
Physiological and Proteomic Analyses of Saccharum spp.
Grown under Salt Stress
Aline Melro Murad1,2, Hugo Bruno Correa Molinari3, Beatriz Simas Magalhães1, Augusto Cesar Franco4,
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Abstract

Sugarcane (Saccharum spp.) is the world most productive sugar producing crop, making an understanding of its stress
physiology key to increasing both sugar and ethanol production. To understand the behavior and salt tolerance
mechanisms of sugarcane, two cultivars commonly used in Brazilian agriculture, RB867515 and RB855536, were submitted
to salt stress for 48 days. Physiological parameters including net photosynthesis, water potential, dry root and shoot mass
and malondialdehyde (MDA) content of leaves were determined. Control plants of the two cultivars showed similar values
for most traits apart from higher root dry mass in RB867515. Both cultivars behaved similarly during salt stress, except for
MDA levels for which there was a delay in the response for cultivar RB867515. Analysis of leaf macro- and micronutrients
concentrations was performed and the concentration of Mn2+ increased on day 48 for both cultivars. In parallel, to observe
the effects of salt stress on protein levels in leaves of the RB867515 cultivar, two-dimensional gel electrophoresis followed
by MS analysis was performed. Four proteins were differentially expressed between control and salt-treated plants. Fructose
1,6-bisphosphate aldolase was down-regulated, a germin-like protein and glyceraldehyde 3-phosphate dehydrogenase
showed increased expression levels under salt stress, and heat-shock protein 70 was expressed only in salt-treated plants.
These proteins are involved in energy metabolism and defense-related responses and we suggest that they may be
involved in protection mechanisms against salt stress in sugarcane.
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Introduction

Sugarcane (Saccharum spp.) is a semi-perennial monocot that can

be propagated vegetatively by culms [1,2]. Its cultivation occurs in

more than 80 tropical and subtropical countries [3,4]. Sugar and

bioethanol are the main products obtained from sugarcane and

Brazil is one of the largest sugarcane producers of the world [5,6].

Crop irrigation is essential in arid and semi-arid regions.

However, when inappropriately applied, it may result in

environmental degradation [7]. Soil salinization has been reported

to be one of the causes of soil degradation, menacing productive

lands under irrigated agriculture. According to FAO, it is

estimated that 34 million hectares (i.e., 11% of the irrigated area)

are affected by some level of salinization [8]. The cost of soil

salinization to agriculture is estimated to be approximately US$ 12

billion a year. However, this value is expected to increase [9].

High concentrations of salt reduce osmotic potential in soil

solution and promote drought stress in plants, which explains the

fact that drought and salt stress cause similar symptoms in plants.

Salinity imposes diffusive and metabolic limitations to photosyn-

thesis, affects cell growth by restricting water uptake and cell

turgor, resulting in increasing accumulation of Na+ and Cl- ions

inside the cell [10–12]. Accumulation of Na+ and Cl- ions severely

inhibits many photosynthetic enzymes among others and triggers

the production of reactive oxygen species (ROS) [13], which can

cause plant damage and, in severe cases, death [14]. In an attempt

to overcome the toxic effects caused by salinity, plants use various

defense mechanisms such as the production of compatible

osmolytes (i.e., aminoacids, sugars, and alcohols). These osmolytes

balance the osmotic pressure within the cell [15–17], thus

maintaining root water uptake, plant water balance and photo-

synthetic activity. They also play a role in membrane and protein

protection and scavenging of reactive oxygen species. There is also

increased production of certain proteins in response to salt stress,

such as superoxide dismutase [10,18] that eliminates ROS excess,

and heat-shock proteins [19] that are responsible for maintaining

the correct folding of proteins.

According to the sugarcane cultivar census in Brazil held by the

Centro de Tecnologia Canavieira (CTC) [20], the RB (Brazilian

Republic) cultivars represent approximately 50% of sugarcane

planted in Brazil. Cultivars RB855536 and RB867515 are

respectively the second and seventh in farmers’ preference, due

to traits such as high productivity, erect culms and resistance to

diseases [20,21]. Both cultivars are derived from interspecific
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hybridizations between Saccharum officinarum and S. spontaneum.

Farmers consider cultivar RB867515 more drought-stress tolerant

when compared to cultivar RB855536, although the scant

experimental evidence is inconclusive [21]. In fact, water deficit

is one of the major factors limiting sugarcane productivity [22].

Given the similarity between drought and salinity responses, we

hypothesized that RB867515 would be salt tolerant when

compared to RB855536. We assessed the salinity tolerance of

the two cultivars by measuring photosynthesis, water potential,

macro- and micronutrients and lipid peroxidation of leaves and

biomass allocation in response to a long-term period of salt stress

(48 days). Additionally, a proteomic approach was used to identify

salt stress-induced proteins in cultivar RB867515 that may have

biotechnological potential.

Results

Photosynthesis and leaf water potential
In both cultivars, RB855536 and RB867515, photosynthetic

rates of control and salt-treated plants significantly decreased after

48 days of salt stress (Figure 1A and 1B). However, there were no

statistically significant differences between the two cultivars,

indicating that the varieties RB855536 and RB867515 behaved

similarly with respect to net photosynthesis during salt stress.

Leaf water potential of RB855536 and RB867515 plants

subjected to salinity became more negative from day 15 until

the end of the experiment (Figure 1C and 1D). At day 48, the

water potential of control plants remained at values similar to

those of previous timepoints, while salt-treated plants showed a

sharp decrease in leaf water potential compared to that of day 15.

However, there were no differences in leaf water potential between

salt-stressed plants of the two cultivars.

Biomass allocation and malondialdehyde (MDA) content
Salt treated RB855536 and RB867515 plants showed a

reduction in shoot dry mass in comparison to control plants

(Figure 2A and 2B). Similar results were obtained for roots

(Figure 2C and 2D). Comparing the dry mass of controls between

the two cultivars, no significant difference was observed for shoots.

However, RB867515 control plants showed significantly more

root dry mass than RB855536. In relation to malondialdehyde

content, cultivar RB855536 plants subjected to salt stress showed a

statistically significant increase in lipid peroxidation (MDA) levels

from day 10 to 48, with a slight decrease of MDA levels for this last

day (Figure 2E). For cultivar RB867515 (Figure 2F), up to day 10,

both control and salt-treated plants, showed low values of MDA.

However, levels of MDA showed a statistically significant increase

in salt-treated plants at day 15 and a decrease at the 48, when

MDA levels were similar in control and salt-treated plants.

Therefore, MDA levels increased in leaves of salt-stressed plants of

both cultivars; however, there was a delay in response for cultivar

RB867515 in comparison to cultivar RB855536.

Macro- and micronutrient leaf concentrations
No significant change in leaf concentrations was observed for

any of the macro and micronutrients tested (results not shown),

except for manganese. On day 48, there was a statistically

significant reduction in Mn2+ concentration values in control and

Figure 1. Net CO2-exchange (mmol.m22s21) for (A) cultivar RB855536 and (B) cultivar RB867515 over time. Leaf water potential (MPa) in
sugarcane leaves during 48 days of salt treatment for (C) cultivar RB855536; and (D) cultivar RB867515. Values are presented as mean 6 SD (n = 6).
"N" are control plants and "&" are salt-treated plants. *Significant at p#0.05.
doi:10.1371/journal.pone.0098463.g001
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salt-treated plants for both cultivars (Figure S1A and S1B in File

S1).

2-DE analysis of proteins in the sugarcane cultivar
RB867515

To identify proteins that are expressed during salt stress in

cultivar RB867515, the protein expression profiles of leaves of

plants watered with distilled water and with 100 mM of NaCl

solution for 48 days were compared using bidimensional protein

electrophoresis (Figure 3). Although at days 15 and 48, cultivar

RB867515 showed significant changes in some physiological

parameters, day 48 was chosen for protein expression analysis

due to the greater differences in physiological parameters between

water and salt-treated plants, such as a decline in net photosyn-

thesis and leaf water potential (Figure 1). Proteins for both salt-

treated and control plants were found mostly in the 4 to 7 pI

range. After the second dimension was run, replicates of gels were

compared for reproducibility. The gels with highest r2 were used

to make the reference gels for control (r2 = 0.85) and salt-treated

plants (r2 = 0.84). Comparison of control and salt-treated plants

reference gels allowed the identification of proteins that showed at

least a 1.5-fold differential expression between gels. Twelve

proteins were selected from gels of salt-treated plants and eight

proteins were selected from gels of water-treated plants. From a

Figure 2. Shoot dry mass for cultivars(A) RB855536 and (B) RB867515; and root dry mass for cultivars (C) RB855536 and (D)
RB867515 after being subjected to 48 days of salt stress (100 mM NaCl). Lipid peroxidation levels (MDA) in sugarcane leaves during 48 days
of salt stress (100 mM NaCl) for (E) cultivar RB855536 and (F) RB867515. Values are presented as mean 6 SD (n = 6 plants). "N" are control plants and
"&" are salt-treated plants. *Significant at p#0.05.
doi:10.1371/journal.pone.0098463.g002
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total of twenty selected proteins, twelve were identified (i.e., four

showed difference in protein expression and eight were used as

control proteins) (Figures S2 to S10 in File S1). Low concentration

of proteins in spots precluded identification of the remaining

proteins. As shown in Table 1, the four differentially expressed

proteins successfully identified were: (1) fructose 1,6-bisphosphate

aldolase that was down-regulated in salt-treated plants, (2) germin-

like protein that was up-regulated in salt-treated plants and (3)

glyceraldehyde 3-phosphate dehydrogenase that was up-regulated

in salt-treated plants, and (4) a heat-shock 70 protein that was

found only in salt-treated plants (Figure 4A and 4B). Eight

additional proteins that showed no change in expression levels

were chosen as controls. These were identified as another isoform

of fructose 1,6-bisphosphate aldolase, RUBISCO large subunit,

ATP synthase CF1 a subunit, 23 kDa polypeptide of PS II oxygen

evolving complex and another isoform of germin-like protein.

Discussion

Physiological and biochemical analysis
Many physiological functions in plants are affected by soil

salinity and the effects of prolonged stress were observed in

sugarcane leaves. Both sugarcane cultivars showed a decrease in

their photosynthetic rates during the experiment. In spite of being

considered drought tolerant, and the fact that there are similarities

between drought and salt-stress responses, RB867515 did not

behave as a salt tolerant cultivar in controlled experiments.

However, the decrease in photosynthetic rates may also have been

a response caused by the decrease of water potential for both

cultivars. Stepien and Kłobus [23] working with several concen-

trations of NaCl in cucumber (Cucumis sativus L.) observed a

decrease in net photosynthesis due to increasing water deficit.

According to Suzuki and Esteves [24], salinity can affect net

photosynthesis by changing mesophyll cells’ structure and by

reducing water availability, thus decreasing the water potential.

The presence of salts in the soil solution leads to decreased osmotic

potential of the solution, inducing a shortage of water in plants

which accounts for the resemblance between drought and salt-

stress responses [11].

Decrease in growth of both shoots and roots are a well-known

effect of increased salinity. In our experiments, salinity reduced

shoots’ and roots’ mass, affecting both cultivars similarly.

Interestingly, however, greater root mass was observed in cultivar

RB867515 water-treated control plants in comparison to cultivar

RB855536. Since cultivar RB867515 is considered by farmers to

be more drought tolerant than cultivar RB855536, the fact that

RB867515 had a more developed root system in control plants

could help to explain this observation. A deeper root system may

lead to drought tolerance as the plant has access to water in deeper

layers of soil. In theoretical studies on the potential yield of

sugarcane in São Paulo, van der Berg and collaborators [25]

observed that the higher the root volume per layer, higher is also

the potential yield of the crop for sugarcane plants of first and

second cuts. Moreover, the authors also showed that the yield

tends to increase with increasing volume of roots. Morris and Tai

[26] tested 12 varieties of sugarcane in different water regimes and

observed the effect on the development of roots and leaves. The

amount of roots in the upper layers was higher in comparison to

Figure 3. Two-dimensional gel electrophoresis patterns of proteins extracted from sugarcane leaves of the RB867515 cultivar
watered (A) with distilled water and (B) after being subjected to 100 mM NaCl for 48 days. The strips used were 13 cm long, with a non-
linear pH gradient of 3-11, stained with Coomassie G-250. The proteins indicated by numbers (1-4) correspond to those showing at least 1.5-fold
difference in expression levels between the two different treatments; proteins indicated with letters (a-h) represent proteins with no difference in
expression profile.
doi:10.1371/journal.pone.0098463.g003
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the lower layers. However, the diameter of the roots was increased

in the lower layers. This result is in agreement with those found by

Laclau and Laclau [27], where the greatest amount of roots with

smaller diameter was found in the upper layers of soil in irrigated

culture and the largest amount of roots with greater diameter in

the deeper layers in rainfed crops. The maximum depth of

sugarcane roots, however, is not a consensus. Smith et al. [28]

report that root water uptake activity is restricted to a depth of

1.5–2.0 m, but Evans [29] observed this activity at a depth of

6.0 m for sugarcane roots. The size and distribution of the root

system of plants is deeply affected by the availability of water in

soil, which causes differences in the ability of crops to exploit

resources in the lower soil layers [28]. Tolerance of sugarcane to

water deficit in places where water is present in deep soil layers

may imply an increase in root mass, length and diameter of the

root [30]. It is important to note, though, that unlike drought, salt

is expected to stress plants continually, from the time of

emergence. Although drought tolerance was not tested here and

the roots of both cultivars were similarly susceptible to salt, the

results obtained suggest that farmer’s observations that cultivar

RB867515 is more tolerant to drought than RB855536 may be

due to its greater root mass.

Reactive oxygen species (ROS) oxidize membranes with the

increase of abiotic stresses like salt and drought. Active oxygen

species cause deterioration of lipid membranes in plant cells and

the levels of peroxidation are measured in terms of MDA content

[31]. The RB867515 cultivar resisted to salt-stress conditions until

day 15, in contrast to the RB855536 cultivar which showed an

increase in MDA levels starting on day 10. However, on day 48, a

decrease in MDA levels was observed for both cultivars. This

decrease could be due to the presence of detoxification enzymes

acting under the ROS [32]. Moradi and Ismail [33] observed that,

under different levels of salt stress, rice tolerant to salinity

responded to this stress producing lipid peroxidation, however

with no statistical differences between tolerant and control plants.

Our results were similar to those reported by Shao et al. [34].

Working with ten wheat genotypes and several water deficit levels,

they were able to separate them according to the production of

anti-oxidant enzymes and the production of MDA in each level of

stress (mild, moderate and severe). The varieties which showed a

greater production of MDA had a lower production of anti-

oxidant enzymes. Moreover, in the genotypes that showed an

increased production of enzymes, the production of MDA was

lower. Although we did not directly test enzyme activity, these

results highlight the importance of antioxidant enzyme activity in

plants to adverse actions of salt stress, indicating the presence of

different pathways to adapt to water stress.

Proteomic analysis
The study of global patterns of protein expression via various

proteomics techniques has gained a lot of attention in recent years.

Assessment of mRNA expression has an important caveat which is

that multiple layers of regulation of gene expression can lead to

situations where mRNA expression levels are not mirrored by

protein expression levels [35]. Given that the protein is the active

biomolecule in the cell, studying the proteome becomes crucial.

Few proteomic studies have been performed using sugarcane. In

studies of sugarcane under the related abiotic stress of drought,

Jangpromma et al. [36] described an increased expression of an

18 kDa protein. In other report by Jangpromma et al. [37], the

18 kDa protein, named p18, was similar to heat-shock proteins or

dehydrins and they hypothesized that it may have an important

function in protecting the plant against drought, once this protein

may help to protect specific cell structures by binding water

molecules. Also, p18 may be a stress-inducible heat shock protein,

protecting cells from stress injury and helping the folding of new

proteins. According to MS/MS, the p18 may be a hydrophilic

protein. Hydrophilic proteins are usually charged, which allows

them to interact with water or other hydrophilic/polar molecules

or to act as molecular chaperones, preventing damaged protein

aggregation. Zhou and collaborators [38] verified a change in the

expression pattern of proteins in sugarcane leaves submitted to

osmotic stress induced by PEG, and reported an increase of two

proteins (i.e., 22 kDa protein and RuBisCO small subunit) and the

decrease of the other two (i.e., isoflavone reductase-like protein

and delta chain of ATP synthase). RuBisCO (ribulose-1,5-

bisphosphate carboxylase/oxygenase) catalyses the reaction of D-

ribulose 1,5 -bisphosphate and atmospheric CO2 to form one

molecule of 3-phosphoglycerate and one of phosphoglycolate,

being an essential enzyme of the Calvin cycle. The presence of salt

in the soil interferes with root water uptake changing the plant

water status, increasing leaf water potential and reducing stomatal

conductance, therefore reducing photosynthesis. Found in large

amounts in the plant leaves, RuBisCO is crucial to provide

adequate photosynthetic rates, especially during the salt stress [39].

Ngamhui et al. [40] in their work with drought stress and two-

dimensional electrophoresis of sugarcane leaf proteins used 13 cm

strips ranging from pI 4-7 and identified more than 300 proteins

with differences in their expression; and successfully sequenced 19,

among them proteins related to photosynthesis, ROS detoxifica-

tion and defense proteins. The fact they used strips with pI ranging

from 4 to 7 may be one of the reasons why these authors identified

several proteins that responded to stress. The proteins identified in

the present work about salt stress were also in this pI range. The

strips used in this study were 13 cm, pI ranging 3-11. Strip

selection may have made it difficult to identify proteins that

respond to salt stress as they would be compressed in the acidic

side of the strip.

A recent study, complementary to this one, addresses changes in

sugarcane roots subjected to salt stress [41]. In this study, plants of

the same sugarcane varieties used in the present study were

cultivated for 45 days and then treated with nutrient solution

containing 200 mM NaCl. Samples were harvested for analysis at

2 h and 72 h after treatment. This protocol is in contrast to the

Figure 4. Relative volume of protein spots corresponding to
differentially expressed proteins. (A) Quantification of protein
expression and (B) Image of protein spots on gels. The left panel shows
protein expression on water-treated control plants and right panel
shows protein expression on salt-treated plants at day 48. Proteins were
identified by mass spectrometry as being (1) fructose 1,6-bispho-
sphatealdolase; (2) glyceraldehyde-3-phostate dehydrogenase; (3)
germin-like protein (4) HSP70. Bars show the mean values of replicate
spots.
doi:10.1371/journal.pone.0098463.g004
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one used in the present work where 4 month old plants were

treated with water or 100 mM NaCl solution for 48 days.

In this work we have identified four proteins in cultivar

RB867515 leaves that respond to salt stress: Fructose 1,6-

bisphosphate aldolase (Figure S2 in File S1) was down-regulated,

a glyceraldehyde 3-phosphate dehydrogenase and a germin-like

protein (Figure S3 and S4 in File S1, respectively) showed

increased expression levels under salt stress, and a heat-shock

protein 70 (Figure S5 in File S1) was expressed only in salt-treated

plants. Our proteome analysis was reproducible, however, the

identified changes in protein expression pattern should be

confirmed in the future by an alternative technique such as

Western blot. The proteins identified are involved in energy

metabolism and defense-related responses and their possible

participation in helping plants tolerate salt stress is discussed

below.

Proteins involved in energy metabolism
The adaptation of plants to stress is associated with changes in

the expressed complement of proteins. It follows that proteomic

studies can contribute significantly to the understanding of the

relationship between protein abundance and plant acclimation to

a stressful environment. Current data indicate more than 2170

identified proteins that respond to stress from 34 plant species, of

which 940 or so were identified in leaves of different plants,

including the Poaceae family [42,43], which includes sugarcane.

Understanding how the plant responds to stress at a proteomic

level, together with data from physiology and biochemistry, can

provide directions for how to obtain cultivars with resistance to

abiotic stresses such as salinity [44] in sugarcane breeding

programs.

Differences in physiological parameters between water-treated

and salt-treated plants, such as decrease in photosynthetic rate and

water potential, prompted the proteomic analysis of cultivar

RB867515 at day 48. The proteins identified for the cultivar

RB867515 were involved in energy metabolism processes and are

known from studies with other plant species to be early responders

of abiotic stresses such as salinity [42,45]. Fructose-1,6-bispho-

sphate aldolase (EC 4.1.2.13) is a key enzyme of the energy

metabolism, which catalyses the cleavage of b-fructose-1,6-

phosphate into D-glyceraldehyde-3-phosphate and dihydroxyace-

tone phosphate in glycolysis, in addition to the reverse reaction

during gluconeogenesis. In this work, it was found that in

RB867515 salt-treated plants there was a decrease in the

expression of fructose-1,6-bisphosphate aldolase (Figure 4, spot

number 1). Sobhanian et al. [46] observed similar results when the

halophyte grass Aeluropus lagopoides was submitted to increased salt

levels, some photosynthesis-related proteins, such as fructose 1,6-

bisphosphate aldolase, showed decreased expression levels. Differ-

ent results were obtained by Salekdeh and colleagues [47], who

observed that this enzyme increased its expression by 40% in salt-

stress rice leaves. Abbasi and Komatsu [48] also observed in the

rice leaf sheath an increased expression of FBP aldolase, under

different stresses such as cold, salinity and drought, indicating that

the plant responded to stressful stimuli by overexpressing this

enzyme. There are different reports of a decrease in fructose 1,6-

bisphosphate aldolase [49,50]. According to Chaves et al. [51], the

expression of some proteins from the Calvin cycle and photores-

piration (e. g. fructose bisphosphatealdolase) are differently affected

by abiotic stresses (e.g., salt and drought) [52–54]. These

differences may be due to the plant’s ability to react differently

to imposed stress conditions and the need for growth and

compartmentalization of metabolites resulting from the photosyn-

thetic process. Therefore, the response of increased or decreased

fructose 1,6-bisphosphate aldolase expression may be due to

genetic factors of the plant. It is to be noted though that FBP

aldolase was sequenced from different spots on gels (Figure S6 in

File S1), indicating that perhaps the presence of isoforms may

explain some of the different results in protein expression reported

in the literature [45]. Also, FBP aldolase may be an important

function in ion vacuole compartmentalization. Barkla et al. [55]

demonstrate that this enzyme can interact directly with and active

the ATPase-depended H+ presents in vacuolar membrane,

stimulating its ATP binding and hydrolysis activity, important

step for salt import into the vacuole, helping the plant cell

eliminate the excess of ions Na+ and Cl- of the cytoplasm.

Another important enzyme in the energy metabolism is

glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), which

was up-regulated in salt-treated plants (Figure 4, spot number 3).

This enzyme belongs to the family of dehydrogenases and

catalyzes the oxidation of glyceraldehyde 3-phosphate to 1,3-

biphosphoglycerate in the glycolytic pathway, in a reaction that

produces ATP. This enzyme is also present in the nucleus where it

has important roles in gene transcription, DNA replication, DNA

repair and RNA export [56]. According to Yang et al. [57]

overexpression of the glycolysis pathway enzyme is of paramount

importance for the increase of soluble sugars accumulation, as well

as for providing more energy needed for the plant under stress,

and therefore, is an indicator of stress tolerance. The increase in

glyceraldehyde-3-phosphatedehydrogenase and the reduction of

fructose 1,6-bisphosphate aldolase has been reported for cucumber

by Du et al. [58], in which these proteins may have altered the

activity of the glycolysis pathway, hence the accumulation of

soluble sugars would be lower. Sobhanian et al. [46] also found a

decrease of fructose bisphosphate aldolase in the halophyte grass

Aeluropus lagopoides, but they also observed an increase in

glyceraldehyde-3-phosphate dehydrogenase in response to salinity.

The increased expression of this protein may reflect the pattern of

carbon flux in response to a reduction in photosynthesis and high

demand for the osmotic regulation in the leaves caused by salinity.

Germin-like protein
Initially described in wheat seeds, germin-like proteins (GLP)

have several functions [59,60] such as receptors and detoxification

enzymes [54,61,62]. According to Woo et al. [63], germin is an

apoplastic, glycosylated enzyme with resistance to heat, degrada-

tion by proteases and hydrogen peroxide. This resistance may be

due to its similarity to desiccation tolerant proteins present in

seeds. Germin-like proteins may function as reactive oxygen

species (ROS)-scavengers and have a common structure with

‘‘true-germin’’ protein family members, as b-jellyrolls monomers

united in a trimer of dimers (homohexamers), with a single

manganese ion per monomer. This structure is also similar to

other plant ROS-removing enzymes such as Mn-dependent

superoxide dismutase (Mn-SOD) [64]. The catalytic processes of

these enzymes depend only on the presence of a manganese ion

bound between the monomers, with no involvement of other co-

factors or specific changes in amino acid residues [63]. Ngamhui

and colleagues identified two enzymes involved in ROS detoxi-

fication, among them a CuZn-SOD in sugarcane leaves of Thai

drought-tolerant cultivars [40].

A GLP with increased protein expression in salt-treated plants

was identified in cultivar RB867515 (Figure 4, spot number 2).

According to Zimmermman et al. [65], germin-like proteins belong

to a multigene family – e.g. groups of genes from the same

organism encoding proteins with similar sequences either in its full

length or limited to some specific domain. This would explain the

presence of different germin-like proteins with the same molecular
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mass although with a different pI. The identification of a protein

that uses manganese ions during catalysis is interesting because

among all macro and micronutrients studied, manganese was the

only micronutrient that showed a statistically significant increase in

salt-treated plants at 48 days (Figure S1 in File S1). Increased

expression of enzymes such as GLP that are responsible for ROS-

detoxification together with high levels of manganese could be one

of the mechanisms that enables cultivar RB867515 to withstand

the adverse conditions of salt stress.

Defense-related proteins
Molecular chaperones are key components to cellular homeo-

stasis under normal and adverse conditions of growth. They are

responsible for protein folding, translocation and degradation

processes in normal cell functioning. Most molecular chaperones

are stress proteins, many of them identified as heat-shock proteins

(HSPs) [66,67]. Protein spot 4 (Figure 4) present only in salt-

stressed plants has been identified as a HSP 70. Aghaei et al. [68]

investigated the behavior of two contrasting varieties of potatoes

(i.e., salt-sensitive and salt-tolerant) in response to 90 mM of salt

and found that the overexpression of HSPs occurred only in salt-

stress tolerant potato plants. They concluded that HSPs could be

considered part of the mechanism that confers salt tolerance in

potatoes. In grape, Grimplet et al. [69] demonstrated HSP60

expression under drought stress. Studies performed previously by

Tiroli and Ramos [70] identified the production of HSP70 in

grapes during harvest, which may be considered a stress. After

harvest and during ripening, plants undergo a period of

dehydration, which can be considered as the main stress factor,

initiating the production of proteins responsible for cell turgor and

protection against oxidative stress [71] and defense-related

proteins, such as heat shock proteins [72]. In sugarcane, there

have been reports of the expression of small HSPs (sHSP). Tiroli

and Ramos [70] identified a class I sHSP in sugarcane that

responded to high temperature stress using ESTs from the

sugarcane database. Similar results were obtained by Tiroli-

Cepeda and Ramos [19], when they observed that high

temperatures induced protein aggregation. Sugarcane plants

exposed to high temperatures induced the expression of sHSP

class I proteins, which led to increased activity of chaperones in the

cell to help previously existing proteins return to function and

newly synthesized proteins achieve correct folding. Rodrigues et al.

[73], despite not having used a proteomic approach, observed an

increase in three types of HSP (17.2, 70 and 101) in drought stress

tolerant Brazilian sugarcane cultivars. Recently, Ngamhui et al.

[40] using drought-tolerant Thai sugarcane cultivars described a

class IHSP of 16.9 kDa that was up-regulated in sugarcane leaves

under drought stress for five days. The expression of HSPs

occurred mainly in tolerant plants, a similar result found in this

work with RB867515 salt-treated plants, demonstrating that these

proteins may participate in the protection of sugarcane against salt

stress.

Experiments in which chrysanthemum HSP70 gene was over-

expressed in Arabidopsis thaliana showed that the increasing in

HSP70 expression led to a remarkable tolerance to heat, drought

and salinity [74]. Salinity also increases the peroxidation of

membranes, and an increase in MDA concentration. The

presence of oxidized lipids led to the increase in peroxidase

activity. Song and co-workers [74] also noted that membrane

damage caused by the action of ROS was lower in plants

overexpressing HSP70 compared to the wild type, indicating that

the presence of these proteins may be crucial to minimize the

damage caused by salinity in plants.

In conclusion, the increase in the glycolytic pathway proteins,

such as glyceraldehyde 3-P dehydrogenase, could help the carbon

flux through the Calvin cycle leading to an increase in sucrose

production [75] and contribute to plant stress tolerance. HSP70

identified in the RB867515 variety, together with GLP (Figure S11

in File S1), may alleviate the damage caused by oxidation,

especially in chloroplasts, which might partially contribute to

reducing the damage caused by stress, since the decrease in MDA

concentrations was observed for day 48 in sugarcane leaves.

HSP70 and GLP may protect sugarcane plants against protein

unfolding and membrane peroxidation, contributing to the

tolerance of sugarcane to moderate salt stress.

Materials and Methods

Plant material
Sugarcane cultivars RB855536 and RB867515 were acquired

from RIDESA. Culms of both cultivars were grown in vermiculite

for a month and then transplanted to 25 cm in diameter pots with

drainage holes containing a mix of soil/manure/sand (4:2:1, w/w/

w). At 4-months, six plants of each cultivar were treated with

100 mM of NaCl solution and other six plants of each cultivar

were watered with distilled water (control group) up to field

capacity every day in the morning during a period of 48 days. All

twenty four plants were randomly arranged.

Measurements of net photosynthesis and water potential
Net photosynthesis measurements were performed in the

morning (8–10 am) after watering. Photosynthesis of the middle

third of fully expanded +1 leaves (the first leaf, from top to bottom,

with visible sheath, see Figure S12 in File S1) of each repetition

was measured using a portable photosynthesis system LICOR-

6400 (Li-COR, Lincon, NE, EUA) at 0, 10, 15 and 48 days. After

net photosynthesis was measured, +1 leaves were introduced into a

Scholander pressure chamber [76]. The applied pressure was

increased by increments of 0.2 MPa using nitrogen gas until the

xylem sap became visible in the leaf lamina surface. This pressure

was considered as the xylem water potential. This analysis was

performed at 0, 10, 15 and 48 days of salt stress.

Determination of dry mass and malondialdehyde content
(MDA)

At day 48, shoots and roots of both control and salt-treated

cultivars were separated and dried in an oven at 80 uC with forced

air circulation and weighted using a digital scale until the mass

values became constant. The MDA content of sugarcane leaves

was determined according to Hodges et al. [77]. Briefly, one

hundred milligrams of ground leaves were homogenized with

6.5 mL of 80% ethanol (v/v) and centrifuged for 10 minutes at

16,100 g. A total of 1 mL of this extract was transferred to a new

tube and 1 mL of 0.65% thiobarbituric acid (TBA) (w/v) in 20%

trichloroacetic acid (TCA) (w/v) were added followed by

incubation at 95 uC for 25 min. Samples were then transferred

to ice for 10 minutes and centrifuged for 10 minutes at 16,100 g.

The supernatant was transferred to a new tube and absorbance

was read at 532 nm and 600 nm. MDA equivalents in nmol.g

FM21 were obtained using the following equation: MDA (nmol.g

FM21) = [(A532–A600)/155000]6106.

Quantification of leaf nutrient concentrations
For the analysis of macro and micro nutrients, approximately

1 mg of leaf tissue (leaf +1) of each replicate (six plants from

controls and six from salt-treated plants) of both cultivars

previously pulverized in liquid N2 were placed in an oven at 65
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uC for 72 hours. Leaf concentrations of P, K, Mg, S, Al, B, Cu, Fe,

Mn and Zn were determined in the Analytical Chemistry

Laboratory of Embrapa Cerrados (CPAC) by the technique of

optical emission spectrometry with inductively coupled argon

plasma in a Thermo Jarrell Ash spectrometer model IRIS/AP.

Leaf nitrogen concentrations were determined by the colorimetric

method described by Kjeldahl [78].

Protein extraction from leaf material and quantification
At day 48, fully expanded +1 and +2 leaves of six plants (Figure

S2 in File S1) from each treatment (control and salt-treated plant)

of the RB867515 cultivar were harvested and ground to a fine

powder with liquid nitrogen using a mortar and pestle. Total

protein extraction was performed according to Wang et al. [79].

To remove the photosynthetic pigments, 10 g of powdered leaves

were homogenized with 10 mL of 100% chilled acetone, followed

by centrifugation at 23,500 g for 5 min at 4 uC. The supernatant

was discarded and the procedure was repeated three times. The

pellet was then homogenized with 10% trichloroacetic acid (TCA)

in chilled acetone (w/v), followed by centrifugation at 23,500 g for

5 min at 4 uC. The supernatant was discarded and this step was

repeated three times. The pellet was homogenized in 10% TCA in

cold distilled water (w/v), centrifuged (23,500 g for 5 min at 4 uC),

and the supernatant discarded, this step was repeated three times.

The pellet was resuspended with 80% chilled acetone (v/v),

centrifuged (23,500 g for 5 min at 4 uC), and the supernatant

again discarded. This step was repeated three times. The final

pellet was then homogenized with 10 mL of buffered phenol

(Sigma-Aldrich) and 10 mL of solubilization buffer containing

30% sucrose (w/v), 2% SDS (w/v), 0.1 M Tris-HCl buffer

(pH 8.0) and 5% b-mercaptoethanol (v/v). This solution was

vortex-mixed and centrifuged at 23,500 g, for 5 min at 4 uC. The

upper phase (phenolic) was collected, and proteins were precip-

itated by adding 3 times the volume of a solution containing 0.1 M

ammonium acetate in 100% of cold methanol (w/v) overnight at

280uC. Samples were then centrifuged at 23,500 g for 5 min at 4

uC. The pellet obtained was washed twice with 0.1 M ammonium

acetate in 100% of cold methanol and twice with chilled 100%

acetone. After complete evaporation of acetone at room temper-

ature, the pellet was resuspended in 2% SDS (w/v), 5% glycerol

(v/v), 50 mM Tris-HCl buffer (pH 6.8). Protein quantification was

performed using the methodology of Lowry et al. [80], and the RC

DC protein assay kit (BioRad).

2-DE and comparative proteome analysis
Seven hundred micrograms of sugarcane leaf proteins (in

triplicate for each treatment) were precipitated on ice for 1 h using

a 10% TCA (final concentration) solution. After precipitation,

proteins were centrifuged at 16,100 g for 20 min at 4 uC. The

supernatant was discarded and the pellet washed three times with

cold 100% acetone (each wash was followed by centrifugation at

16,100 g for 20 minutes at 4 uC). The pellet was solubilized in a

hydration solution (8 M urea, 2% CHAPS, 0.5% IPG buffer with

a trace of bromophenol blue and 65 mM DTT) and applied onto

a IPG (immobilized pH gel) 13 cm non-linear strip (pH 3-11) (GE

Healthcare) by incubation for 16 h at room temperature. The

strips were then submitted to isoelectric focusing (IEF) using an

Ettan IPGphor 3 (GE Healthcare) apparatus until it accumulated

53,250 v.h21. After IEF, strips were equilibrated in solutions of

DTT (50 mM Tris-HCl buffer (pH 8.8), 6 M urea, 30% glycerol,

2% SDS, 1% dithiothreitol-DTT, a trace of bromophenol blue)

and iodoacetamide (50 mM Tris-HCl buffer (pH 8.8), 6 M urea,

30% glycerol, 2% SDS, 1% iodoacetamide, a trace of bromophe-

nol blue) for 15 min each, placed on top of 12% polyacrylamide

gels according to Laemmli [81] and sealed with agarose solution

(25 mM Tris-HCl buffer (pH 8.3), 192 mM glycine, 0.1% SDS,

0.5% agarose and a trace of bromophenol blue). Gels were run

until the bromophenol blue reached the end of the gel using the

following parameters for electrophoresis: (1) 30 min at 600 V,

90 mA, 100 W and (2) 8 h at 700 V, 240 mA, 100 W. After

electrophoresis, gels were fixed in distaining solution (50% distilled

water, 40% methanol, 10% acetic acid) for at least 1 h and stained

overnight according to Neuhoff et al. and Kang et al. [82,83], with

Coomassie Blue G-250 (BioRad) (0.1% Coomassie Blue G-250,

2% phosphoric acid, 10% ammonium sulfate and 20% methanol).

Image acquisition and data analysis
Images of gels were obtained using a scanner HP Scanjet 8290

on photography mode. Analysis of the images was performed

using BioNumerics software version 5.10 (Applied Maths,

Belgium). Before analysis, all images were converted to gray scale,

using the following parameters of the program: TIFF format with

OD of 8 bits, 500 kbits, 47% of spot contrast, 75% of spot

separation, 25 pixels of spot size and 3 pixels for minimum spot

size. For the normalization of gels, one reference gel was created to

generate a standard gel, determined by the molecular mass

markers (Y), isoelectric point (x) and intensity (z) of spots. After

normalization, spots of each gel were connected to the reference

gel previously created. Other values remained below the default

values of the software. For comparison, the gels had their

equivalent spots connected and identified numerically and then

the values of volume generated by the program for each spot were

used for calculations of correlation. All possible comparisons with

the values of volume for each treatment were performed. The gel

with the highest correlation coefficient with the other two

repetitions was considered representative and was chosen for

comparison with the corresponding representative gel from the

other treatment (see Figure S13 in File S1). Spot were selected for

MALDI-TOF/TOF MS identification using the criteria of 2-fold

increased or decreased expression levels.

In-gel digestion and desalinization of digested proteins
The gel spots selected for identification were excised from the

three replicate gels and pooled into 1.5 mL tubes. Protein

digestion was performed using the methodology described by

Shevchenko et al. [84,85], with modifications. Gel slices were

distained overnight and washed with 50% ethanol (v/v) three

times, with a 15 min interval between washes. After discarding the

ethanol solution, 300 mL of 100% acetonitrile (ACN) was added

until gels exhibited a white color. Next, the ACN was removed and

50 mL of 100 mM ammonium bicarbonate and 10 mM DTT

were added and tubes were incubated in a water bath at 56 uC for

30 min. After this, the liquid was removed, 50 mL of 100 mM

ammonium bicarbonate and 55 mM iodoacetamide were added

and tubes were left at room temperature for 90 min. The solution

was discarded and the gel slices were washed twice with 100 mL

100 mM ammonium bicarbonate with a 10 min interval between

washes. After this, 100% ACN was added until gel slices turned

white. Acetonitrile was removed, and tubes were kept at room

temperature until the remaining acetonitrile evaporated. Next,

tubes were put on ice and 45 mL of 50 mM ammonium

bicarbonate containing 5 mM CaCl2 and 5 mL of trypsin gold

(Promega) were added to each tube for 45 minutes and then

incubated at 37 uC for 24 h. The liquid was then transferred to a

new tube and dried in a cold speed vacuum. After in gel digestion,

proteins were desalted with PerfectPure C-18 columns coupled tips

(Eppendorf), according to manufacturer’s instructions. Desalted
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proteins were dried in a speed vacuum and solubilized in 10 mL of

ultrapure water.

Identification of proteins through MALDI-TOF/TOF MS,
NCBI and Gene index database

Proteins previously digested and desalted were prepared for

MALDI-ToF/ToF mass spectrometry analysis using an Ultraflex

III instrument (BrukerDaltonics, Billerica, MA). Three microliters

of an a-cyan 4-hydroxicynnamic acid saturated solution (1% [w/

v] a-cyano-4-hydroxycinnamic acid, 3% [vol/vol] trifluoroacetic

acid, and 50% [v/v] acetonitrile) were added to 1 mL of the

resuspended sample and applied onto a MALDI target plate in

triplicate. Samples were dried at room temperature and the mass

spectrometer was operated in reflective mode to obtain the mass

spectral profile of peptide fragments generated by trypsin

digestion. MS/MS spectra for selected peptides from each protein

(around 60 peptides in total) were acquired in LIFT mode. Protein

identification proceeded by peptide mass fingerprinting (PMF) and

peptide de novo sequencing. The peptides masses obtained per

protein digestion were compared to the non-redundant plant

NCBI database with MASCOT software (MASCOT version 2.2,

Matrix Science, London) assuming carboxyamidomethylation of

cystein and methyonine oxidation as modifications. In parallel, the

sequences obtained from the MS/MS spectra were compared to

the non-redundant plant NCBI database and Gene Index

database (http://compbio.dfci.harvard.edu/tgi/), using organism,

max score and max identity as criteria of protein selection.

Statistical analysis
The photosynthetic rate, water potential and manganese

concentration data were analyzed by linear mixed models using

individuals as random factors to allow the analysis of repeated

measurements over time. The fixed variables of these models were

measurement day, treatments, and cultivar type. The measure-

ment day was handled as a categorical variable because of the

relatively low number of levels and the lack of a clear linear

relationship with the response variables. Instead of using a full

factorial model, only the meaningful interactions for this

experiment were evaluated. These were day:treatment (the effect

of treatment could be different along days), cultivar:treatment

(cultivars could respond in different manner to treatments), and

cultivar:day (cultivars could have different time dynamics). Since a

constant difference among treatments along the entire experiment,

including the initial day, was not expected, the main effect

treatment was omitted from the models. All models were checked

by visual inspection of the residual plots. For some models

heteroscedasticity related to day was observed, and under these

circumstances variance functions were included in the model. The

differences in aerial and root dry mass at the end of the experiment

among treated and control experiments were evaluated by t tests.

The MDA values were analyzed only by direct observation of

descriptive statistics since there were not enough leaves available

for biological replicates of treatments and cultivars. All statistical

procedures were carried out using the software R version 2.15.2

[86] and the mixed models analysis used also the package nlme

[87]. A significance level of 0.05 was used in all tests.

Supporting Information

File S1 Contains the following files: Figure S1. Manganese

concentration in sugarcane leaves (mg.kg-1) of cultivar RB855563

(A) and cultivar RB867515 (B) at various timepoints. "N" are

control plants and "&" are salt-treated plants; Values are

presented as mean 6 SD (n = 6). * Significant at p#0.05. Figure
S2. MALDI-ToF/ToF spectrum sequence of fructose 1,6-bispho-

sphate aldolase (1) of cultivar RB867515 sugarcane leaves treated

with 100 mM NaCl for 48 days. Figure S3. MALDI-ToF/ToF

spectrum sequence of glyceraldehyde 3-P-dehydrogenase (2) of

cultivar RB867515 sugarcane leaves treated with 100 mM NaCl

for 48 days. Figure S4. MALDI-ToF/ToF spectrum sequence of

germin-like protein (3) of cultivar RB867515 sugarcane leaves

treated with 100 mM NaCl for 48 days. Figure S5. MALDI-

ToF/ToF spectrum sequence of heat shock protein 70 (HSP 70)

(4) of cultivar RB867515 sugarcane leaves treated with 100 mM

NaCl for 48 days. Figure S6. MALDI-ToF/ToF spectrum

sequence of fructose 1,6-bisphosphate aldolase of cultivar

RB867515 sugarcane leaves treated with 100 mM NaCl for 48

days. Figure S7. MALDI-ToF/ToF spectrum sequence of

RUBISCO of cultivar RB867515 sugarcane leaves treated with

100 mM NaCl for 48 days. Figure S8. MALDI-ToF/ToF

spectrum sequence of ATP synthase subunit a of cultivar

RB867515 sugarcane leaves treated with 100 mM NaCl for 48

days. Figure S9. MALDI-ToF/ToF spectrum sequence of

23 kDa photosystem II of cultivar RB867515 sugarcane leaves

treated with 100 mM NaCl for 48 days. Figure S10. MALDI-

ToF/ToF spectrum sequence of 23 kDa photosystem II of cultivar

RB867515 sugarcane leaves treated with 100 mM NaCl for 48

days. Figure S11. Schematic diagram of identified proteins in

sugarcane leaves proteome in response to salinity stress. Proteins in

stars: up-regulated under saline conditions (100 mM NaCl).

Proteins in crosses: expressed only in salt-treated plants under

saline conditions (100 mM NaCl). Proteins underlined: down-

regulated under saline conditions (100 mM NaCl). Arrows:

putative influences on metabolic processes. Figure S12. Sugar-

cane leaves numbering system proposed by Kuijper (1915), with

modifications. Leaves +1+2+3 are fully expanded and photosyn-

thetically active. Figure S13. Experimental design for comparison

and selection of proteins differentially expressed between replicates

of control and salt-treated plant gels of sugarcane cultivar

RB867515.
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