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The control of acidity in tumor 
cells: a biophysical model
Nicola Piasentin1,3,4, Edoardo Milotti1 & Roberto Chignola2*

Acidosis of the tumor microenvironment leads to cancer invasion, progression and resistance to 
therapies. We present a biophysical model that describes how tumor cells regulate intracellular 
and extracellular acidity while they grow in a microenvironment characterized by increasing 
acidity and hypoxia. The model takes into account the dynamic interplay between glucose and O2 
consumption with lactate and CO2 production and connects these processes to H+ and HCO−

3
 fluxes 

inside and outside cells. We have validated the model with independent experimental data and used 
it to investigate how and to which extent tumor cells can survive in adverse micro-environments 
characterized by acidity and hypoxia. The simulations show a dominance of the H+ exchanges in 
well-oxygenated regions, and of HCO−

3
 exchanges in the inner hypoxic regions where tumor cells are 

known to acquire malignant phenotypes. The model also includes the activity of the enzyme Carbonic 
Anhydrase 9 (CA9), a known marker of tumor aggressiveness, and the simulations demonstrate 
that CA9 acts as a nonlinear pH

i
 equalizer at any O2 level in cells that grow in acidic extracellular 

environments.

Acid homeostasis in animal tissues is achieved by active dynamic processes. In physiological conditions, the 
pH of tissues is maintained between 7.35 and 7.45 in spite of constant metabolic acid production by cells. At 
the microscopic level, cells must finely regulate their own internal pH to around 7.2 to avoid death1–3. Cellular 
acid homeostasis is carried out by active transport of acid/base equivalents across the cell membranes into the 
extracellular spaces.

Dysregulation of pH is a well-known hallmark of solid tumors1–3. The tissue of solid tumors is characterized 
by the presence of an irregular network of blood vessels, causing a spatially heterogeneous delivery of nutrients 
such as glucose and oxygen to tumor cells1–4. As the consequence, the inner regions of solid cancers that are 
distant from blood vessels become hypoxic and acidic. Cancer cells adapt to such adverse environments through 
a series of molecular changes that involve an increased expression of nutrient and ion transporters and enzymes 
(reviewed in1,3,5). For example, hypoxia activates the Hypoxia Inducible Factor-1α (HIF-1α ) that up-regulates the 
transcription of glucose transporters and of enzymes involved in glucose metabolism. Because of hypoxia, glucose 
is converted mainly to lactic acid through the glycolytic pathway to produce energy under the form of ATP, and 
the increased production of lactate reduces the pH of the extracellular spaces. A drop in intracellular pH, in turn, 
increases the activity of lactate and of various ion transporters that collectively contribute to recover intracel-
lular acid homeostasis1,3,5. Hypoxia also causes the increased expression of some membrane-bound enzymes 
such as Carbonic Anhydrase (CA) that, on the cell surface, catalyzes the hydration of carbon dioxide ( CO2 ) to 
protons ( H+ ) and bicarbonate ( HCO−

3  ) ions. While the H+ ions contribute to the acidity of the extracellular 
milieu, HCO−

3  ions can be transported back into the cells and increase the buffering potential of the intracellular 
environment1,3,5, further contributing to maintain the intracellular pH at normal values.

It has recently been pointed out1,3 that changes in the control of intracellular and extracellular acidity in the 
tissue of solid tumors are associated with many phenotypic changes of cancer cells with important implications 
in tumorigenesis, cancer progression, cancer diffusion, escape from immune surveillance and resistance to 
therapies. For example, microscopic examination of the tumor/normal tissue interface shows that peritumoral 
acidity drives tumor invasion in the surrounding normal tissue, with the regions of highest tumor invasion 
corresponding to those of lowest pH. In these regions the environmental pH reaches values that are toxic for 
normal but not for tumor cells2.
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Biophysical models can help to disentangle the intricate relationships between regulatory biochemical net-
works and give support to the interpretation of experimental evidence which is rapidly accumulating in this field. 
In this paper we describe a comprehensive biophysical model of the control of acidity in tumor cells. We study 
the action of key molecular actors in acid homeostasis of cancer cells, and investigate to which extent hypoxia 
and environmental acidosis influence their behavior. We focus on the dynamic interplay between lactate, proton, 
bicarbonate transporters and CA enzyme, and their regulation by oxygen and both extracellular and intracellular 
pH. The model includes the bicarbonate buffer that acts both in the extracellular and intracellular milieux and 
it incorporates results from our previous modeling efforts concerning tumor cell metabolism6–8. In particular, 
our previous models provide values for the rates of glucose and oxygen uptake, lactate and CO2 production and 
lactate/H+ transport across cell membranes through specific transporters that have already been validated with 
experimental data. Finally, we fix the model parameters by combining information from a number of experiments 
carried out with different tumor cell systems.

Results
Preliminary considerations, model assumptions and parameters.  We start from the rather 
detailed model of tumor cell metabolism and growth that we developed in our previous research6–8 which suc-
cessfully reproduces the observed behavior of tumor cells in both liquid (e.g. blood tumors) and solid tumors. 
In particular, for the current work we have excerpted from that model the part that describes the rates of glucose 
conversion to lactic acid and oxygen consumption. We remark that the model in6–8 has been set up with the 
minimal set of chemical and biochemical pathways that drive the dynamics of metabolism and that are common 
to most, if not all, tumor cells.

Unlike the metabolic model in6–8, here we must follow the dynamics of CO2 , HCO−
3  and H+ , both inside and 

outside a tumor cell. The inputs of the model are the rates of lactate and CO2 production (Fig. 1) that depend on 
how cells take up nutrients, such as glucose, and convert them to ATP through the glycolytic and the oxidative 
phosphorylation pathways. Lactic acid dissociates immediately to lactate and H+ ions, and both ions are trans-
ported through the cell membrane by means of the bi-directional monocarboxylate transporters MCT6–8. We 
remark that this part of the model impacts the rate of change of both intracellular and extracellular pH (from 
now on pHi and pHe , respectively), and oxygen is assumed to diffuse freely through the cell membrane and its 
consumption rate is used to determine the rate of CO2 production.

Intracellular H+ ions are transported outside the cell by means of unidirectional sodium-hydrogen exchangers 
NHE1. Different HCO−

3  transporters on the other hand are known to drive the flux of bicarbonate ions through 
the cell membrane. Some of them import or export HCO−

3  by exchanging Cl− anions and the transport may 
depend or not on the presence of Na+ cations1. Experimental works, however, have shown that the efficiency of 
HCO−

3  transport in different cell systems is quite similar, and that the import of HCO−
3  is fundamental in tumor 

cells where it is dominated by the activity of the Na+-dependent Cl−/HCO−
3  exchanger9,10. Therefore, we consider 

the import activity of a generic HCO−
3  transporter ( THCO3 in Fig. 1) which, as a first approximation, assumes the 

average biochemical characteristics of the Na+-dependent Cl−/HCO−
3  exchanger. We finally model the activity 

Figure 1.   Layout of the model of acidity control in tumor cells. A cell takes up from the environment nutrients 
and oxygen which are then converted by cell metabolism to lactic acid, CO2 and ATP. Lactic acid dissociates to 
lactate and H+ ions, whereas CO2 reversibly hydrates to HCO−

3  and H+ . These chemical species diffuse through 
cell membranes ( CO2 ) or are actively transported outside and eventually inside the cell by means of specific 
protein transporters. We consider monocarboxylate (MCT), sodium-hydrogen exchanger (NHE) and generic 
bicarbonate ( THCO3 ) transporters. We also model the activity of the membrane-bound enzyme Carbonic 
Anhydrase 9 (CA9). Chemical reactions are indicated by solid lines and the regulatory pathways by dashed 
lines. Proton concentrations inside and outside the cell are used to compute the intracellular ( pHi ) and the 
extracellular ( pHe ) pH. Detailed information on each pathway is given in the main text.
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of the membrane-bound Carbonic Anhydrase 9 (CA9) enzyme that catalyzes, on the cell surface, the hydration 
of CO2 . This is an important path since CA9 has been found to be expressed by many solid tumors of different 
histotypes, and its activity has been correlated to tumor progression and growth11–13.

It should be noted in Fig. 1 that we do not take into account a possible effect of the extracellular pH on CA9 
activity. Previous work has shown that CA9 in cell membrane extracts is sensitive to low pH and is completely 
inhibited at pH 6.014, its pH sensitivity being much steeper than that of other CA isoforms15. This observation, 
however, is at odd with findings obtained using high-resolution techniques with purified enzyme: they showed 
that the catalytic domain of human CA9, but not of other isoforms, is stable and active still at very low non-
physiologic pH but inactive at pH > 8.016. Because of these discrepancies, and since we do not want to focus on 
some specific cell system but rather to keep the model as general as possible, we decided to leave off the possible 
pH sensitivity of CA9 from the present model. Our modelling strategy is flexible enough to incorporate additional 
specific details when available, provided they are based on firm experimental conclusions.

We model the kinetics of ion transporters, and of CA9 activity as well, with the Michaelis-Menten/Hill for-
malism that is described by the following general equation:

where [X]C,c is the molar concentration of a given chemical species inside ( [X]C ) or outside ( [X]c ) the cell, Vmax 
and Km are the Michaelis-Menten parameters and h is the Hill exponent ( h > 0).

We assume that:

•	 CO2 can freely diffuse through the cell membrane;
•	 CO2 diffusion is driven by the concentration gradient across the membrane and its only important component 

is the one directed normally with respect to the cell membrane;
•	 the diffusion kinetics of charged ions through the cell membrane are much slower than the kinetics of the 

other processes in which they are involved, and thus the diffusion of charged ions is negligible;
•	 the mixing of all chemical species in the cell and in the external environment is instantaneous;
•	 within the short characteristic times of the considered chemical reactions the cell volume is constant.

In this work the variables take the following units for length, mass and time, respectively: µm , pg and s. Molar 
concentrations (M) have always been converted to mass units by taking into account the volume of the cell ( VC , 
cell volume is computed by approximating a cell to a sphere of given radius rC ) or of the environment ( Vc ) and 
the molecular mass (MW) of chemical species.

The model defined by the set of differential equations 11 has several parameters. We extensively searched the 
scientific literature to find their values, and when these values were not directly available they were obtained by 
fit of specific equations to reported experimental data. Experimental evidence was also used to model regula-
tory functions given by Eqs. 3, 5, 7 and 10 that tune the activity of transporters and CA9 enzyme as the function 
of local pH, ATP and/or oxygen availability. The full strategy is detailed in the Supplementary Material and all 
parameter values are listed in Table 1.

Once determined, parameter values were fixed and no further tuned to adapt model outputs to data. This 
means that the model has no free parameters and is strictly predictive. As explained in the next section, for 
validation purposes we first used it to predict how the intracellular pH ( pHi ) varies when cells are grown into 
environments with increasing acidity.

Model validation with independent experimental data.  Model validation was performed with inde-
pendent experimental data, i.e. data that were not used to set parameter values. To this end we used the data 
in the paper by Song et al.23. In this paper Song et al. investigated the dependence of pHi on pHe in SCK cells 
(human choloangiocarcinoma cell line) in standard in vitro cultures. To the best of our knowledge no data con-
cerning the direct expression of specific ion transporters and CA9 in these cells are available. However, the pHi 
of SCK cells was measured in experiments where cells were also treated with Amiloride and DIDS inhibitors. 
Amiloride inhibits Na+ channels and thus inhibits sodium-hydrogen exchangers, whereas DIDS inhibits all 
bicarbonate-dependent transport mechanisms (see Song et al.23 and references cited therein). Thus, the expres-
sion of proton and bicarbonate transporters was functionally demonstrated in SCK cells. We do not know if 
SCK cells express CA9 but, as we shall see below (see Fig. 5), CA9 activity becomes negligible for pHi regula-
tion when the extracellular volume becomes higher than 104 cell volumes, i.e. when the extracellular volume 
exceeds ∼ 0.02µl (the volume of 1 cell of radius ∼ 7µm is ∼ 2 pl ). The experiments were carried out with cells 
kept under standard culture conditions where the extracellular volume is much higher, and thus it is irrelevant 
whether SCK cells express CA9 or not. Data obtained with SCK cells can therefore be used to validate the core 
model as far as the regulation of pHi due to the activity of ion transporters is concerned.

The radius of SCK cells is not reported nor, to the best of our knowledge, it has been measured previously. 
This is important because our model equations take into account both cell volume (see Eqns. 1–11) and the cell 
surface (see e.g. CO2 diffusion, Eq. 1) that are computed from cell radius under the assumption that cell geometry 
can be approximated by a sphere. Thus we run simulations for different cell radii whose values were taken within 
a reasonable range for animal cells.

Figure 2 shows the model prediction for intracellular pH vs. cell size, under standard culture conditions. At 
equilibrium there is a difference of ≈ 0.1 in pH between small and large cells ( rC = 5.5 and 8.0µm , respectively, 
i.e. a volume ratio of ≃ 3 ) but pHi levels reach values that have actually been observed in tumor cells23. With the 

d[X]C,c

dt
=

Vmax[X]
h
C,c

Kh
m + [X]hC,c
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initial conditions discussed above, the simulations approach equilibrium quite fast and this indicates that the 
numerical solution of model equations is stable.

The model predictions for pHi values in SCK cells grown in media with increasing acidity are shown in Fig. 3. 
We ran simulations with varying cell radius within a range of values which is reasonable for tumor cells, i.e. 
between 4.5 and 9 µm24, and computed pHi at equilibrium. As shown in Fig. 2 the numerical solutions approach 
equilibrium with slower kinetics for increasing cell radii. We chose a conservative criterion to define the equi-
librium condition and we halted the simulations when �pHi/�t < 10−5 was reached. In these simulations, the 
volume of the environment was set to Vc = 1012 µm3 = 1ml , i.e. large enough to assure nearly constant pHe 
values throughout the simulation runs. Figure 3 shows that model predictions are in excellent agreement with 
the experimental data.

Contribution of NHE and THCO3 transporters to pH
i
 in normoxic or hypoxic environments.  We 

have used the model to study the biochemical mechanisms that allow tumor cells to survive to adverse environ-
ments. We have investigated the role of NHE and THCO3 transporters in the control of intracellular acidity by 
tumor cells exposed to normoxic or hypoxic environments. We ran several simulations by alternatively switching 
off the activity of NHE and THCO3 transporters, i.e. by setting the respective νmax parameters to 0. The results 
are shown in Fig. 4 where we plot the pHi values at equilibrium (see the previous section) as the function of 
environmental pH for cells grown under standard oxygen level or at 0.1 fraction thereof.

The simulations clearly show that under normoxic condition the contribution of the THCO3 transporter 
to pHi is negligible. Under this condition pHi is maintained to physiological levels thanks to the activity of 
NHE transporter that export H+ ions outside the cells. On the contrary, THCO3 activity dominates in hypoxic 
environments.

Table 1.   Values of model parameters a AcL=lactic acid/lactate. b Parameter values have been determined and 
fixed as described in the Supplementary Material section

Parameter Value Unit Reference

MWH 1 g mol−1 –

MWCO2 44 g mol−1 –

MWO2 32 g mol−1 –

MWHCO3 61 g mol−1 –

MWa
AcL 90.1 g mol−1 –

PbM,CO2
3.2× 104 µm s−1 17

gAcL 3.8× 10−4 pg s−1 6

qO2 3.5× 10−5 pg s−1 6

k1 0.144 s−1 18

k2 1.9× 105 M−1 s−1 18

VmaxAcL 9.58× 10−5 pg s−1
µm−2 8

KmAcL 0.405× 10−3 pgµm−3 8

a2cH_slope 1.5 – 8

a2cH_thr 7 – 8

c2aH_slope 1.5 – 8

c2aH_thr 7 – 8

VmaxNHE 5.15× 10−7 pg s−1
µm−2 Fit of data in9

KmNHE 0.196× 10−6 M Fit of data in9

h 2.67 – Fit of data in9

�NHE 0.076 – Fit of data in9

pH0,NHE 7.1 – Fit of data in9

VmaxTHCO3 2.02× 10−5 pg s−1
µm−2 Fit of data in19

KmTHCO3 7.38× 10−3 M Fit of data in19

�THCO3 1.63 – Fit of data in9

pHe0,THCO3 6.85 – Fit of data in9

γTHCO3 4.2 – Fit of data in10

pHi0,THCO3 6.90 – Fit of data in10

VmaxCA9 9.47× 10−2 pg s−1
µm−2 20

KmCA9 7.2× 10−3 M 21

δCA9 7.3 – Fit of data in22
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Role of Carbonic Anhydrase 9.  As previously noted by Swietach et al.11 pHi regulation is not affected by 
CA9 expression in isolated tumor cells, but its role becomes important when cells are grown as three-dimen-
sional aggregates (tumor spheroids). When expressed by cells grown as tumor spheroids CA9 induces a near 
uniform intracellular pH throughout the structure11, an observation that was explained by diffusion-reaction 
modeling as follows: CA9 coordinates pHi spatially by facilitating CO2 diffusion in the unstirred extracellular 
space of the spheroid11. This intriguing conclusion, supported by experimental evidence, suggests that CA9 

Figure 2.   Plot of pHi as the function of time for cells with the indicated cell radii. We take rC values that are in 
the observed range for human tumor cells24. The model equations have been solved with the parameter values 
listed in Table 1. After an initial transient, pHi reach an equilibrium at physiological values and this shows that 
the model (and its numerical solution) is stable and provides quantitative results in good agreement with actual 
experimental observations. We also plot pHe for comparison. The extracellular pH does not vary because these 
runs were carried out for a limited time span and for cells growing in a large volume (1 mL) filled with fresh 
medium at physiological pH to mimic standard experimental conditions.

Figure 3.   Plot of pHi for SCK cells grown in media with different pHe values. Experimental data have been 
redrawn from figure 2 in23 (closed circles). The lines show pHi values at equilibrium as predicted by our model 
for the indicated cell radii. It is important to note that these are not fits because our model does not have 
free parameters. Equilibrium was reached at �pHi/�t < 10−5 . The volume of the environment was set at 
Vc = 1012 µm3 = 1ml.
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Figure 4.   Contribution of NHE and THCO3 transporters to pHi in normoxic (left panel) or hypoxic (right 
panel) environments. Simulations were run with the following parameters: cells radius rC = 6.5µm and 
environmental volume Vc = 1012 µm3 . The intracellular pH was calculated at equilibrium (see also the legend 
to Fig. 3) as the function of the indicated pHe values. The activity of NHE and THCO3 transporters was 
switched off by setting the respective νmax parameters to 0. Environmental oxygen levels were tuned by setting 
the SensO2 parameter to 1 or to 0.1 (see the “Methods” section and the Supplementary Material for details). In 
both panels, dashed lines have been drawn to show the pHe value at which pHi = 6.4 , a value largely compatible 
with cell life (see also the experimental data in Fig. 3 for a comparison).

Figure 5.   pHi regulation by CA9 for decreasing size of the extracellular volume. Cell radius was set to the 
average size of 6.5 µm . The inset shows pHe values and the main panel pHi to pHe ratio for varying Vc/VC 
values (i.e. ratio of extracellular to cell volumes) when CA9 activity is turned on or off. In these simulations 
the extracellular environment is physically closed, i.e. the extracellular volume is unstirred and the diffusion of 
chemical species toward an “external reservoir” is not allowed.
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activity becomes important for the control of pHi by tumor cells at critical sizes of the extracellular volume. We 
tested this hypothesis with our model, and the results are shown in Fig. 5.

The role of CA9 in pHi regulation starts to become important at the extracellular to cell volume ratio 
Vc/VC ≈ 104 and reaches a maximum at Vc/VC ≈ 100 . It is important to note that we simulated cells that 
grow in a closed environment. This means that at small extracellular volumes the acidity of the environment 
becomes too high and pHi runs out of control (see also Fig. 4). However, the results in Fig. 5 show that when 
Vc/VC ≈ 100 and CA9 is active the extracellular pH at equilibrium is around 5.5 and pHi ≈ 6.6 , well within 
the physiological range.

Simulations in Fig. 5 do not take into account the oxygen levels in the tumor environment. As discussed 
above (see the “Methods” section) CA9 expression is regulated by hypoxia22 and thus it is interesting to investi-
gate how pHi is regulated by cells growing in small environments, i.e. when the CA9 role is not negligible, and 
when O2 levels are lower and lower. Figure 6 shows that when pHe ≥ 5.8 , CA9 acts as a nonlinear pHi equalizer 
at any O2 levels.

The model as a tool for exploratory data analysis.  Germ-line mutations that inactivate the von Hip-
pel-Lindau (vhl) gene cause the VHL syndrome, a rare inherited disorder characterized mainly, but not only, 
by renal cancers25,26. The VHL protein drives ubiquitination and finally degradation of the hypoxia-inducible 
factor alpha (HIF) which in turn regulates a number of intracellular pathways that collectively confer resistance 
to hypoxia to cancer cells25,26. However, experimental findings suggest that both HIF-dependent and HIF-inde-
pendent mechanisms are essential for VHL-mediated tumor suppressor effects25,26.

Stable transfection of 786-O renal cancer cells with a full-length human vhl gene significantly decreased 
proton and bicarbonate fluxes with respect to vhl-null cells in spite of increased or unaltered expression of ion 
transporters27. In particular, experiments showed that the rate of pHi change ( dpHi/dt ) upon alkali or acid load 
was reduced to ∼ 25−45% in VHL+ cells with respect to VHL− cells. A number of control experiments were 
carried out to test possible effects of VHL proteins in these cells, but the effects of VHL protein on ion fluxes 
remained unexplained27. Here we modify our model to provide a possible interpretation of these experimental 
observations.

In the experiments with VHL+ and VHL− cells, proton fluxes were measured in cells exposed to Cl−-deprived 
solutions, during recovery from NH+

4 -induced cell acidification or subjected to hypertonic shock27. Simulations 
of NH+

4 -induced cell acidification and hypertonic shock would require major revision of the model to include 
a number of chemical, biochemical and morphological details such as, e.g., NH4Cl dissociation kinetics and 
intra- and extracellular flows of all involved ionic species, cell volume dynamics during osmotic shock and a 
detailed description of how cell shrinkage and swelling activate ions transport. In addition, quantitative infor-
mation which is required to set the values of specific model parameters is not fully available, further hampering 
the development of specific detailed models. We therefore focus on cell treatments with Cl−-deprived solutions.

Figure 6.   Role of CA9 on pHi regulation for cells grown in a small environment with decreasing oxygen 
levels. In these simulations the extracellular volume was set to Vc = 105 µm3 and cell radius to rC = 6.5µm 
so that Vc/VC ≈ 80 . Left panel: plot of pHi at equilibrium as the function of pHe for the indicated fractions 
of environmental O2 . Right panel: same simulations as those shown in the left panel, but here we plot 
�pHi = pHi,CA9=on − pHi,CA9=off , i.e. the difference in pHi when CA9 is turned on or off. This plot clearly 
shows the nonlinear character of CA9 activity in the regulation of pHi.
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The rationale behind cell treatment with Cl−-deprived solutions was the discovery that VHL expression 
in 786-O renal cancer cells increased mRNA and protein levels of Cl−/HCO−

3  AE2 anion exchanger by 3.5 
fold, although the apparent cell surface expression of AE2 was similar in VHL+ and VHL− cells as evaluated 
by immunostaining27. The AE2 transporter exchange Cl− with HCO−

3  , and when the cells are exposed to Cl−
-deprived solutions Cl− can only exit from the cells thus forcing HCO−

3  import27. In other words, the treatment 
makes an otherwise bidirectional transport unidirectional. Our simplified model takes into account only a 
generic unidirectional transporter that shuttle HCO−

3  from the environment into the cell and that is described 
by Eq. 6 (see the “Methods” section). To model the AE2 exchanger we introduce one more equation to describe 
also the rate of HCO−

3  efflux (see Eq. 8 in the “Methods” section). We then perturbed the system at equilibrium 
by suddenly switching to 0 the rate of HCO−

3  efflux to model cells placed in Cl−-deprived baths or switching it to 
normal values to model cells re-placed under standard environmental conditions (see Fig. 7).

The expression of many genes is altered in VHL+ cells and VHL protein is known to affect several physiologic 
pathways28. Quantitative data are not fully available and therefore it is impossible with the present knowledge 
to reproduce the whole complex phenotype of these cells in silico. However, we note that among the physiologic 
pathways altered in 786-O cells expressing VHL proteins glycolysis and respiration are prominent28. Glycolysis 
was observed to be approximately one half of that measured for VHL− cells, a finding that was paralleled by a 
corresponding two fold downmodulation of glucose transporters, whereas respiration was found to be increased 
by a factor of two28. VHL expression was also observed to dramatically reduce (i.e. a ∼ 80− 100-fold change) 
lactate transport in other cell systems29. Our model can easily take into account the phenotype of VHL+ cells 
as far as these pathways are concerned. We multiplied specific rates by appropriate factors: the rate of proton 
production ( gH+ in Eq. 11) was divided by 2 to model the reduced lactate/H+ production by glycolysis; the 
rate of CO2 production ( gCO2 in Eq. 11) was multiplied by 2 to model the increased respiration rate; finally the 
maximum rate of lactate transport through MCT transporters ( νmaxMCT in Eq. 2) was divided by 80 to model 
the observed reduction of lactate transport.

The simulations show that the initial rate of intracellular pH change ( dpHi/dt ) is reduced to ∼ 40% in 
VHL+ cells with respect to VHL− cells (Fig. 7) in agreement with experimental observations27. As shown in 
Fig. 8, a reduced glycolytic rate is mainly responsible for this effect. This shows that the present model, although 
simplified, can still be adapted to simulate different cell phenotypes and used to suggest novel interpretation of 
otherwise paradoxical27 and yet unexplained experimental observations.

Discussion
We have developed a biophysical model to explore the complex molecular mechanisms that allow tumor cells 
to regulate both intracellular and extracellular acidity, but we are not alone, other modeling efforts have tried 
to capture the essential features of the biochemical pathways that lead to acid homeostasis in tumor cells (see 
e.g.30–33). We have taken the remarkable models described in32 and33 as our starting point, because of their direct 
applicability to the analysis of experimental data. The former provides a fully tractable quantitative description of 
the interplay between H+ and HCO−

3  transporters with Na+/K+-ATPase and Na+ , K+ and Cl− ion fluxes, while 

Figure 7.   Rate of intracellular pH change in simulated VHL− and VHL+ cells upon removal (left panel) 
and restoration (right panel) of environmental Cl− anions. Values have been normalized with respect to the 
maximum (left panel) or to the absolute value of the minimum (right panel) rate of pHi change calculated for 
VHL− cells. Simulations were run until pHi reached equilibrium. Cl− removal or restoration was modeled by 
suddenly (arrows) switching to 0 or to normal values, respectively, the rate of HCO3− efflux (Eq. 8, see the 
“Methods” section) as described in the text. The initial rate of pHi change in VHL+ is reduced to ∼ 40% of that 
of VHL− cells as observed in actual experiments.
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the latter investigates the interaction of MCT transporters and CA9. We go a few steps further and model the 
network of important paths that connect together cell metabolism and hypoxia with transport of H+ and HCO−

3  
ions and CA9 activity (see Fig. 1). The coupling of ion transport mechanisms with metabolism and hypoxia is 
essential if we want to understand how tumor cells grow and shape their microenvironment, an interplay that is 
of fundamental importance for the adaptation and evolution of cancer cells within a solid tumor. As mentioned 
at the beginning of the Results section, we have developed a computer program that successfully reproduces the 
growth and the behavior of tumor cells in both liquid and solid cancers6–8. It is a lattice-free model that contains 
a rather detailed description of tumor cell metabolism and of the cell cycle, as well as many other biochemical 
and biophysical features (e.g. cell mechanics, cell division, etc.)6–8. This has already allowed us to characterize 
new biophysical properties of tumors and of their microenvironment34–37, but the program still contains an 
excindingly simplified description of how cells control their intracellular pH. The program has an incremental 
structure, and we add new parts as soon as they are independently validated. The present model is one of these 
parts, and once integrated in our previous software it will further increase its descriptive and predictive poten-
tial. We hope in this way to understand key biological features such as cell adaptation and evolution in tumor 
microenvironments and explore important aspects such as tumor cell resistance to therapies. Here we show that 
the present model can nonetheless be used as a tool for exploratory data analysis and for quantitative purposes.

We remark that with the model described here we are able to give a quantitative assessment of the importance 
of specific molecular mechanisms. For instance, simulations show that H+ efflux from tumor cells dominates the 
control of intracellular acidity in normoxic environments, whereas HCO−

3  import in hypoxic tumor areas (in 
our simulation where the fraction of oxygen decrease to 0.1 of standard values). Experiments have shown that in 
in vivo tumor micro-environments oxygen reaches 10% of its normal value at a distance of ≈ 150µm , i.e. ≈ 10 
cell diameters, from blood vessels38. Thus, within this short distance the control of pHi is attained by tumor cells 
through a switch from H+ export to HCO−

3  import pathways. This observation gives further support to recent 
work that has shown that inhibition of HCO−

3  fluxes inhibits the growth of experimental tumors by increasing 
intracellular acidity and cell death39. When we recall that the hypoxic regions are those where tumor cells show 
higher resistance to therapies, such as e.g. radiotherapy, then we see that approaches that aim at inhibiting HCO−

3  
fluxes would target the very cells that colonize the inner tumor regions and that would otherwise be resistant to 
therapies, and improve cancer control.

Finally, the model singles out the important role of CA9. The simulations show that CA9 acts as a nonlinear 
pHi equalizer at any O2 level in cells that grow in acidic extracellular environments. This result is in agree-
ment with the experimental observations by Swietach and colleagues11, collected with tumor spheroids. They 
observed near-uniform pHi values throughout the spheroid structure due to CA9 activity in spheroids grown 
up to ≈ 500µm diameter. It has long been recognized that tumor spheroids of this size show steep gradients of 
oxygen with fractions that go as far down as 0 at the center of the spheroid40. Our simulations show that this is 
due to the concerted action of CA9 and of hypoxia that up-regulates CA9 expression. These two mechanisms 

Figure 8.   Reduced glycolytic rates in VHL+ cells might explain the effect shown in Fig. 7. VHL protein 
expression was observed to downmodulate the expression of glucose transporters and to reduce the glycolytic 
rate, and hence lactate/H+ production, in renal cancer cells28. Here we plot the rate of pHi change in 
simulated VHL+ cells as the function of proton production rate through glycolysis (rate gH+ in Eq. 11, see the 
“Methods” section and the Supplementary material). The standard value of gH+ is calculated (see Eq. 11) as 
gAcL · (MWH/MWAcL) where the value of gAcl is given in Table 1. When gH+ = 1 , dpHi/dt in VHL+ cells is 
equal to that of VHL− cells.
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collectively help cells to keep their intracellular pH under control because of increased HCO−
3  production fol-

lowed by HCO−
3  import through THCO3 transporters.

Conclusion
While tumor cell adaptation and survival to extreme microenvironments are key concepts in oncogenesis1–3, we 
remark that acid homeostasis is central to cellular adaptation in a much wider context. Active transport of acid/
base equivalents across cell membranes into the extracellular spaces may cause transient and rapid changes of 
microenvironmental and cellular pHs like those observed for other ions involved in cell signalling. Indeed, pH 
transients have been shown to be important in intra- and inter-cellular communication in the nervous system and 
are known to affect a number of essential functions, like e.g. neuronal excitability and synaptic transmission41. 
This in turn implies that animal cells could sense and adapt to pH changes. The underlying molecular mecha-
nisms are still not well understood, but the role of G-protein coupled receptors in proton sensing is increasingly 
investigated also in relation to pathological conditions, besides cancer, that result in an increased extracellular 
acidity, such as infarction and inflammation42. We conclude that our model can be used as an essential building 
block of more comprehensive in silico research on solid tumors43, but it may also help understanding how other 
cells can sense and dynamically adapt to pH changes.

Methods
Bicarbonate buffer and initial conditions.  Central to the whole scheme of reactions shown in Fig. 1 is 
the hydration of CO2 . It is well known that at physiologic temperature (i.e. ∼ 37 ◦C ) carbonic acid dissociates 
very quickly and represents less than 0.5% of the total carbon dioxide and bicarbonate ion44. Thus, the hydration 
of CO2 can be approximated by the following chemical reaction:

The values of the two rate constants k1 and k2 have been determined in cells under standard culture condi-
tions in two independent experiments with good agreement11,18. We take the values in18: k1 ≃ 0.144 s−1 and 
k2 ≃ 1.9 · 105 M−1 s−1.

We compare model outputs with experimental data obtained with cell cultures in vitro, in a standard atmos-
phere at 37 ◦C and 5% CO2 at 1 atm pressure. To compute the initial density of CO2 dissolved in water under these 
conditions we use Henry’s law c = k(T)P where c is the molar concentration of the gas in water, P the pressure 
and k(T) is a function of temperature

with T� = 298.15K , k� = 3.3 · 10−4mol m−3 Pa−1 and −�sol k
R

= 2400K (see ref.45 for further details); we find 
that the initial density of CO2 in cell medium under standard culture conditions is:

Finally, given the CO2 concentration we find the density of HCO−
3  ions from the Henderson-Hasselbach equation:

where pKa = − log10 (k1/k2) ≃ 6.12.
Where not otherwise specified, we fixed the standard intracellular and extracellular pH at 7.4, which deter-

mines the initial value of the molar concentration of H+ ions inside and outside the cells.

CO2 diffusion through the cell membrane.  Given the assumptions above, the component of CO2 nor-
mal to the cell membrane is described by the Fick’s first law:

where J1→2 is the flux from 1 to 2 in units of concentration over time and surface area SC , PM,CO2 is the perme-
ability of the carbon dioxide and Ci is the concentration of CO2 in the i-th volume. Since we model cells grown in 
an incubator at constant CO2 pressure, the CO2 concentration can reach values far from equilibrium only inside 
cells because of the oxygen consumption by cell metabolism and of the equivalent CO2 production. This means 
that in the present model there is only a net outward flux of carbon dioxide from cells to the environment. Thus, 
the net flux of CO2 due to diffusion is:

MCT transporters.  The MCTs are a family of bidirectional H+ and lactate co-transporters expressed at the 
cell membrane and their activity has been shown to depend on the pH values on both sides of the cell membrane 
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(see refs.6–8 and references therein). We model their activity with parameter values extrapolated from experi-
mental observations6–8 and we use the following equations and parameters to describe the rate of transport of 
H+ inside and outside the cell:

where νmaxMCT = VmaxAcL ·
MWH
MWAcL

· SC , KmMCT = KmAcL ·
MWH
MWAcL

 and where the ratio of molecular weights is 
used to rescale the equations from concentrations to masses.

In Eq. 2, a2cH and c2aH depend, respectively, on extracellular and intracellular pH, and phenomenologically 
describe the dependency of MCT transport activity on acidity (for a complete analysis see6–8):

NHE transporters.  Sodium-hydrogen exchangers (NHE) are membrane transport proteins that exploit 
the influx of Na+ to export H+ ions. The sodium concentration gradient is maintained by the ATP-dependent 
Na+/K+ pump19,46 so that the activity of NHE indirectly depends on ATP availability. This implies that as long 
as ATP is available the flux of H+ due to NHE is essentially unidirectional. It has also been reported that NHE 
activity is inhibited by hypoxia10,19 and that, in the long-term, hypoxia inhibits the expression of NHE proteins. 
Energy and oxygen tune NHE activity and as in the previous model of tumor cell metabolism and growth6–8, 
here we take into account these regulatory circuits by means of the two variables SensATP and SensO2 that 
assume real values in the interval [0, 1].

Experimental observations indicate that NHE activity is described by a Hill equation9,47,48 and hence the 
unidirectional flux of H+ from the cell to the environment due to NHE transport is modeled by the equation:

where νmaxNHE = VmaxNHE · SC and fPHeNHE is a phenomenological function that tunes the activity of NHE 
transport as a function of extracellular pH:

Indeed, it has been observed that extracellular acidity enhances H+ transport through NHE9,19,49. In the Sup-
plementary Material we discuss how we fix parameter values and define the function fPHe on the basis of 
experimental observations.

Transport of bicarbonate ions.  As discussed above, we model the activity of a generic bicarbonate ion 
importer (THCO3). The Na+-dependent Cl−/HCO−

3  exchanger appears to dominate HCO−
3  fluxes in tumor 

cells9,10, and therefore we take this transporter as a reference to set the values of parameters and fix general 
biochemical characteristics. This is an important part of the model, because it has been shown that tumor cells 
do actively import HCO−

3  ions to buffer their internal pH9,10, and that this is a common property of different 
cancer cells. Experimental studies have demonstrated that HCO−

3  import is regulated by both intracellular and 
extracellular pH but not by hypoxia and that the transport follows a simple Michaelis-Menten kinetics. In the 
scientific literature there are no indications, as far as we can tell, that HCO−

3  transport depends on ATP avail-
ability. However, just as observed for proton export by NHE transporters, HCO−

3  transport proceeds by paral-
lel fluxes of ions, like Na+ and Cl− , along their electrochemical gradients that are actively maintained by cells 
through energy-consuming paths. Thus, it is likely that even HCO−

3  transport is controlled by ATP availability, 
albeit indirectly. On the basis of these considerations we model HCO−

3  import as follows:

where νmaxTHCO3 = VmaxTHCO3 · SC and the two functions fpHeTHCO3 and fpHiTHCO3 phenomenologically 
describe how HCO−

3  import is affected by extracellular and intracellular pH, respectively. These functions have 
been fit to actual experimental data (see the Supplementary Material) and are modeled by the following equations:

In in silico experiments with VHL+ and VHL− cells we make HCO−
3  transport bidirectional by considering 

HCO−
3  efflux from cells as follows:

(2)
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νmaxMCT ·mH+ ,c

VcKmMCT +mH+ ,c

νin→out
MCT = c2aH ·

νmaxMCT ·mH+ ,C

VCKmMCT +mH+ ,C

(3)
a2cH = 2− tanh(a2cH_slope · pHc − a2cH_thr)

c2aH = 2− tanh(c2aH_slope · pHC − c2aH_thr)

(4)νin→out
NHE = SensATP · SensO2 · fpHeNHE ·

νmaxNHE ·m
h
H+ ,C

(VC ·MWH · KmNHE)h +mh
H+ ,C

(5)fpHe =
1

2

(

1+
pHe − pH0

�+
∣

∣pHe − pH0

∣

∣

)

(6)νout→in
THCO3 = SensATP · fpHeTHCO3 · fpHiTHCO3 ·

νmaxTHCO3 ·mHCO−
3 ,c

Vc ·MWHCO3 · KmHCO3 +mHCO−
3 ,c

(7)
fpHiTHCO3 =

1

2
{1+ tanh [γTHCO3 · (pHi0,THCO3 − pHi)]}

fpHeTHCO3 =
1

2
{1+ tanh [�THCO3 · (pHe − pHe0,THCO3)]}



12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:13613  | https://doi.org/10.1038/s41598-020-70396-1

www.nature.com/scientificreports/

Activity of Carbonic Anhydrase 9.  The enzyme CA9 is expressed by cells of many different solid tumors, 
and in general its expression correlates with cancer aggressiveness and poor therapeutic outcome11–13. It is a 
membrane-tethered enzyme and it is mainly found at the external surface of cells where it catalyses the hydration 
of CO2

11–13. Importantly, its expression is regulated by hypoxia and indeed CA9 is a marker of hypoxia22. Again, 
experimental observations show that CA9 activity follows a Michaelis-Menten kinetics. Thus:

where where νmaxCA9 = VmaxCA9 · SC and hCA9 is a phenomenological functions that describe how hypoxia 
tunes CA9 expression:

This is a function of the fraction of available oxygen which, in our model, is defined by SensO2, and it describes 
the fold change in CA9 expression as observed in actual experiments (see the Supplementary Material).

The full model and its numerical integration.  The full model is represented by the following set of 
differential equations:

where gH+ = gAcL ·MWH/MWAcL and gCO2 = qO2 ·MWCO2/MWO2 are, respectively, the rates of H+ and 
CO2 production that are proportional to the rate of lactate production gAcL and oxygen consumption qO2 as 
defined in our previous work6–8, and all the other rates, and regulatory functions, are given in equations 1–10. The 
multiplicative factor 103 that appears in the right-hand side of equations 11 above comes from the conversion of 
standard molar concentration units to the units used here where masses are expressed in pg and volumes in µm3.

In in silico experiments with VHL+ and VHL− cells, where HCO−
3  transport is bidirectional, the differential 

equations in the set 11 that describe HCO−
3  kinetics were modified as follows:

The system of differential equations 11 is nonlinear and stiff because it incorporates processes with different 
kinetics, from the fast kinetics of CO2 hydration and diffusion to the relatively slow kinetics of ion transport and 
enzyme activity. The system cannot be solved analytically and appropriate numerical approaches are required. 
We previously investigated this aspect within the context of complex large-scale biophysical models50 and found 
that the implicit Euler method is well-suited for the numerical integration of models of this kind. We solved the 
discretized system of differential equation 11 using the implicit Euler algorithm followed by the Newton-Raphson 
method to solve numerically the resulting system of nonlinear equations. The code has been implemented in C++ 
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using the computational framework provided by the GNU Scientific Library51. We used the standard Newton-
Raphson solver gsl_multiroot_fsolver_dnewton and the gsl_multiroot_test_residual library to test the convergence 
of the algorithm (threshold ǫ < 10−6 ) within a maximum number of iterations fixed at Nmax = 1000.

Received: 22 May 2020; Accepted: 28 July 2020
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