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Abstract: Adverse psychosocial experiences have been shown to modulate individual responses to
immune challenges and affect mitochondrial functions. The aim of this study was to investigate
inflammation and immune responses as well as mitochondrial bioenergetics in an experimental model
of Paediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus (PANDAS).
Starting in adolescence (postnatal day 28), male SJL/J mice were exposed to five injections (interspaced
by two weeks) with Group-A beta-haemolytic streptococcus (GAS) homogenate. Mice were exposed
to chronic psychosocial stress, in the form of protracted visual exposure to an aggressive conspecific,
for four weeks. Our results indicate that psychosocial stress exacerbated individual response to
GAS administrations whereby mice exposed to both treatments exhibited altered cytokine and
immune-related enzyme expression in the hippocampus and hypothalamus. Additionally, they
showed impaired mitochondrial respiratory chain complexes IV and V, and reduced adenosine
triphosphate (ATP) production by mitochondria and ATP content. These brain abnormalities, observed
in GAS-Stress mice, were associated with blunted titers of plasma corticosterone. Present data support
the hypothesis that challenging environmental conditions, in terms of chronic psychosocial stress,
may exacerbate the long-term consequences of exposure to GAS processes through the promotion of
central immunomodulatory and oxidative stress.

Keywords: PANDAS; adverse emotional experience; immunity; neuroinflammation; animal Models;
mitochondrial bioenergetics

1. Introduction

Recent epidemiological, clinical, and preclinical studies suggest that immune responses to
pathogens may play a remarkable role in the onset and course of a heterogeneous group of psychiatric
disturbances. Several authors proposed that genetically predisposed individuals may develop a
series of immune-mediated disturbances, ranging from Paediatric Autoimmune Disorders Associated
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with Streptococcus (PANDAS) to neuropsychiatric systemic lupus erythematosus and autoimmune
encephalopathies [1–4]. Within this framework, pathogen-directed antibodies are hypothesized to
cross-react with a variety of partly identified neuronal antigens for a phenomenon of molecular mimicry,
thereby damaging specific brain circuits and ultimately result in behavioural abnormalities [5,6].

The acronym PANDAS was coined to define a series of disturbances with a paediatric onset—mostly
characterized by the exhibition of choreic or repetitive movements—in which repeated exposures
to bacterial infections (in particular of Group-A beta-Haemolytic Streptococcus, GAS) are causally
linked to the exhibition of symptoms [7–12]. Recurrent exhibition of abnormal behaviours, and
remitting-relapsing presence of obsessive-compulsive symptoms and/or tics are among the defining
criteria of PANDAS [13,14]. Sydenham’s chorea (SC) and Tourette’s syndrome (TS) have been proposed
to constitute instances of PANDAS [15,16].

Orlovska and co-authors provided additional support to the PANDAS hypothesis through a
cohort study wherein they observed that individuals with streptococcal throat infection had elevated
risks of obsessive-compulsive (OCD) and tic disorders [17]; non-streptococcal throat infection was also
associated with increased risks, albeit to a lesser extent, suggesting an even wider association between
immunity and neurological sequelae.

The possibility that autoimmune phenomena may contribute to the manifestation of neurological
and behavioural disturbances has been corroborated by several independent preclinical studies [9,12,18].
Hoffman and colleagues demonstrated that mice repeatedly injected with Streptococcus homogenate
showed locomotor alterations associated with IgG deposits in deep cerebellar nuclei [9]. We recently
extended these observations and reported that analogous treatments in mice resulted, in the long term,
in increased repetitive behaviours, impairments in sensorimotor gating, and indices of inflammatory
processes occurring at the level of the rostral diencephalon [18,19].

Symptom fluctuations and recurrences in PANDAS seem to be influenced by various contextual
features (see [13,20] for reviews), among which psychosocial factors and stress have called particular
attention [21–23]. Environmental stressors contribute to vulnerability to Tourette’s syndrome, and play
a remarkable role in modulating the severity of clinical symptoms [24,25]. Similarly, acute psychosocial
stressors have been associated with worsening of tics [20,26,27]. On the other hand, chronic psychosocial
stress has been shown to influence individual adaptation to additional challenges [28].

In a translational rodent model of repeated GAS injections [19], we originally reported that
neonatal exogenous corticosterone administration mitigated behavioural and immunohistochemical
alterations induced by subsequent GAS injections. These compensatory effects co-occurred with
modifications in hypothalamic pituitary adrenal axis (HPA) activity and remarkable increases in
plasma inflammatory cytokines and chemokines. These results support the view that the HPA axis
may contribute to the regulation of the immune responses involved in the pathological sequelae of
PANDAS and ultimately modulate the severity of the PANDAS-related phenotype [19].

Stress and highly demanding social dynamics have been causally linked to both mental and
somatic pathologies [29–35], albeit the underlying mechanisms remained elusive.

Compelling evidence indicate stress-mediated alterations in HPA activity may influence the
immune system, favour peripheral inflammation as well as neuroinflammation [36], increase individual
vulnerability towards subsequent immune challenges, and ultimately promote autoimmunity [37–40].
Different psychogenic stressors induce oxidative and nitrosative stress in the central nervous system
(CNS) and few studies showed that the development of psychosis in immune activation translational
models could be mediated by an imbalance between pro-oxidants and anti-oxidants [41]. Accordingly,
several clinical, genetic, and biochemical studies highlighted a central role of impaired mitochondrial
function and oxidative stress in the etiology of both neurological and neuropsychiatric diseases [42–44].
Just as the immune system represents a major source of oxidative stress, so also oxidative stress
induces inflammation via the activation of nuclear factor κB (NF-κB), a key transcription factor for
the modulation of inflammatory genes [41]. It is well known that dysfunction of the mitochondrial
respiratory chain (MRC) machinery leads to a decrease in adenosine triphosphate (ATP) production
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through oxidative phosphorylation (OXPHOS) (for refs see [45]) and exposure to oxidative stress
could exacerbate mitochondrial damage and induce death at the cellular level [46]. Beside regulating
cellular energy-generating processes, mitochondria play a pivotal role in controlling immune cell
activation and functions (see [47–50]), and may thus represent targets of inflammatory cytokines in
immune-mediated diseases [51].

In the present study, we aimed at investigating the role of social stressors in the calibration of
psychiatric disorders, and at identifying candidate mediators potentially serving as future therapeutic
targets. Specifically, we aimed at: (i) clarifying the role of the immune system in the pathological
sequelae linking streptococcal infections and psychiatric disturbances; (ii) providing additional evidence
that psychosocial stress may exacerbate the symptoms occurring in response to streptococcal infection;
(iii) demonstrating that mitochondrial oxidative phosphorylation apparatus may represent a candidate
biological determinant, potentially representing a valid therapeutic target.

Based on the evidence discussed above, we evaluated the possibility that adverse environmental
factors calibrate individual vulnerability in a validated translational mouse model of PANDAS [18,19].
To this aim, we tested the prediction that chronic psychosocial stress may worsen the brain immune
response and induce oxidative stress and mitochondrial dysfunction. In the present study, we opted to
focus on male mice due to the higher incidence of PANDAS observed in males compared to females
(with a 4.7:1 ratio; see [8]). While we acknowledge that it would be important to extend our findings to
females, we note that in the light of the innovative nature of this study, it was necessary to identify a
proof-of-principle in the most promising study population (males) before planning a study involving
female subjects.

2. Experimental Section

2.1. Animals and Rearing

Male SJL/J mice, postnatal day (PND) 25 on the day of arrival, were purchased from Charles River,
Italy (Calco, Lecco, Italy). Upon arrival, mice were randomly housed in groups of two individuals in
type-1 polycarbonate cages (33 × 13 × 14 cm). All cages were equipped with sawdust bedding, an
enrichment bag (Mucedola, Settimo Milanese, Italy), metal top and ad libitum water and food pellets
(Mucedola, Settimo Milanese, Italy). Mice were maintained on a reversed 12-h-light-dark cycle (light
on at 7:00 PM) in an air-conditioned room (temperature 21 ± 1 ◦C and relative humidity 60 ± 10%).

All experimental procedures were performed in agreement with the Legislative Decree 26/14 and
the European Directive 2010/63/UE on laboratory animal protection and experimentation. The study
has been approved by the Italian Ministry of Health (Decree Nr. 217/2010-B).

2.2. Immunization Protocol

GAS homogenate was prepared as described in previous studies [9,18,19]. After preparation,
streptococcus homogenate was stored at −70 ◦C. A blood agar plate was used to inoculate a sample of
homogenate (2.5 µL), to verify that it contained no viable bacteria. Immunization protocol, described
in [9] and adopted in our previous study [18], comprised five injections interspaced by a time interval
of two weeks, starting on PND 28. During the first injection, Phosphate-buffered saline (PBS) mice were
injected subcutaneously (s.c.) with 125 µL of an emulsion (1:1), containing PBS and Complete Freund’s
adjuvant (CFA; Sigma Aldrich, Milano, Italy), and GAS mice were injected with 125 µL of the same
emulsion (PBS:CFA), containing 5 µL of GAS homogenate (0.52 mg/mL of total protein as determined
by Bradford Assay, Biorad, (Hercules, CA, USA). Mice were then treated four additional times at
2-week intervals with 125 µL of vehicle – an emulsion (1:1) containing PBS and Incomplete Freud’s
Adjuvant (IFA; Sigma Aldrich, Milano, Italy) – for the PBS group, or 125 µL of PBS:IFA and 5 µL of GAS
homogenate for the GAS group. To prepare the PBS/adjuvant emulsions we used the vortex method
described by [52]. According to the adult and the PBS/GAS treatment received, experimental subjects
were randomly assigned to four experimental groups: control vehicle-injected (PBS-no Stress), GAS



J. Clin. Med. 2019, 8, 1514 4 of 26

homogenate/vehicle-injected (GAS-no Stress), vehicle-injected plus psychosocial stress (PBS-Stress),
and GAS homogenate/vehicle-injected plus psychosocial stress (GAS-Stress).

2.3. Chronic Psychosocial Stress

Psychosocial stress consisted of a 4-week protocol in which mice were exposed to daily defeats
and sensory contact housing (enabled by a wire mesh partition bisecting the cage into two symmetrical
compartments, each with food and water available at libitum). The chronic psychosocial stress, starting
at PND 56, was conducted as previously described [53,54]. Briefly, each SJL male mouse, representing
the experimental subject, was transferred as intruder to the home cage of a CD1 resident mouse. The
CD1 strain manifests high territorial aggression [55]. Resident and intruder mice were allowed to freely
interact for a maximum of 10 min during the 1st social confrontation. After the interaction, resident
and intruder mice were separated by a perforated partition, which allowed continuous sensory contact
but no physical interaction. The partition was removed daily (between 9:30 AM and 12:30 PM or
between 2:30 PM and 5:00 PM), for a theoretical maximum of 10 min. However, from the 2nd event
onwards, because of the elevated level of aggressive behavior displayed by the resident mouse, the
physical confrontation was generally interrupted shortly after its beginning. During the first active
social interaction, offensive/defensive behaviors and the display of upright posture, flight behavior of
the experimental SJL mice were video recorded for subsequent scoring [55,56]. Videos were scored by a
trained observer using a specific software (The Observer, The observer XT 10, Noldus, PA Wageningen,
The Netherland). Behaviors observed are part of the aggressive and defensive/subordination repertoire
of male mice [57,58]. In particular, the behaviors collected were: attack (forward motion of the resident
mouse toward the mouse belonging to the experimental group; the motion is combined with direct
physical contact), defensive upright (the animal stands on the hind-limbs and push the aggressive
opponent with the forepaws, the head pulled far back), fleeing (the animal rapidly escapes from the
opponent, often screaming), immobility-attack related (the animal is motionless during an attack),
immobility-contact related (the animal is motionless while the opponent is in physical contact but is not
attacking) and submissive behaviors (animal standing on its hind limbs while having the head pulled
far back; also, the body is rigid). Furthermore, self-grooming (the mouse licks its own fur helping itself
with its forepaws) were scored.

2.4. Experimental Design

In the four experimental groups of mice consisting of PBS-no Stress (N = 10), GAS-no Stress
(N = 9), PBS-Stress (N = 10) and GAS-Stress (N = 10), the experimental design (Figure 1) comprised the
following evaluations: the immune response to the injection protocol and corticosterone determination
in blood sampling; assessment of neuroinflammatory and mitochondrial parameters in brain
sampling/sectioning.
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Figure 1. Timing of stress exposure and of the Group-A beta-haemolytic streptococcus (GAS) 
injections, expressed in weeks, and the experimental procedures performed. Mice (N = 9–10 per 
group) received 5 injections of GAS homogenate or Phosphate Buffer Saline (PBS), formulated 
with the indicated adjuvants (CFA = Complete Freund’s adjuvant; IFA = Incomplete Freund’s 
adjuvant). Serum samples were collected for antibody determination and corticosterone (CORT) 
concentration assessment; brain samples were collected for mRNA expression and 
mitochondrial analyses. 

2.5. Blood Serum Sampling and Corticosterone Determination  

To evaluate the effects of experimental treatments on HPA activity, we evaluated serum 
corticosterone concentrations at post-natal week 9, one week after the beginning of the 
psychosocial stress procedure. Blood samples (~20 µL) were collected through tail incision 
[59,60] at 9:00 PM, i.e. two hours after the beginning of the dark phase of the inverted light-dark 
cycle, and before the beginning of the daily stress procedure. Blood samples were allowed to 
clot at room temperature for 4 hours, centrifuged at 3000 rpm for 15 minutes. The serum was 
transferred into Eppendorf tubes and maintained at −80 °C until biochemical assays. 
Corticosterone concentration was assessed using a commercial radioimmunoassay (RIA) kit 
(ICN Biomedicals, Costa Mesa, CA, USA). Vials were counted for 2 minutes in a gamma counter 
(Packard Minaxi Gamma counter, Series 5000, Packard Instruments Company Inc, Meriden, CT, 
USA). The procedures for washing and steroid extraction followed the protocol described by 
Gao and colleagues [61]. One change was made to the protocol: the dry residue was resuspended 
using 175 µL distilled water. Afterwards, 100 µL of the medium were injected into a Shimadzu 
HPLC system (Shimadzu, Canby, OR, USA) coupled to an AB Sciex API 5000 Turboion-
spray1triple quadrupole tandem mass spectrometer equipped with Atmospheric Pressure 
Chemical Ionization (APCI) Source (AB Sciex, Foster City, CA, USA). The system was controlled 
by AB Sciex Analyst1 software (version 1.5.1, AB Sciex, Milano, Italy). The lower limit of 
detection was ~0.1 pg/mg. Intra- and inter-plate coefficients of variance ranged between 3.7–
8.8%. All samples were prepared and analysed within the same time period in order to prevent 
batch effects. 

2.6. Analysis of Anti-Group A Streptococcal Antibodies in Serum Samples  

Figure 1. Timing of stress exposure and of the Group-A beta-haemolytic streptococcus (GAS) injections,
expressed in weeks, and the experimental procedures performed. Mice (N = 9–10 per group) received
5 injections of GAS homogenate or Phosphate Buffer Saline (PBS), formulated with the indicated
adjuvants (CFA = Complete Freund’s adjuvant; IFA = Incomplete Freund’s adjuvant). Serum samples
were collected for antibody determination and corticosterone (CORT) concentration assessment; brain
samples were collected for mRNA expression and mitochondrial analyses.

2.5. Blood Serum Sampling and Corticosterone Determination

To evaluate the effects of experimental treatments on HPA activity, we evaluated serum
corticosterone concentrations at post-natal week 9, one week after the beginning of the psychosocial
stress procedure. Blood samples (~20 µL) were collected through tail incision [59,60] at 9:00 PM,
i.e. two hours after the beginning of the dark phase of the inverted light-dark cycle, and before the
beginning of the daily stress procedure. Blood samples were allowed to clot at room temperature for
4 hours, centrifuged at 3000 rpm for 15 minutes. The serum was transferred into Eppendorf tubes
and maintained at −80 ◦C until biochemical assays. Corticosterone concentration was assessed using
a commercial radioimmunoassay (RIA) kit (ICN Biomedicals, Costa Mesa, CA, USA). Vials were
counted for 2 minutes in a gamma counter (Packard Minaxi Gamma counter, Series 5000, Packard
Instruments Company Inc, Meriden, CT, USA). The procedures for washing and steroid extraction
followed the protocol described by Gao and colleagues [61]. One change was made to the protocol: the
dry residue was resuspended using 175 µL distilled water. Afterwards, 100 µL of the medium were
injected into a Shimadzu HPLC system (Shimadzu, Canby, OR, USA) coupled to an AB Sciex API 5000
Turboion-spray1triple quadrupole tandem mass spectrometer equipped with Atmospheric Pressure
Chemical Ionization (APCI) Source (AB Sciex, Foster City, CA, USA). The system was controlled by
AB Sciex Analyst1 software (version 1.5.1, AB Sciex, Milano, Italy). The lower limit of detection was
~0.1 pg/mg. Intra- and inter-plate coefficients of variance ranged between 3.7–8.8%. All samples were
prepared and analysed within the same time period in order to prevent batch effects.

2.6. Analysis of Anti-Group A Streptococcal Antibodies in Serum Samples

GAS homogenates obtained as described above (see Section 2.2) were size-separated by SDS-PAGE
(4–12% acrylamide) under reducing conditions and electroblotted onto nitrocellulose membranes.
Immunostaining was performed by blocking the membrane overnight with 3% (w/v) skimmed milk in



J. Clin. Med. 2019, 8, 1514 6 of 26

TPBS (0.1% Tween in PBS) and incubating for 2 h with sera from mice of all experimental groups (all
sera were diluted 1: 200). For this analysis, sera were collected one week after the 3rd and 5th injection
of GAS homogenate or adjuvant alone following the procedure described above (see Section 2.5). After
3 washes with TPBS, the membrane was incubated with Horseradish Peroxidase (HRP)-conjugated
secondary antibody (1:1000), washed again with TPBS and PBS, and developed with a chromogenic
substrate. Densitometric analysis of the overall lane intensities in the blot was performed by using
Image J software (Image J2, Image J developers).

2.7. Brain Sampling

In order to collect brain samples, mice were rapidly decapitated, two weeks after treatment
endings. This time point was chosen to investigate the possible long-term effects of treatments on brain
immune and mitochondrial parameters. Samples collected were immediately sectioned on ice to obtain
hippocampus, and hypothalamus. For mRNA expression analyses, brain samples were collected after
decapitation, kept intact in mRNAase free tubes, flash frozen and stored at −80 ◦C.

For mitochondrial analysis, brain hemispheres immediately after explant were added to an
ice-cold cryopreservation solution consisting of 50 mM K-MES (pH 7.1), 3 mM K2HPO4, 9.5 mM
MgCl2, 3 mM ATP plus 20% glycerol and 10 mg/mL BSA, and stored at −80 ◦C until assayed. We
have previously demonstrated that mitochondria isolated from cryopreserved brain tissues show
mitochondrial membrane potential, outer and inner membrane integrity and mitochondrial ATP
production capacity comparable to mitochondria isolated from fresh brains [62,63].

2.8. Real-Time Quantitative Polymerase Chain Reaction (RT-PCR)

Dissected hypothalami and hippocampi (from N = 6 mice per experimental group) were
homogenized in Tri Reagent (Sigma, St. Louis, MO, USA) and mRNA extraction was performed
on supernatants.

Total RNA (1 µg) from each sample was transcribed into complementary DNA using the RT-PCR
Superscript III kit (Invitrogen, Eugene, OR, USA), according to the manufacturer’s instructions. RT-PCR
was performed on the reverse transcription products with a SensiMix SYBR Kit (Bioline, London,
UK) for hypoxanthine guanine phosphoribosyl transferase (HPRT), tumor necrosis factor-α (TNF-α),
interleukin-1β (IL-1β), interleukin-10 (IL-10), inducible nitric oxide synthase (iNOS), arginase-1 (Arg-1),
manganese superoxide dismutase (MnSOD), and glucocorticoid receptor (GR) mRNA expression, or
with TaqMan for HPRT and CD11b, using an ABI Prism 7500 Sequence Detection System (Applied
Biosystems, Foster City, CA, USA).

Primer sequences for HPRT, IL-1β, TNF-α, IL-10, iNOS, Arg-1, MnSOD, and GR were from
Integrated DNA Technologies (IDT, TEMA Ricerca Bologna, Italy); accession numbers are as follows:

1. HPRT (NM_013556): forward 5′-CAGGCCAGACTTTG-TTGGAT-3′; reverse 5′-TTGCGCTCAT
C-TTAGGCTTT-3′;

2. IL-1β (NM_008361): forward 5′-CGACAAAATACCTGTGGCCT-3′, reverse 5′-TTCTTTGGG
TATTCCTTGGG-3′;

3. TNF-α (NM_013693.3): forward 5′-AGCCCCCAGTCTGTATCCTT-3′, reverse 5′-ACAGTCCAGG
TCACTGTCCC-3′;

4. IL-10 (NM_010548): forward 5′-TTAAGCTGTTTCCATTGGGG-3′, reverse 5′-AAGTGTGGC
CAGCCTTAGAA-3′;

5. iNOS (NM_010927): forward 5′-CAGCTGGGCTGTACAAACCTT-3′, reverse 5′-CATTGGAAGT
GAAGCGTTTCG-3′;

6. Arg-1 (NM_007482): forward 5′-GGAAAGCCAATGAAGAGCTG-3′, reverse 5′-AACACTCCCC
TGACAACCAG-3′;

7. MnSOD (NC_000083.6): forward 5′-GCTCTGGCCAAGGGAGATGT-3′, reverse, 5′-GGGCTCAG
GTTTGTCCAGAAA-3′;
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8. GR (NM_008173.3): forward 5′-CGCCAAGTGATTGCCGC-3′, reverse 5′-TGTAGAAGGGTCA
TTTGGTCATCCA-3′.

TaqMan primers for HPRT (Mn.PT.39a22214828) and CD11b (Mn.PT.58.9189361), were also
from IDT.

Annealing temperature was 60 ◦C for all the primer pairs listed. All samples were run in triplicate,
and each PCR well contained 20 µL as a final volume of reaction, including 2 µL complementary DNA
corresponding to approximately 60 ng total RNA, 750 nM of each primer, and 10 µL PCR master mix.
Thermal cycling conditions were as follows: 1 cycle at 95 ◦C for 10 min, 40 cycles at 95 ◦C for 15 s, and
60 ◦C for 1 min. The relative expression level of each mRNA was calculated using the ∆∆Ct method
normalized to HPRT and relative to the control samples. The amplification specificity was verified by
melting curve analyses.

2.9. Measurement of Mitochondrial Respiratory Chain Complex (MRC) Activities

Measurements of mitochondrial respiratory chain (MRC) complex activities were carried out
in mitochondrial membrane-enriched fractions obtained from crude mitochondria isolated by
differential centrifugation of brain homogenate as previously described [62]. To obtain mitochondrial
membrane-enriched fractions, mitochondrial pellets were first frozen at −80 ◦C, then thawed at 2–4 ◦C,
suspended in 1 ml of 10 mM Tris-HCl (pH 7.5) plus 1mg/ml BSA and exposed to ultrasound energy for
8 s at 0 ◦C (11 pulse 0.7 s on, 0.7 s off) at 20 kHz, intensity 2. The ultrasound-treated mitochondria were
centrifuged at 600 g for 10 min, 4 ◦C. The supernatant was centrifuged again at 14000 g for 10 min,
4 ◦C and the resulting pellet was kept at −80 ◦C until use. The MRC complex activities were assessed
spectrophotometrically essentially as in [64], by three measurements which rely on the sequential
addition of reagents to measure the activities of: (i) NADH:ubiquinone oxidoreductase (complex I)
followed by ATP synthase (complex V), (ii) succinate:ubiquinone oxidoreductase (complex II) and
(iii) cytochrome c oxidase (complex IV) followed by cytochrome c oxidoreductase (complex III).

2.10. Measurement of Mitochondrial ATP Production Rate

The rate of ATP production by OXPHOS was determined in isolated mitochondria, essentially
as previously described in [65]. Briefly, mitochondria isolated from total brain (0.5 mg protein) were
incubated at 37◦C in 2 mL of respiratory medium consisting of 210 mM mannitol, 70 mM sucrose,
20 mM Tris/HCl, 5 mM KH2PO4/K2HPO4, (pH 7.4) plus 5 mg/mL BSA, 3 mM MgCl2, in the presence
of the ATP detecting system consisting of glucose (2.5 mM), hexokinase (HK, 2 enzymatic units, e.u.),
glucose 6-phosphate dehydrogenase (G6P-DH, 1 e.u.) and NADP+ (0.25 mM) in the presence of
glutamate (GLU) plus malate (MAL) (5 mM each) or succinate (SUCC, 5 mM) plus rotenone (ROT,
3 µM), or ascorbate (ASC, 0.5 mM) plus N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD, 0.25 mM),
as energy sources. The reduction of NADP+ in the extramitochondrial phase, which reveals ATP
formation from externally added adenosine diphosphate (ADP, 0.5 mM), was monitored as an increase
in absorbance at 340 nm. Care was taken to use enough HK/G6P-DH coupled enzymes to ensure a
non-limiting ADP-regenerating system for the measurement of ATP production.

2.11. Measurement of Mouse Brain ATP Levels

The brain hemisphere was subjected to perchloric acid extraction as described in [66]. In brief,
tissues were homogenized in 600 µL of pre-cooled 10% perchloric acid and then centrifuged at
14000 g for 10 min, 4 ◦C. The amount of tissue ATP was determined in KOH neutralized extracts by
spectrofluorimetric measurements (with excitation wavelength of 334 and emission wavelength of
456 nm) following the formation of NADPH, which reveals ATP, in the presence of the ATP detecting
system consisting of glucose (2.5 mM), hexokinase (HK, 2 e.u.), glucose 6-phosphate dehydrogenase
(G6P-DH, 1 e.u.), and NADP+ (0.25 mM) [67].
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2.12. T-Maze

Animals were screened for perseverative behaviours in the T-maze test through the same procedure
adopted in our previous study [19]. The T-maze provides an inverse index of perseverative behaviour
whereby, in this test, rodents have the natural tendency to alternate their choices in a binary-test
paradigm (spontaneous alternation) [68]. The apparatus was an enclosed T-shaped maze, composed
of three equally sized arms (50 × 16 cm). Mice performed ten sessions, in the housing room, during
five consecutive days (2 sessions per day). The experimental session consisted of two choice trials,
beginning with the mouse in the start compartment, facing the wall of the apparatus. Mice were
allowed to explore the apparatus for a maximum of two minutes, or until it completed the trial (entering
one of the two alternative arms). Immediately after the mouse entered one arm, such instance was
scored as the first choice and the door of the arm was closed. After a few seconds, the animal was
gently removed from the arm, placed again in the starting compartment, and allowed to perform a
second-choice trial. If the subject entered the arm opposite to the previously chosen one, an instance
of alternation was scored. The percentage of alternations (the number of alternations divided by the
number of completed sessions times 100) was scored for each mouse.

2.13. Statistical Analyses

All statistical analyses were conducted using the software Statview 5.0 (Abacus Concepts,
Piscataway, NJ, USA). The experimental design entailed two between subject factors (psychosocial
stress, two levels; and Treatment, two levels: PBS vs. GAS) and one within-subject factor (repeated
measures with a variable number of levels, depending on the specific parameter). Thus, the general
experimental model consisted of a 2 (psychosocial Stress) × 2 (PBS/GAS treatment) × k (repeated
measurements) repeated measures ANOVA for split-plot designs. Tukey’s post-hoc tests were used for
between-group comparisons and Cohen’s d factor to measure the effect size between groups. Data are
expressed as mean ± SEM or SD were specified. Statistical significance was set at p < 0.05.

2.14. Data Statement

All data set produced in the present study are available upon request.

3. Results

3.1. Evaluation of Anti-GAS Antibody Responses in Sera from Mice Injected with GAS Homogenates and
Exposed (or not) to Chronic Psychosocial Stress

To investigate the presence of GAS-specific antibodies in sera from treated mice, we loaded
10 microliters of GAS homogenates onto SDS-PAGE, transferred to nitrocellulose, and tested with pools
of sera from animals treated with three (Figure 2A) or five (Figure 2B) injections of: GAS homogenate
(GAS), GAS homogenate and psychosocial stress (GAS-Stress), adjuvant alone (Adj), or adjuvant and
psychosocial stress (Adj-Stress). Western Blot analyses of GAS homogenates using sera from animals
treated with three (Figure 2A) or five (Figure 2B) injections of adjuvant (Adj and Adj-Stress mice) did
not reveal any or very few bands. Several bands were instead detected in the lanes incubated with sera
from animals receiving three (Figure 2A) or five (Figure 2B) GAS injections (GAS and GAS-Stress mice).
These results indicate that sera from GAS treated mice recognize specific GAS proteins. Interestingly,
this profile appeared much more marked as a consequence of the 5 injections (Figure 2C).



J. Clin. Med. 2019, 8, 1514 9 of 26J. Clin. Med. 2019, 8, 1514 9 of 28 

 

 

Figure 2. (A,B): Representative immunoblot of GAS extracts probed with pooled sera from mice 
either treated with 3 (A) or 5 doses (B) of GAS homogenate (GAS), GAS homogenate and 
psychosocial stress (GAS-Stress), adjuvant alone (Adj), or adjuvant and psychosocial stress (Adj-
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Figure 2. (A,B): Representative immunoblot of GAS extracts probed with pooled sera from mice either
treated with 3 (A) or 5 doses (B) of GAS homogenate (GAS), GAS homogenate and psychosocial stress
(GAS-Stress), adjuvant alone (Adj), or adjuvant and psychosocial stress (Adj-Stress). (C): Densitometric
analysis of overall lane intensities from the blot shown in (A,B).

3.2. Consequences of Psychosocial Stress on Serum Corticosterone Concentrations and Glucocorticoid Receptor
mRNA Levels in Hypothalamus and Hippocampus

To evaluate the consequences of chronic psychosocial stress on HPA function, we evaluated serum
basal corticosterone concentrations one week after the beginning of the psychosocial stress procedure.
We observed that corticosterone concentrations were significantly reduced in all Stress-treated subjects
irrespective of exposure to GAS (Stress condition: F(1,26) = 4.859, p < 0.036; no Stress group:
41.296 ± 4.236 ng/mL; Stress group: 28.754 ± 3.255 ng/mL; Cohen’s d: 3.320).

Given the key role of glucocorticoid receptors (GRs) in regulating corticosterone secretion and
mediating its effects on general metabolism, we analyzed the regulation of GRs in the hypothalamus
and hippocampus of experimental subjects. These two limbic regions were selected due to their
relevance in the response to peripheral immune activation and social stress, as well as in the behavioural
abnormalities already evidenced in the PANDAS model [19].

As shown in Figure 3A, hypothalamic mRNA GRs levels were indistinguishable across
experimental groups two weeks after the end of treatments.

Conversely, hippocampal GR mRNAs levels were affected by GAS treatment and chronic stress
condition (GAS by Stress interaction, F(1,18) = 17.607, p = 0.001, Figure 3B). Specifically, both chronic
stress and GAS exposure independently increased GR concentrations compared to PBS no-Stress
subjects. Yet, experimental subjects exposed to both treatments at the same time were indistinguishable
from PBS no-Stress controls.
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Figure 3. Glucocorticoid receptor (GR) mRNA expression in GAS-Stress mice and relative
controls. RT-PCR were performed with mRNAs extracted from hypothalamus (A) and hippocampus
(B) of control mice (PBS-no Stress), Group-A beta-haemolytic streptococcus injected mice (GAS-no
Stress), psychosocial stressed mice (PBS-Stress), and mice exposed to haemolytic streptococcus and
psychosocially stressed (GAS-Stress) at two weeks from treatment endings. Relative expression of GR
mRNA in each area is presented as fold change over the expression measured in control mice (PBS-no
Stress), taken as 1, and calculated using the 2-∆∆Ct method, normalized to hypoxanthine guanine
phosphoribosyl transferase (HPRT), as detailed in the Materials and Methods section. Data are mean ±
SEM, N= 4–6 per group. $ p < 0.05: GAS-Stress vs. PBS-Stress; # p < 0.05: GAS-no Stress vs. PBS-no
Stress; * p < 0.05 PBS-no Stress vs. PBS-Stress. Cohen’s d measures are reported in Table S1A.

3.3. Behavioural Profile Exhibited during the First Active Social Confrontation

We have previously reported that the functional state of the HPA axis at the time of GAS exposure
markedly affected GAS-induced neurobehavioral phenotype [19]. To deepen our investigation on the
interaction between GAS exposure and environmental stress, we adopted a chronic psychosocial stress
model [55]. Specifically, SJL male mice were randomly paired to resident males of the CD1 strain to
attain exposure to a gradient of territorial aggression, reportedly high in CD1 [55,56,69]. Thus, half the
mice exposed to repeated injections of either vehicle or GAS starting early in adolescence, were later
on randomized to psychosocial stress during four weeks according to an established protocol [70]. The
Stress condition started by maintaining the two pair members, which had agonistic confrontation on a
daily basis, co-housed but prevented from physical interaction. According to the procedure, mice were
indeed separated by a transparent and perforated partition allowing continuous sensory contact, thus
mimicking a lifelong stress threat.

As reported in Table 1, data collected during the 1st active agonistic confrontation of the
psychosocial stress procedure showed that GAS-Stress mice were exposed to significantly higher
levels of aggressive behavior than PBS-Stress mice (Treatment by Time interaction (F(1,37) = 4.338,
p = 0.044, for frequency; F(1,37) = 3.578, p = 0.066, for duration). Accordingly, GAS-Stress mice attained
a Defensive upright posture more often and much earlier than controls (Treatment (F(1,37) = 3.545,
p = 0.0676, for frequency; F(1,38) = 4.907, p = 0.0328, for latency). For Immobility attack-related, a
Treatment (F(1,38) = 3.777, p = 0.0785, for frequency; F(1,36) = 3.279, p = 0.0785, duration, respectively),
were evidenced with increased levels being characteristic of GAS-Stress subjects. A quite similar
profile appeared for Immobility contact-related (Treatment: F(1,37) = 3.982, p = 0.0534 for frequency;
F(1,37) = 5.402, p = 0.0257, for duration).

T-maze test showed, in accordance with our predictions, that repeated GAS immunizations resulted
in impaired spontaneous alternation (Treatment: F(1,35) = 28.326, p < 0.001). Specifically, regardless of
exposure to stress, GAS treated mice exhibited reduced spontaneous alternations compared to controls.
Furthermore, although exposure to stress apparently influenced the effects of GAS (Stress condition ×
Treatment: F(1,35) = 5.025, p = 0.0314), post-hoc tests failed to reveal significant differences between
stressed and control individuals within the respective treatment group (PBS-no Stress: 78.020 ± 2.902;
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PBS- Stress: 60.937 ± 5.642; GAS-no Stress: 36.607 ± 7.359; GAS-Stress: 44.885 ± 4.377; values are
means ± SD; N = 9–10 per group. Cohen’s d for PBS-no Stress, GAS-no Stress: 7.404; PBS-no Stress,
GAS-Stress: 8.923; PBS-Stress, GAS-Stress: 3.179; GAS-no Stress, GAS-Stress: 1.367).

Table 1. Analysis of the behavioural profile during the 1st active agonist confrontation in the
psychosocial stress procedure. Submissive behaviours = crouched posture + submissive posture.
Duration = time spent (s) performing the behaviour, expressed as a mean of two 5-min intervals. Values
are means ± SD; N = 9–10 per group. * p < 0.05, ˆ trend, df = degrees of freedom.

Behaviour Parameter GAS-Stress PBS-Stress F (df) p Cohen’s d

Attack received
Duration 6.559 ± 1.135 4.996 ± 0.957 3.578 (1,37) 0.07 Treat × Time ˆ 1.489

Frequency 9.974 ± 1.866 7.175 ± 1.422 4.338 (1,37) 0.04 Treat × Time * 1.687

Defensive
upright posture

Duration 23.724 ± 3.616 16.925 ± 3.482 1.707 (1,38) 0.20 1.915
Frequency 10.575 ± 1.729 6.079 ± 1.076 3.545 (1,37) 0.07 Treat ˆ 3.122

Latency 212.518 ± 36.059 337.022 ± 43.116 4.907 (1,38) 0.03 Treat * 3.132

Self-grooming Duration 13.048 ± 2.366 12.784 ± 2.318 0.007 (1,38) 0.93 0.113
Frequency 3.350 ± 0.452 2.900 ± 0.477 0.707 (1,38) 0.41 0.968

Immobility
attack-related

Duration 8.967 ± 2.156 2.923 ±.1.181 3.279 (1,36) 0.08 Treat ˆ 3.477
Frequency 3.475 ± 0.791 2.350 ± 0.648 3.777 (1,38) 0.06 Treat ˆ 1.556

Immobility
contact-related

Duration 13.3 ± 3.650 3.988 ± 1.022 5.402 (1,37) 0.03 Treat * 3.474
Frequency 2.950 ± 0.636 1.447 ± 0.375 3.982 (1,37) 0.05 Treat ˆ 2.879

Submissive
behaviours

Duration 55.198 ± 6.601 45.790 ± 7.840 0.843 (1,38) 0.36 1.298
Frequency 24.550 ± 3.890 17.700 ± 3.069 1.911 (1,38) 0.17 1.955

Fleeing
Duration 7.909 ± 1.452 6.480 ± 1.233 0.381 (1,37) 0.54 1.061

Frequency 9.650 ± 1.743 6.350 ± 1.212 1.607 (1,38) 0.21 2.198
Latency 285.654 ± 39.534 349.358 ± 46.590 1.087 (1,38) 0.30 1.474

3.4. Chronic Psychosocial Stress Increased Inflammatory Genes Expression in the Brain of GAS Mice

By using RT-PCR technique, we then investigated the relative levels of typical markers known
to be regulated under stress and inflammatory conditions, and playing a central role in mechanisms
of neuronal and synaptic plasticity, whose modulation could affect brain function and behaviour.
Specifically, we addressed the regulation of the pro-inflammatory cytokines IL-1β and TNF-α, the
immunomodulatory cytokine IL-10, the inflammatory/oxidative stress-related enzymes iNOS, Arg-1,
MnSOD, and the macrophage/microglial marker CD11b, in the hypothalamus and hippocampus of
the experimental subjects. As mentioned above, these two limbic regions were selected for their
relevance in the response to peripheral immune activation and social stress, as well as in behavioural
abnormalities already evidenced in the PANDAS model [19].

All data (mean± SEM) on transcript levels obtained two weeks after the end of treatment, alongside
with the statistical analyses, are reported in Figure 4 (hypothalamus) and Figure 5 (hippocampus).

In the hypothalamus (Figure 4), ANOVA yielded a significant effect for GAS and Stress single
treatments on IL-1β mRNA levels (panel A), with both treatments inducing increased IL-1β expression
(GAS: F(1,15) = 5.863, p = 0.029; Stress: F(1,15) = 4.401, p = 0.053). The combination of GAS and Stress
treatments did not add any change to the profile (F(1,15) = 0.723, p = 0.409).

As shown in Figure 4B, no changes in TNF-α mRNA levels due to GAS exposure (F(1,14) = 2.909,
p = 0.110) were found. In contrast, PBS-Stress mice had higher transcript levels than PBS-no Stress
mice (F(1,14) = 4.572, p = 0.05). Interestingly, the combination of GAS and Stress completely abated the
up-regulatory effect of Stress alone (GAS by Stress interaction: F(1,14) = 7.597, p = 0.015).

A similar profile was found for IL-10 (Figure 4C): while GAS exposure per se did not modify
IL-10 mRNA levels, Stress treatment upregulated the cytokine transcripts (F(1,14) = 2.558, p = 0.132)
compared to no-Stress controls. Also in this case, the combination of GAS and Stress completely abated
the upregulation induced by Stress alone (GAS by Stress interaction: F(1,14) = 6.248, p = 0.025). iNOS
mRNA levels (Figure 4D) were neither modified by the two treatments per se nor by their interaction.

As shown in Figure 4E, no changes in Arg-1 mRNA levels due to GAS exposure were observed.
In contrast, values for PBS-Stress mice were markedly increased (F(1,14) = 14.07, p = 0.002). In this
case, we failed to observe any interaction between GAS and Stress (F(1,14) = 2.650, p = 0.125).
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Stress) and mice exposed to haemolytic streptococcus and psychosocially stressed (GAS-Stress), 
at two weeks from treatment endings. Expression of each gene is presented as fold change over 
the expression measured in the hypothalamus of control mice (PBS-no Stress), taken as 1. The 
relative expression level of each mRNA was calculated using the 2-ΔΔCt method, normalized 
to hypoxanthine guanine phosphoribosyl transferase (HPRT), as detailed in the Materials and 
Methods section. Data are mean ± SEM, N = 4–6 per group. (A) IL-1β mRNA levels: $ p < 0.05 
for GAS-no Stress vs PBS-no Stress; * p < 0.05 for PBS-Stress vs PBS-no Stress. (B) TNF-α mRNA 
levels: $ p < 0.05 for GAS-Stress vs PBS-Stress; * p < 0.05 for PBS-Stress vs PBS-no Stress. (C) IL-
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Figure 4. mRNA relative levels of inflammatory and oxidative stress-related markers in hypothalamus
of GAS-Stress mice and relative controls. RT-PCR analysis was performed with mRNAs extracted from
hypothalamus of control mice (PBS-no Stress), Group-A beta-haemolytic streptococcus injected mice
(GAS-no Stress), psychosocially stressed mice (PBS-Stress) and mice exposed to haemolytic streptococcus
and psychosocially stressed (GAS-Stress), at two weeks from treatment endings. Expression of each
gene is presented as fold change over the expression measured in the hypothalamus of control mice
(PBS-no Stress), taken as 1. The relative expression level of each mRNA was calculated using the
2-∆∆Ct method, normalized to hypoxanthine guanine phosphoribosyl transferase (HPRT), as detailed
in the Materials and Methods section. Data are mean ± SEM, N = 4–6 per group. (A) IL-1β mRNA
levels: $ p < 0.05 for GAS-no Stress vs. PBS-no Stress; * p < 0.05 for PBS-Stress vs. PBS-no Stress.
(B) TNF-α mRNA levels: $ p < 0.05 for GAS-Stress vs. PBS-Stress; * p < 0.05 for PBS-Stress vs. PBS-no
Stress. (C) IL-10 mRNA levels: $ p < 0.05 for GAS-Stress vs. PBS-Stress; * p < 0.05 for PBS-Stress vs.
PBS-no Stress. (D) iNOS mRNA levels. (E) Arg-1 mRNA levels: * p < 0.01 for PBS-Stress vs. PBS-no
Stress. (F) MnSOD mRNA level: $ p < 0.05 for GAS-Stress vs. PBS-Stress; * p < 0.05 for GAS-Stress
vs. GAS-no Stress. (G) CD11b mRNA levels: $ p < 0.05 for GAS-Stress vs. PBS-Stress; * p < 0.05 for
GAS-Stress vs. GAS-no Stress. Cohen’s d measures are reported in Table S1A.
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from treatment endings. Expression of each gene is presented as fold change over the expression 
measured in the hippocampus of control mice (PBS-no Stress), taken as 1. The relative 
expression level of each mRNA was calculated using the 2-ΔΔCt method, normalized to 
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Figure 5. mRNA relative levels of inflammatory and oxidative stress-related markers in the
hippocampus of GAS-Stress mice and relative controls. RT-PCR analysis was performed with
mRNAs extracted from hippocampus of control mice (PBS-no Stress), Group-A beta-haemolytic
streptococcus exposed mice (GAS-no Stress), psychosocially stressed mice (PBS-Stress) and mice
exposed to haemolytic streptococcus and psychosocially stressed (GAS-Stress), at two weeks from
treatment endings. Expression of each gene is presented as fold change over the expression measured
in the hippocampus of control mice (PBS-no Stress), taken as 1. The relative expression level of each
mRNA was calculated using the 2-∆∆Ct method, normalized to hypoxanthine guanine phosphoribosyl
transferase (HPRT), as detailed in the Materials and Methods section. Data are mean ± SEM, n = 4–6 per
group. (A) IL-1β mRNA levels: $ p < 0.01 for GAS- Stress vs. PBS-Stress; * p < 0.05 for GAS-Stress vs.
GAS-no Stress and for PBS-Stress vs. PBS-no Stress. (B) TNF-α mRNA levels: $ p < 0.05 for GAS-Stress
vs. PBS-Stress; * p < 0.05 for PBS-Stress vs. PBS-no Stress. (C) IL-10 mRNA levels: $ p < 0.05 for
GAS-Stress vs. PBS-Stress; * p < 0.05 for PBS-Stress vs. PBS-no Stress. (D) iNOS mRNA level: $ p < 0.01
for GAS-Stress vs. PBS-Stress; * p < 0.01 for GAS-Stress vs. GAS-no Stress and p < 0.05 for PBS-Stress vs.
PBS-no Stress. (E) Arg-1 mRNA levels. (F) MnSOD mRNA level: $ p < 0.05 for PBS vs. GAS. (G) CD11b
mRNA levels: * p < 0.01 for PBS-Stress vs. PBS-no Stress and vs. GAS-Stress. Cohen’s d measures are
reported in Table S1A.
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In the absence of a main effect of GAS on MnSOD mRNA levels (Figure 4F) ANOVA indicated
that the Stress group as a whole was higher than control (F(1,13) = 5.692, p = 0.0329). Further, a
significant GAS by Stress interaction (F(1,13) = 5.411, p = 0.0368) revealed that the upregulation of
mRNA transcripts was specific to the GAS-Stress group.

No main effect of GAS on CD11b (Figure 4G) mRNA levels was found. ANOVA yielded an effect
of Stress as a whole (F(1,17) = 7.770, p = 0.0126), and a GAS by Stress interaction (F(1,17) = 2.727,
p = 0.117); Tukey post hoc indicated that the upregulation of mRNA transcripts due to Stress was again
specific to GAS-Stress mice.

To summarize, two weeks after the last GAS injection, among the transcripts analysed in the
hypothalamus, only IL-1β transcripts were reliably modified by GAS inoculation per se. Chronic
psychosocial Stress per se upregulated both typical pro-inflammatory (IL-1β and TNF-α) and
anti-inflammatory genes (IL-10 and Arg-1) while leaving unaltered the expression of the pro- and
anti-oxidant enzymes iNOS and MnSOD and the phagocytic marker CD11b. When mice, previously
inoculated with GAS, were faced with stress adverse experience, also MnSOD and CD11b resulted
up-regulated. In contrast, TNF-α and IL-10 were down-regulated compared to Stress alone, suggesting
the activation of the oxidative defense system in the combined condition, and a more pronounced or
longer lasting inflammatory macrophage/microglial activation.

Noteworthy, in the hippocampus (Figure 5), GAS and Stress elicited a differential regulation of
these inflammatory genes compared to the hypothalamus. Indeed, repeated GAS inoculation alone
did not significantly or reliably alter the expression levels of the genes analysed (panels A–G). This
suggests that, at this time point, the inflammatory reaction to the GAS stimulus was already subsided
in this region, at least in term of the mRNA regulation of the panel of genes assayed.

Unlike GAS per se, Stress alone significantly reduced IL-1β, TNF-α, IL-10, iNOS, and CD11b
mRNA levels (Figure 5, panels A–D, and G respectively), as revealed by post hoc analyses (see the
Figure legend).

Interestingly, in the absence of significant GAS-related changes per se, the combination of GAS
and Stress reverted the Stress-induced down-regulatory effect, indicating a relevant interaction of
the two treatments. Indeed, GAS-Stress mice showed comparable TNF-α, IL-10, and CD11b levels
than PBS-no Stress subjects, and higher IL-1β and iNOS levels (GAS by Stress interaction for TNF-α:
F(1,19) = 9.695, p = 0.0057; for IL-10: F(1,16) = 14.502, p = 0.0015; for IL-1β: F(1,20) = 16.754, p = 0.0006;
for iNOS: F(1,20) = 24.628, p < 0.0001; for CD11b: F(1,19) = 16.789, p = 0.0006).

Unlike the other genes analyzed, Arg-1 mRNA levels (Figure 5E) were unaffected, irrespective of
both treatments and their combination.

Considering MnSOD expression (Figure 5F), ANOVA yielded a significant effect for GAS exposure
(F(1,15) = 9.999, p = 0.006), with GAS group as a whole being higher than controls (for post hoc, see
figure legend). Stress per se or its combination with previous GAS inoculation, did not affect the profile.

As a whole, these data suggest that Psychosocial Stress mostly induced a down-regulated basal
immune profile at the hippocampal level, while the combination with GAS exposure was associated
with an increased, longer-lasting, pro-inflammatory oxidative condition in the hippocampus.

3.5. Psychosocial Stress Affects Mitochondrial OXPHOS Machinery and Reduces Energy Status in the Brain of
GAS Immunized Mice

We first examined whether GAS and Stress treatments, separately or in interaction, could affect the
MRC complex activity in mice brain mitochondria (Figure 6). Measurements of MRC complex I-IV as
well as ATP synthase (complex V) activities showed no significant changes in all MRC activities in both
PBS-Stress and GAS-no Stress treated mice, respect to control (PBS-no Stress) group. Interestingly, GAS
treatment in mice exposed to psychosocial stress (GAS-Stress group) resulted in a significant reduction
in the activity of complex IV and V compared to control mice (F(1,12) = 16.12, p = 0.002; F(1,12) = 95.28,
p = 0.001, respectively). Importantly, chronic stress plus GAS treatments did not alter the mitochondrial
content in the brain tissue being 4.70 ± 0.6 and 4.66 ± 0.3 mg the amount of mitochondrial proteins
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obtained respectively from untreated and GAS-Stress groups (p > 0.5), from brain hemisphere tissues
with comparable wet weights (0.24 ± 0.1 g).
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Figure 6. Mitochondrial respiratory chain (MRC) complex activities in brain of GAS-Stress mice and
relative controls. The activities of the MRC (A) complex I, (B) complex II, (C) complex III, (D) complex IV
and (E) complex V (ATP synthase) were measured spectrophotometrically in mitochondrial membrane
enriched fractions from cryopreserved brain hemispheres of wt littermates control mice (PBS-no Stress),
Group-A beta-haemolytic streptococcus exposed mice (GAS-no Stress), psychosocially stressed mice
(PBS-Stress) and psychosocially stressed mice exposed to haemolytic streptococcus (GAS-Stress), at two
weeks from treatment endings. Complex activities are expressed as nmol/min ×mg protein. Data are
mean rates ± SD obtained from three independent experiments. For MRC complex IV and V activities
$ p < 0.05 for PBS-Stress vs. GAS-Stress; ** p < 0.01 for GAS no-Stress vs. GAS-Stress. Cohen’s d
measures are reported in Table S1B.

In order to investigate whether the MRC defective complex activities found in GAS-Stress mice
group was accompanied by an impairment of bioenergetic efficiency, the mitochondrial ATP synthesis
was measured following the relative contribution of the individual MRC complexes of the OXPHOS
apparatus in the mitochondrial ATP production i.e. by adding the respiratory substrates of either
complex I (GLU/MAL), complex II (SUCC) or complex IV (ASC/TMPD), as energy sources (Figure 7).
Consistently with the data obtained from MRC activity measurements, GAS-Stress mice showed a
significant reduction in mitochondrial ATP synthesis only when using as energy source the respiratory
substrates of complex IV (Figure 7C); after post hoc comparison on GAS-Stress vs. PBS-no Stress mice:
F(1,12) = 4.60, p = 0.04). No significant differences among all mice groups were found in the complex
I- and II-dependent rate of mitochondrial ATP production from brain mitochondria. These results
suggest that specific components of the respiratory apparatus resulted selectively affected by GAS in
psychosocial stressed mice and contributed to the shortage in mitochondrial ATP production.



J. Clin. Med. 2019, 8, 1514 16 of 26

J. Clin. Med. 2019, 8, 1514 17 of 28 

 

(D) complex IV and (E) complex V (ATP synthase) were measured spectrophotometrically in 
mitochondrial membrane enriched fractions from cryopreserved brain hemispheres of wt 
littermates control mice (PBS-no Stress), Group-A beta-haemolytic streptococcus exposed mice 
(GAS-no Stress), psychosocially stressed mice (PBS-Stress) and psychosocially stressed mice 
exposed to haemolytic streptococcus (GAS-Stress), at two weeks from treatment endings. 
Complex activities are expressed as nmol/min × mg protein. Data are mean rates ± SD obtained 
from three independent experiments. For MRC complex IV and V activities $ p < 0.05 for PBS-
Stress vs GAS-Stress; ** p < 0.01 for GAS no-Stress vs GAS-Stress. Cohen’s d measures are 
reported in Table S1B. 

In order to investigate whether the MRC defective complex activities found in GAS-Stress 
mice group was accompanied by an impairment of bioenergetic efficiency, the mitochondrial 
ATP synthesis was measured following the relative contribution of the individual MRC 
complexes of the OXPHOS apparatus in the mitochondrial ATP production i.e. by adding the 
respiratory substrates of either complex I (GLU/MAL), complex II (SUCC) or complex IV 
(ASC/TMPD), as energy sources (Figure 7). Consistently with the data obtained from MRC 
activity measurements, GAS-Stress mice showed a significant reduction in mitochondrial ATP 
synthesis only when using as energy source the respiratory substrates of complex IV (Figure 
7C); after post hoc comparison on GAS-Stress vs PBS-no Stress mice: F(1,12) = 4.60, p = 0.04). No 
significant differences among all mice groups were found in the complex I- and II-dependent 
rate of mitochondrial ATP production from brain mitochondria. These results suggest that 
specific components of the respiratory apparatus resulted selectively affected by GAS in 
psychosocial stressed mice and contributed to the shortage in mitochondrial ATP production.  

Interestingly, the levels of ATP assayed in the brain of all four groups were strongly 
lowered in GAS-Stress group as compared to the other groups (Figure 7D, F(1,16) = 18.36, p = 
0.001), thus suggesting that alterations in mitochondrial ATP production by GAS in 
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Figure 7. Mitochondrial ATP production and ATP level in the brain of GAS-Stress mice and relative
controls. The rate of mitochondrial ATP production was measured in mitochondria isolated from
cryopreserved brain hemispheres in the presence of the respiratory substrates of (A) complex I glutamate
plus malate (GLU/MAL), (B) complex II succinate (SUCC) plus rotenone or (C) complex IV ascorbate
plus TMPD (ASC/TMPD). Values are mean rates ± SD obtained from three independent experiments
and expressed as nmol/min ×mg protein. Values are mean rates ± SD obtained from three independent
experiments and expressed as nmol/min ×mg protein. (D) The ATP level was measured as described
in Material and Methods. Values are mean rates ± SD obtained from three independent experiments
and expressed as nmol/mg protein. For the panels C and D $ p < 0.05 for PBS-Stress vs. GAS-Stress.
** p < 0.01 for GAS no-Stress vs. GAS-Stress. Cohen’s d measures are reported in Table S1C.

Interestingly, the levels of ATP assayed in the brain of all four groups were strongly lowered
in GAS-Stress group as compared to the other groups (Figure 7D, F(1,16) = 18.36, p = 0.001), thus
suggesting that alterations in mitochondrial ATP production by GAS in psychosocial stress conditions
affected the whole brain energy status.

4. Discussion

The validated translational mouse model of PANDAS, adopted in the present study, has
been extensively characterized from a behavioural and biochemical point of view in our previous
studies [18,19]. Consistently with the hypothesis of the infectious and autoimmune pathogenesis of
PANDAS (see [71]), we reported that repeated exposures to GAS induce an antibody-mediated response
(also confirmed in the present study) and behavioural alterations homologous to clinical symptoms
observed in PANDAS (impaired sensorimotor gating, and abnormal repetitive and perseverative
behaviours). The behavioural phenotypes exhibited by GAS mice represent the preclinical analogue
of core clinical symptoms observed in PANDAS and obsessive-compulsive syndrome [11,72,73], and
are useful for studying their neurobiological basis. For example, increased behavioural rigidity,
reflected in impairments in spontaneous alternations, could be due to alterations in forebrain structures
(prefrontal cortex and dorsal striatum) [74] and imbalances in dopaminergic [75] and serotonergic [76]
neurochemical systems.
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We previously reported that the behavioural changes observed in GAS mice were associated
with immune-mediated brain alterations, as indicated by the presence of inflammatory infiltrates
and activated microglia at the level of the rostral diencephalon (see [19,71] for a detailed discussion).
In the same rodent model, we observed that neonatal corticosterone administration contrasted both
behavioural and immunohistochemical alterations induced by later GAS exposure. These compensatory
effects co-occurred with persistent modifications in HPA activity and remarkable plasma increases
of several cytokines and chemokines, supporting the view that the HPA axis may contribute to the
regulation of the immune responses involved in the pathological sequelae of PANDAS and ultimately
modulate the severity of the PANDAS-related phenotype.

On this basis, herein, we further characterized the sequelae of repeated exposures to a GAS
homogenate during development (between late infancy and young adulthood) on behaviour,
neuroinflammatory and brain oxidative stress responses, and mitochondrial functional aspects later at
adulthood, and addressed the modulatory effects of chronic psychosocial stress on the same parameters.

With the aim of a translational approach, and to model a chronic psychosocial stress condition [55,
56,69], GAS mice and their controls were exposed to a gradient of territorial aggression by resident male
mice. Specifically, compared to PBS-injected control mice, during the first active social confrontation,
GAS mice were the recipients of consistently higher levels of aggressive behavior (in terms of Attacks
received). GAS mice also showed a characteristic behavioural repertoire, consisting of a shortened
latency to and an increased frequency of defensive upright postures, and time spent in immobility.
The observed behavioral profile of chronic stress condition is consistent with recent literature on this
translational model of adverse emotional experience [70], and on the reported interaction of chronic
stress with central immune dysregulation [77]. We believe that this profile of increased aggression
received by GAS mice during the first confrontation may relate to the fact that the homogenate injection
resulted in an overt inflammatory profile. The latter may have signalled a state of vulnerability to the
resident mouse which, in turn, may have increased its degree of aggression. Whilst this aspect is worth
additional investigation, we note that the differential attacks received by Stress and GAS mice during
the first day have unlikely extended to the following days of stress exposure. This tenet stems from the
fact that, after the first day, during the following days, direct attacks were physically prevented by
the experimenter, which interrupted the session upon the first occurrence of aggressive interaction.
Ultimately, although future studies are needed to clarify this aspect, we suggest that the increased
aggression received by GAS mice on day one may be due to a short-term effect of GAS homogenate on
individual phenotype, but that – in the light of the experimental paradigm adopted—such differential
profile is unlikely to explain the observed findings.

Consistently with our previous histochemical observations, suggestive of GAS-induced central
immune activation, here we found increased hypothalamic mRNA levels of the pro-inflammatory
cytokine IL-1β in GAS mice, analysed two weeks after the last GAS inoculation, revealing a long-lasting
central inflammatory effect of peripheral immunization. However, the other inflammatory- or oxidative
stress-related genes analysed (i.e. TNF-α, IL-10, iNOS, Arg-1, MnSOD, CD11b) were not altered
compared to PBS-injected control subjects.

Interestingly, at the hippocampal level, the expression of IL-1β was not reliably modified by GAS
treatment per se, as well as that of TNF-α, iNOS, and MnSOD, while the immunomodulatory cytokine
IL-10 and the macrophage/microglial phagocytic marker CD11b showed a tendency to decrease
compared to PBS-injected control mice.

It is worth noting that, as the above mRNA expression analyses were conducted two weeks
after the last GAS inoculation, our data depict the long-lasting alteration of neuroinflammatory state
consequent to repeated GAS challenges rather than the acute alteration of the genes analysed. It is well
known that brain immune cells (mainly microglia and astrocytes) undergo a profound rearrangement
of their functions following chronic stimulation, and acute and chronic preconditioning regimens
differentially affect their responsiveness to a later inflammatory challenge, for the onset of distinct
mechanisms of molecular memory ([78,79] and refs therein). Therefore, the mRNA data of inflammatory
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markers reflect brain immune cell adaptation to a chronic stimulation. Similar considerations apply to
the analyses of inflammation-related transcripts in subjects exposed to Psychosocial Stress, two weeks
after treatment termination.

Also in this case, and in line with previous experimental studies on Psychosocial Stress effects [77],
we observed a region-specific modulation of central cytokine expression. The direction of mRNA
regulation by Psychosocial Stress was however different from what found for GAS exposure, as it was
characterized by a prominent inflammatory response in the hypothalamus, and an opposite profile in
the hippocampus. Specifically, compared to PBS-injected control mice, while Stress upregulated the
mRNA levels of the inflammatory genes IL-1β, TNF-α, IL-10, Arg-1, and marginally modulated iNOS
and CD11b mRNAs in the hypothalamus, it downregulated the same genes (with the exception of
Arg-1) in the hippocampus.

Besides their role in neuroinflammatory processes, cytokines typically participate in brain
development and plasticity, by translating environmental inputs into molecular signals [80]. An
imbalance between pro-inflammatory and anti-inflammatory cytokines can lead to long-lasting
changes in brain anatomy and function, and therefore long-term impairments in mood, cognition, and
behavior [81]. We did not analyze possible changes in brain anatomy in the GAS mouse model, but
the neuroimmune and behavioural alterations found in our study further support the link between
inflammatory gene regulation and behaviour.

Obvious limitations of mRNA analysis on bulk hippocampus and hypothalamus include the
possible dilution of signals confined to specific sub-regions important for immune and stress responses,
as well as the exclusion of additional levels of gene expression regulation; nonetheless, our data clearly
indicate that GAS peripheral infection and Stress have long-term and region-specific consequences on
brain immune homeostasis.

Region-specific patterns of up-regulation of distinct cytokines and differences in the extent
and time-course of activation in response to peripheral and central stressors have been reported in
different experimental models, albeit mechanisms conferring specificity of action remain to be fully
elucidated. Among the different factors accounting for these differences, neutrophil infiltration rate,
microglia/astrocyte density, blood brain barrier permeability, and relative densities of mineralocorticoid
and glucocorticoid receptors may represent valid targets [82–84].

Although the identification of possible mechanisms is far beyond the scope of the present
experimental investigation, the finding that GAS and chronic psychosocial Stress independently
upregulated GR expression at the hippocampal but not hypothalamic level suggests that these changes
might be involved in the different sensitivity of the two brain regions to HPA-related regulatory
mechanisms of inflammation. This is consistent with other reports from different chronic stress
models [85,86].

Furthermore, while both repeated GAS exposure and Psychosocial Stress exerted independent
effects, the main translational finding of the present study resides in the fact that the latter exacerbated
the effects of the former. In accordance with experimental data indicating that variations in circulating
corticosteroids may influence autoimmune phenomena [87,88], we observed that chronic psychosocial
stress, which exerted persistent effects on HPA axis activity (revealed by changes in hippocampal
GR expression and reduced peripheral corticosterone concentrations), exacerbated the behavioural,
immune and mitochondrial effects of GAS administration. The observation that the combination
of GAS and Stress halted the upregulation of GR in the hippocampus, together with the reduced
corticosterone concentrations found in this experimental group, suggest a persistent blunted HPA
activity in these mice at the time point of our analyses.

Classical studies conducted by Levine and his group showed that psychological and physiological
stress suppresses [87] and adrenalectomy potentiates [89] vulnerability to experimental autoimmune
encephalomyelitis. Ultimately, it is tenable that, depending on the directionality of the long-term
consequences exerted by experimental manipulations on HPA activity (increase or decrease in
circulating concentrations of corticosteroids and regulation of their receptors), autoimmune responses
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may be either potentiated or contrasted. Complex feedforward and feedback control mechanisms of
gene expression between glucocorticoids, activating GRs, and cytokines (such as IL-1β and TNF-α)
have been described in different experimental models [90,91] providing an explanation for the not
univocal role of glucocorticoids on inflammatory gene expression regulation. Further investigations
will be needed to address these issues in our GAS-Stress model and to dissect the interactions that can
take place in the two separate or combined GAS and Stress conditions.

Interestingly, the combination of GAS exposures with chronic stress-induced a significant
upregulation of the hippocampal levels of IL-1β, TNF-α, and the inducible enzyme iNOS compared to
PBS-injected control subjects, which was not achieved by the single treatments. GAS-Stress treatment
also elicited a further upregulation of CD11b mRNA compared to Stress (in the hippocampus and
hypothalamus) or GAS alone (in the hypothalamus), suggesting an increased macrophage/microglia
activation in these areas.

Overall, these findings are in line with growing evidence indicating that cross-sensitization can
occur between immune-induced and stress-induced pro-inflammatory cytokines, resulting in the
potentiation of CNS cytokine responses [37–40]. The phenomenon of cross-sensitization suggests that a
shared neural substrate, mainly identified by others in the primary immune effector cell in the nervous
system i.e. microglia, may be primed by either stress or immune activation [37,38,40,92]. Whatever the
underlying mechanisms may be, cross-sensitization provides a mechanism explaining how stress can
exacerbate inflammatory disease processes and vice versa.

In consideration of the increasingly recognized modulatory action of cytokines and nitric oxide
on mechanisms of neuronal and synaptic plasticity, our data support the view that peripheral
inflammation and stress converge on pathways culminating in disruption of brain homeostatic
functions and neuroinflammation. In addition, by the generation of nitrogen reactive species, iNOS can
contribute to oxidative stress as shown in different tissues and experimental models [93,94], including
psychogenic stress treatments [95,96].

Consistently, we observed that GAS-Stress treatment promoted the expression of MnSOD—the
primary antioxidant enzyme in mitochondria—at hippocampal and hypothalamic levels; these data
indicate the induction of the antioxidant defense system. MnSOD, a key component of the enzymatic
antioxidant system, is upregulated by various mediators of oxidative stress, including reactive oxygen
and nitrogen species and inflammatory cytokines, such as IL-1β and TNF-α [49], and its abnormalities
have been documented in several clinical cases and experimental neurodegenerative processes [97].

Superoxide dismutase function is activated in the mitochondria to detoxify free radical superoxide
anion with formation of less reactive peroxide anion (H2O2) [49]. However, conditions of chronic
increase of MnSOD activity could result in H2O2 accumulation, thereby causing mitochondrial
alterations. In particular, the MRC complex IV-cytochrome c oxidase is a target of hydrogen peroxide
showing various sites of oxidative modifications, which leads to a decline in its catalytic activity [98].

Consistently with a condition of oxidative stress in the GAS-Stress mouse model, our data
demonstrate that the combined exposure to GAS and stress caused a reduction of the complex IV
activity and decreased complex IV-dependent ATP production. These deficits, together with a reduced
ATP synthase activity, impair mitochondrial bioenergetics resulting in a deficit of brain ATP content.
The defective whole brain energy status and activation of MnSOD were not elicited by the single
treatments, suggesting for the first time a direct link between inflammation, mitochondrial bioenergetic
deficiency and ROS production in the combined infection/stress condition.

This is, to the best of our knowledge, the first report suggesting a clear link between inflammation
status and mitochondrial dysfunction in infectious GAS condition exacerbated by psychosocial stress.

Mitochondrial dysfunction is emerging as a pathological mechanism underlying various
inflammatory and autoimmune diseases, which become worse when accompanied by systemic
inflammation and oxidative stress [99]. Accumulating clinical and preclinical evidence indicate that
mitochondria are key players in neuroinflammatory and neurodegenerative diseases, as well as a critical
intersection point connecting early-life stress, brain programming and mental health [100–102]. There
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is growing evidence for the involvement of both mitochondrial ROS and mitochondrial metabolism in
inflammatory microglia/macrophage activation [47,103,104]. Moreover, it has been recently shown that
alterations of mitochondrial activity in microglia hamper the process of alternative activation, suggesting
that in severe clinical neurological conditions characterized by mitochondrial dysfunctions, microglia
may not be able to induce a full anti-inflammatory response, exacerbating neuroinflammation [48].

Our results in the preclinical model of PANDAS substantiate the translational hypothesis that
Streptococcus infection could induce an inflammatory status in PANDS patients, exacerbated by
stress conditions, with the secretion of inflammatory cytokines, which likely induce increase of ROS
production and mitochondrial dysfunction, resulting in brain energy deficit, which in turn intensify the
clinical symptoms severity. Previous clinical studies have demonstrated that inflammatory cytokines
such as interleukin-17 disable the main function of mitochondria, the energy production by respiration,
and activate autophagy in an autoimmune disease such as rheumatoid arthritis [51]. Indeed, the
critical role of pro-inflammatory cytokines on mitochondrial stress signalling and proteostasis is well
known [105,106]. Of note, a direct link between stress-derived corticosteroids and mitochondrial
function has been demonstrated in recent studies, revealing that activated GRs, besides their genomic
action, can translocate to the mitochondrial compartment and regulate mitochondrial mRNA expression,
including complex 1 subunits and ATP-synthase 6 expression [107,108]. The possible regulatory function
of GRs on mitochondrial activities in the GAS-Stress model will deserve further investigations.

5. Conclusions

Our results demonstrate that chronic psychosocial stress, which per se altered the expression
of neuroinflammatory markers in the hippocampal and hypothalamic regions, exacerbated the
neuroinflammatory alterations induced by experimental GAS exposures in the same areas. In addition,
the combined GAS/Stress treatment elicited mitochondrial dysfunctions, brain energy deficit and
upregulation of manganese superoxide dismutase (MnSOD), a mitochondrial enzyme playing a major
role in modulation of mitochondrial oxidative stress.

Our findings demonstrate the negative impact of social stress on PANDAS symptomatology and
provide a functional explanation to epidemiological and clinical data as well as a biological platform to
investigate the impact of psychosocial stress on immune-related clinical neurological diseases.

In this study, we offered a proof of principle and a translational hypothesis that
experimentally-induced alterations of HPA functionality may calibrate the individual response and
vulnerability to autoimmune phenomena. Furthermore, we identified a potential translational
link between environmental stress experience and the underlying mechanisms (promotion of
immunomodulatory processes) capable of promoting/exacerbating the progression of the pathological
phenotype. We propose that these data may inform future clinical strategies in the treatment
of PANDAS.
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