that in summer, especially in January and February, with a small peak of death from August to 
September. This conclusion was confirmed in another study on respiratory diseases [42]. The above tables show that temperatures are 
correlated with COVID-19 death (p < 0.01). The study identified a negative correlation between temperature and daily COVID-19 
deaths. However, the investigation also revealed the presence of threshold effects associated with maximum or minimum tempera-
ture. We did not find a correlation between relative humidity, precipitation, wind speed, and death, which may be related to the lack of 
significant changes in these indicators in the three states. This conclusion is slightly different from that of a previous study [28]. After 
adjusting for other meteorological factors, the correlation between maximum temperature, minimum temperature, and mortality was 
still stable, while the influence of atmospheric pressure was no longer significant. This may be related to the significant influence of air 
temperature and the interaction between the two factors. 

Among those meteorological factors, the temperature has the greatest impact on COVID-19 death, which is consistent with previous 
research conclusions [4,16,37,43]. At present, the curves that study the relationship between daily temperature and the number of 
COVID-19 deaths generally show a U-shape, V-shape, or J-shape [44,45], and few studies have shown linear relationships between air 
quality indicators and COVID-19 death [46]. In our analysis, the smooth curve between the maximum temperature and COVID-19 
death tolls has a breakpoint temperature of 30 ◦C, showing a J-shape. Meanwhile, the breakpoint of the minimum temperature 
curve was 8 ◦C. Some previous conclusions are similar to our results. For example, a significant negative correlation between tem-
perature and death was found in New York City [18], Organization for Economic Co-operation and Development countries, Paris, and 
Iran [47–49]. Another study, conducted in 25 areas of Europe and the US, found that the relationship between the number of deaths/1 
million people and the average monthly high temperatures was not steady in March and April [50]. The optimum temperature for 
diseases may be related to disease type and geographical location. Yang [51] found that the most suitable temperatures for patients 
with cardiovascular disease in Harbin, Shenyang, Changsha, and Guangzhou are different, which shows that the most suitable tem-
perature in the high-temperature southern region is higher than that in the cold northern region. According to the quantile analysis 
conducted in Istanbul, temperature exerts a significant and positive impact on COVID-19 at higher quantiles (0.8–0.9), while its effects 
at initial and middle-level quantiles were deemed insignificant [4]. Another study [52] analyzed the effect of temperature on respi-
ratory mortality in Mashhad, Iran. It was found that the risk of death increased by 1.36% for every 10 ◦C reduction. For the COVID-19 
study in 138 countries, every 1 ◦C increase in average temperature, the number of confirmed and deceased cases decreased by 2047 (p 
= 0.03) and 157 (p = 0.016) individuals, respectively [53]. This could be because, in winter, a slight reduction in temperature can 
prolong the survival time of the virus in the atmosphere; thus, facilitating virus transmission. However, as high temperatures inactivate 
viruses by denaturing the capsid protein and glycoprotein spike, the increase in maximum temperature would prevent the virus from 
attaching to the host cells in summer [54]. In addition, our study shows that extraordinarily high temperatures, higher than 30 ◦C, are 
not beneficial to the prognosis of the disease. Excessively high temperature increases human perspiration, with excessive salt loss, 
resulting in cell electrolyte disorder and acid-base imbalance. This series of physiological reactions will lead to changes in physio-
logical homeostasis, making the human body more vulnerable to the invasion of toxic substances. Another plausible explanation for 
the temperature effect may pertain to the immune system of local inhabitants, which has a correlation with weather, dietary habits, 
and daily routines. Specifically, low temperatures can impede blood supply, thereby hindering the delivery of immune cells to the nasal 
mucosa. This phenomenon can be exacerbated by indoor crowding and inadequate ventilation. 

Limitations of our study include incomplete information retrieved from public databases due to data availability constraints. The 

Table 4 
Threshold effect analysis of association between COVID-19 deaths and temperature level.  

Item β Lower 95% CI Upper 95% CI P-value 

MaxTa     

Estimated Breakpoint 30.486 30.191 30.781  
Slope 1 − 37.084 − 48.032 − 26.136 <0.001 
Slope 2 2.377 − 7.172 11.925 0.623 
Non-linear Test – – – <0.001 
MinTa     

Estimated Breakpoint 1 8.624 7.809 9.439  
Slope 1 − 35.387 − 43.542 − 27.232 <0.001 
Slope 2 − 5.263 − 21.727 11.201 0.528 
Non-linear Test – – – 0.012  

a MaxT and MinT are measured in ◦C, adjusted for relative humidity, daily precipitation, and wind speed, respectively. 
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meteorological data used in this study were obtained from multiple stations near the states, and the average concentration may not 
represent real-time exposure levels. Moreover, it is difficult to unify the season, distinguishing all the states because of the longitude 
and latitude differences. We attempted to verify this conclusion by comparing three typical states. In addition, other factors, such as 
ultraviolet radiation, air pollution, demographic data, state economic conditions, and utilization rate of medical resources, were not 
included in our analysis. However, through the monthly longitudinal comparison of the same state, the bias in the results caused by 
different macro conditions can be offset to a certain extent. 

5. Conclusion 

This study expands on previous investigations by examining the association between weather parameters and daily COVID-19 
deaths at the regional level across three American states. Our findings demonstrate that the “24 solar terms” pattern of pandemic 
progression observed in China also applies to the US population. Moreover, we discovered a consistent relationship between tem-
perature and COVID-19 mortality, including threshold effects for maximum and minimum temperatures. The results can be useful to 
policymakers in the government and health organizations to make decisions before the possible surge of COVID-19 cases depending on 
the weather forecasting mechanism and provide personnel, medical supply reservation and early warning information for the surge of 
death cases before winter. 

Despite over a century passing since the Spanish influenza pandemic, the factors driving the seasonal recurrence of viruses remain 
incompletely understood. Given the unpredictable nature of SARS-CoV-2, it may take some time to establish a coherent pattern. Future 
analyses should focus on additional factors that impact COVID-19 transmission and mortality, such as virus resistance, population 
density, urbanization, mobility, hygiene, and the use of masks and sanitizers. 
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