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Abstract: Metabolism-associated fatty liver disease (MAFLD) is one of the most common causes of
liver disease; however, the underlying processes remain unknown. This study aimed to investigate the
changes of free fatty acids (FFA) on the expression of genes related to the AMP-activated protein kinase
(AMPK) signaling pathway in the primary hepatocytes of laying hens. The primary hepatocytes
of laying hens were treated with FFA (containing a 2:1 ratio of oleic and palmitic acids) for 24 h.
FFA significantly increased lipid droplet accumulation, decreased glycogen synthesis, increased the
levels of triglycerides (TG), total cholesterol (TC), reactive oxygen species (ROS), malondialdehyde
(MDA), and glucose content in the supernatant (GLU) in the primary hepatocytes of laying hens, and
decreased the levels of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD), as well
as mitochondrial membrane potential (MMP). The results of the PCR array combined with Western
blotting experiments showed that the activity of AMPK was inhibited. Inhibition of AMPK signaling
pathway decreases the expression of genes involved in fatty acid oxidation, increases the expression
of genes involved in lipid synthesis, decreases the expression of genes involved in glycogen synthesis,
increases the expression of genes involved in glycolysis, increases the expression of genes involved in
oxidative stress, and increases the expression of genes involved in cell proliferation and apoptosis.
Taken together, our results suggest that FFA can affect the homeostasis of the AMPK signaling
pathway by altering energy metabolic homeostasis, inducing oxidative stress, and adjusting the onset
of cell proliferation and apoptosis.

Keywords: MAFLD; FFA; AMPK signaling pathway; PCR array; primary hepatocytes

1. Introduction

MAFLD, formerly known as non-alcoholic fatty liver disease (NAFLD), is a condi-
tion marked by abnormal lipid metabolism that results in liver steatosis [1,2]. MAFLD
progresses from initially benign simple steatosis to non-alcoholic steatohepatitis (NASH),
which is characterized by inflammation and ballooning degeneration. In some cases, the
disease progresses to various stages of liver fibrosis, cirrhosis, multiple types of hepatic
decompensation, and eventually to hepatocellular carcinoma [3,4]. MAFLD is an increasing
worldwide health threat that imposes a major economic cost on all countries, with a global
prevalence of roughly 25% [5]. It has been discovered that the development of MAFLD
may result in an increase in hepatic triglyceride (TGS) accumulation and an increase in
the inward flow of free fatty acids (FFAs), affecting intracellular metabolic and signaling
pathways in hepatocytes, resulting in oxidative stress, cell cycle disruption, and other
adverse effects [6,7]. Despite extensive research, no medicine for the treatment of MAFLD
has been approved. As a result, it is critical to continue finding MAFLD therapeutic targets.
Although most studies on MAFLD have used rodents as model animals, rodents rely on
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adipose tissue and the liver for lipid synthesis, whereas humans and chickens similarly
rely on the liver for more than 90% of initial lipid production [8]. Additionally, MAFLD
may arise in hens during natural aging owing to the impact of estrogen and certain dietary
variables [9]. As a consequence, chickens can serve as a great model for investigating
human diseases of lipid metabolism.

The AMP-activated protein kinase (AMPK) is a ubiquitously expressed serine/threonine-
protein kinase activated in a low cellular energy state [10,11]. Once activated, AMPK
triggers a catalytic process to produce ATP while inhibiting anabolic processes that consume
ATP to restore cellular energy homeostasis [12]. AMPK leads to the phosphorylation of
critical metabolic substrates and transcriptional regulators implicated in almost all branches
of cellular metabolism [13]. Thus, AMPK has emerged as an attractive potential candidate
for metabolic diseases such as obesity and diabetes mellitus type 2 (T2D). A growing
body of evidence has revealed that AMPK is closely associated with the development of
MAFLD [14,15].

AMPK and its signaling pathways play a crucial role in regulating cellular energy
homeostasis, mitochondrial function, and growth and metabolism [16]. AMPK can shift
metabolism to increase catabolism and decrease anabolism through metabolic substrates
and transcriptional regulators [17]. For example, AMPK regulates lipids primarily by
phosphorylating and inhibiting acetyl coenzyme A carboxylase (ACC), significantly pro-
moting lipid oxidation and inhibiting FA synthesis [18]. By increasing the peroxisome
proliferator-activated receptor-gamma coactivator 1-α (PGC-1α), mitochondrial biogenesis
is stimulated by AMPK activity, promoting oxidative metabolism [19,20]. AMPK also
inhibits anabolic pathways by phosphorylating rapamycin (mTOR) and tuberous sclerosis
complex 2 (TSC2) regulatory-associated proteins, thereby causing mTOR inactivate and
preventing phosphorylation of its substrates, which is closely related to the regulation of
the cell growth cycle [21].

Although AMPK plays a central role in regulating multiple aspects of metabolism,
our understanding of the role of AMPK in MAFLD has been primarily based on studies
conducted on a single part. The overall effect of MAFLD on AMPK and its signaling
pathway has been under-explored. Therefore, we used primary hepatocytes from laying
hens to construct a steatosis model by adding free fatty acids. The effect of steatosis on
AMPK and its signaling pathway in hepatocytes was assessed by using the PCR Array
technique, and its potential mechanism was explored. Our study may provide new insights
into the role of AMPK in MAFLD interference.

2. Materials and Methods
2.1. Cell Isolation and Treatments

The ethics committee approved all experimental procedures involving animals at
Jiangxi Agricultural University (JXAULL-2019023). According to our previous study, the
culture method of primary hepatocytes from laying hens was established [22]. Primary
hepatocytes were housed in six-well plates at an amount of 1 × 106 cells per well. After
reaching 70–80% confluency, FFA (a mixture of oleic and palmitic acids in a 2:1 ratio, c/c)
was added to the medium at a final concentration of 0 or 1 mM and incubated for 24 h to
induce steatosis in primary hepatocytes. The experiments were grouped as follows: 0 mM
FFA (CK group) and 1 mMFFA (FFA group) for 24 h, respectively. After treatment, the cells
were harvested for further analysis. These doses were chosen based on previous studies
and our preliminary results [22,23].

2.2. Oil Red O and Periodic Acid Schiff Staining

Cells were cultured on slides of 6-well plates and were rinsed three times with PBS;
4% paraformaldehyde was fixed at 4 ◦C for 15 min, and then cells were rinsed with PBS.
Oil Red O reagent (Sigma, Ronkonkoma, NY, USA) was incubated for 30 min, rinsed
three times with PBS, stained with hematoxylin for 30 s, and rinsed two times with PBS.
Periodic acid solution (Sigma, St. Louis, MO, USA) was oxidized for 5 min. After washing
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with distilled water several times, the six-well plates were covered and stained for 15 min
after adding a sufficient amount of Schiff’s staining solution, rinsed with double-distilled
water for 2 min, and then re-stained with Mayer hematoxylin staining solution for 1 min
and rinsed with double-distilled water for several times. To determine the hepatocyte
staining, the hepatocytes were observed and imaged under a light microscope (Leica,
Wetzlar, Germany).

2.3. Real-Time Cell Growth Assay

Cell growth was monitored using an iCelligence RTCA instrument (Roche Diagnostics,
Shanghai, China). In this assay, 200 µL of the walled medium was added to each well of the
E-plate, containing 10,000 cells per well. The system continuously monitors the impedance
of the cells for 72 h at the indicated time and measures the value as a ‘cell index’. Data were
collected and analyzed using RTCA software 1.2.

2.4. Measurement of Cellular Biochemical Indicators

The culture medium and cells were collected at the end of cell treatment. The cellular
lipid metabolism-related indexes (TG and TC), cellular supernatant glucose content, cellular
antioxidant enzymes, and oxidative stress indexes (SOD, T-AOC, and MDA) were examined
in strict accordance with the kit instructions (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China).

2.5. The Detection of MMP and ROS Level

After cell treatment, the cells were collected with trypsin adjusted to 1 × 106 and
centrifuged. The cells were then resuspended with DCFH-DA dye (Nanjing Jiancheng
Institute of Biological Engineering, Nanjing, China) at a final concentration of 10 µM. The
cells were incubated with DCFH-DA for 30 min at 37 ◦C, protected from light, and mixed
upside down every 5 min to bring the probe and cells into full contact. At the end of
incubation, the cells were centrifuged again at 2000 r/min for 5 min, the supernatant was
discarded, the cells were washed twice with PBS, and, finally, the cell precipitate was
resuspended with PBS while waiting for detection.

The cells were treated and collected in the same manner and MMP was determined
using the MMP kit (Beyotime Biotech, Shanghai, China). Then 1 mL of JC-1 staining
working solution (1×) was added to the prepared cell suspension and mixed thoroughly.
The mixture was then set to incubate in a cell incubator at 37 ◦C for 20 min. At the end of
incubation, the supernatant was aspirated and washed 2 times with JC-1 staining buffer.
Cell culture solution was added to resuspend and wait for observation.

Cells were measured and photographed using a flow cytometer (C6 Plus Flow Cy-
tometer, BD, Franklin Lakes, NJ, USA) and an inverted fluorescence microscope (Olympus
Optical Co., Ltd., Tokyo, Japan), respectively. Contrast areas with the same number of cells
in the pictures were selected, and the average fluorescence intensity of ROS-positive cells in
differently treated cells was analyzed using Image J (ImageJ National Institutes of Health,
Bethesda, MD, USA). Six samples were repeated for each group, and data were obtained
and statistically compared.

2.6. Acridine Orange/Ethidium Bromide (AO/EB) Staining Assessment

Cells were treated with FFA for 24 h, collected, and centrifuged. The number of
cells was adjusted to about 1 × 106 cells/mL. Before use, AO (5 µg/mL) solution and EB
(5 µg/mL) solution (Keygen Biotech, Nanjing, China) were mixed in a 1:1 ratio to form
a working solution, stained according to the instructions of the assay kit, and detected
under an inverted fluorescence microscope. The fluorescence intensity was recorded at
an excitation wavelength of 510 nm, an emission wavelength of 530 nm for AO, and an
emission wavelength of 605 nm for EB. The mean fluorescence intensity was measured
using Image J (ImageJ National Institutes of Health, Bethesda, MD, USA).
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2.7. Pathway Analysis and PCR Array

We performed an enrichment analysis of 84 genes related to the AMPK signaling
pathway using the Metascape platform (http://metascape.org, accessed on 16 December
2021). The enrichment analysis consisted of two main parts: gene ontology (GO) functional
enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrich-
ment. Functional enrichment analysis, protein-protein interaction (PPI) network, and gene
functional clustering network maps were constructed.

After treating primary hepatocytes with FFA for 24 h, total cellular RNA was extracted
with TRIzol. RNA samples were assessed quantitatively and qualitatively with an ultra-
micro UV spectrophotometer (Quawell Q3000, Thermo Fisher Scientific, Waltham, MA,
USA). Using 0.5 µg of total RNA as template, cDNA was synthesized using a reverse
transcription kit (Takara, Tokyo, Japan). According to the manufacturer’s protocol, these
cDNA products were analyzed using AMPK qPCR arrays (Wcgene Biotech, Shanghai,
China). Data were analyzed using Wcgene Biotech software. Genes with fold-changes
more than or less than 2.0 were considered biologically significant. The sequences of the
primers used in the PCR array analysis are listed in Supplemental Table S1.

2.8. Validation of PCR Array by Real-Time Quantitative PCR (RT-PCR)

The cell samples were re-assayed following the same model construction and collection
methods. We selected some differentially expressed genes in PCR arrays and validated
them using qPCR (Quant Studio7, Thermo Fisher Science, Waltham, MA, USA), following
the qPCR kit instructions (Takara, Tokyo, Japan).

2.9. Western Blot Analysis

Cells were lysed with RIPA lysis buffer (Solarbio Biotechnology Beijing, Beijing, China)
supplemented with 1 mM protease and phosphatase inhibitors. Protein concentrations were
measured using the BCA Protein Assay Kit (Solarbio Biotechnology Beijing, Beijing, China),
separated with 6–15% SDS polyacrylamide gels, and then transferred to polyvinylidene
difluoride (PVDF) membranes (Millipore, Billerica, MA, USA). The membranes were
blocked with 5% skim milk for 1–2 h at room temperature and incubated at 4 ◦C overnight
with different primary antibodies: AMPK (1:1000, Wanleibio, Shenyang, China, WL02254),
P-AMPK (Thr 172) (1:2000, Cell Signaling Technology, Danvers, MA, USA, #2531), P-ACC
(Ser79) (1:2000, Cell Signaling Technology, Danvers, MA, USA, #3661), ACC (1:2000, Cell
Signaling Technology, Danvers, MA, USA, #3662), AKT (1:1000, Abcam, Cambridge, MA,
USA), ab38449), P-AKT (Ser473) (1:1000, Wanleibio, Shenyang, China, WLP001a), Insulin
Receptor (INSR) (1:500, Wanleibio, Shenyang, China, WL02857), and GAPDH (1:2000,
Cell Signaling Technology, Danvers, MA, USA, #5174S). The washed membranes were
incubated with the corresponding secondary antibodies for 1–2 h. Finally, the signal was
detected with bio rad Chemidoc Touch imager (Bio-Rad Chemidoc Touch, Hercules, CA,
USA) using enhanced chemiluminescence kits (ECL, vazyme, Nanjing, China).

2.10. Statistical Analysis

The current results were derived from at least three independent experiments. All data
were processed with SPSS 25.0 software (Version 25; IBM, Armonk, NY, USA) and expressed
as mean ± SD. Independent samples t-test was used for statistical analysis. Finally, data
were presented using GraphPad Prism 6 software (Version 6; La Jolla, CA, USA).

The results of PCR arrays were analyzed, and differentially expressed genes (DEG)
heat maps were created using R software. A volcano map was created with the R software
packages “ggplot2” and “ggrepel” to analyze the differences between the groups. The
significant difference was declared when p < 0.05.

http://metascape.org
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3. Results
3.1. FFA Induced Lipid Accumulation and Reduced Glycogen Synthesis

Compared with the CK group, primary hepatocytes incubated with 1 mM of FFA
showed steatosis and time-dependent accumulation of intracellular lipid droplets, but the
nuclei were visible (Figure S1). Oil Red O staining showed a large number of red lipid
droplets or even aggregation of lipid droplets in the cytoplasm of the cells in the FFA group,
and the nuclei were blue (Figure 1A). In addition, FFA induced elevated TG and TC levels
in hepatocytes (Figure 1C,D).
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Figure 1. Effect of FFA treatment for 24 h on glycolipid metabolism-related indexes in primary
hepatocytes of laying hens. (A) Cells from each experimental group were stained with Oil Red
O. (B) Cells from each experimental group were stained with PAS. The scale bar represents 50 µm
(C) Cellular triglyceride levels of each experimental group. (D) A total cholesterol level of cells in
each experimental group. (E) Levels of cell supernatant glucose. Data are shown as the mean ± SD
(n = 6), with (**) p < 0.01.

Glucose uptake and glycogen synthesis are two of the most critical indicators in the
study of glucose metabolism. The PAS staining results showed that the glycogen synthesis
of the cells in the FFA group was inhibited. The number of intracellular glycogen-positive
compartments was reduced, and the staining intensity was decreased (Figure 1B). Moreover,
the ability of cells in the FFA group to consume glucose was extremely significantly reduced
compared to the CK group (p < 0.01) (Figure 1E).

3.2. FFA Induces Excessive ROS Production and Oxidative Stress

After FFA treatment of cells, ROS levels were detected at 24 h (Figure 2A–D). The
results showed that the intracellular ROS fluorescence intensity was significantly higher in
the FFA group (p < 0.01) compared with the CK group. As shown in Figure 2E–G, SOD,
T-AOC, and MDA levels were markedly higher in the FFA group compared with the CK
group (p < 0.01).
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(A–D) Effect of FFA on intracellular ROS levels (A): inverted fluorescence microscopy; (B): Average
fluorescence intensity of ROS; (C,D): flow cytometry. (E) Cellular superoxide dismutase activity
in each experimental group. (F) Cellular malondialdehyde content in each experimental group.
(G) Total antioxidant capacity of cells in each experimental group. Data are shown as the mean ± SD
(n = 6), with (**) p < 0.01.

3.3. FFA Increases Apoptosis and Inhibits Proliferation

The proliferation of hepatocytes was detected in real-time with the iCelligence system
and E-plate. As shown in Figure 3A, the cells in the FFA group grew faster than those in
the CK group for 12 h. After that, the cell growth curve clearly showed that the cells in
the FFA group grew significantly slower than the cells in the CK group. The experimental
results indicate that at a later stage of FFA treatment, cell proliferation is delayed.

Cell growth may be halted in conjunction with the activation of apoptosis. Disruption
of the mitochondrial transmembrane potential is one of the early intracellular processes
associated with the initiation of apoptosis. Apoptosis was detected with flow cytometry.
JC-1 exists in both monomeric and multimeric states. In normal cells, where the MMP is
normal, JC-1 accumulates in mitochondria as a multimer, emits red fluorescence, and is
usually detected as a PE channel. In apoptotic cells, the mitochondrial transmembrane
potential is depolarized, and JC-1 is released from the mitochondria in a reduced concen-
tration, reversing to the monomeric form, emitting green fluorescence, usually a FITC
channel when detected. Thus, the apoptotic cell population (low MMP) is reflected in the
high FITC and low PE quadrants. The results (Figure 3B,C) showed that the percentage
of apoptotic cells in the FFA group was significantly higher than that of the CK group
(p < 0.01). To further confirm the effect of FFA on apoptosis, we examined this effect with
AO/EB staining. Necrotic cells appeared red after staining, while apoptotic cells emitted
bright orange fluorescence, and green fluorescence represented normal cells. As shown in
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Figure 3D, many orange and red cells were observed in the FFA group. And the number
of bright orange cells was less in the CK group. The statistical results in Figure 3E further
demonstrated that apoptotic cells were significantly increased in the FFA group compared
with the CK group (p < 0.01).

Metabolites 2022, 12, x FOR PEER REVIEW 7 of 15 
 

 

apoptotic cells in the FFA group was significantly higher than that of the CK group (p < 
0.01). To further confirm the effect of FFA on apoptosis, we examined this effect with 
AO/EB staining. Necrotic cells appeared red after staining, while apoptotic cells emitted 
bright orange fluorescence, and green fluorescence represented normal cells. As shown in 
Figure 3D, many orange and red cells were observed in the FFA group. And the number 
of bright orange cells was less in the CK group. The statistical results in Figure 3E further 
demonstrated that apoptotic cells were significantly increased in the FFA group compared 
with the CK group (p < 0.01). 

 

 
Figure 3. Effect of FFA treatment for 24 h on proliferation and apoptosis of primary hepatocytes in 
laying hens. (A) The cell growth rate was monitored with an iCelligence real-time monitoring sys-
tem. (B) Flow cytometry analysis of MMP. (C) The plot of MMP changes. (D) AO/EB staining and 
fluorescence microscopy analysis. (E) Data are expressed as the percentage of apoptotic cells in his-
togram statistics. White arrows point to normal cells and red arrows point to apoptotic cells. Data 
are shown as the mean ± SD (n = 6), with (**) p < 0.01. 

3.4. Functional Enrichment Analysis of AMPK Signaling Pathway 
We added genes into Metascape to examine the AMPK signaling pathway and its 

possible mode of action. The analysis results are shown in Figure 4A,C, as based on the 
results of functional enrichment analysis. AMPK signaling pathways were mainly associ-
ated with biological processes such as regulation of protein kinase activity, carbohydrate 
metabolic processes, glucose homeostasis, positive regulation of cellular catabolic pro-
cesses, sterol biosynthesis processes, cellular response to fatty acids, cellular response to 
decreased oxygen level, and autophagy of mitochondrial. The PPI network was mainly 
focused on genes such as PRKAR, STRAD, SREBF1, AKT, ATG13, MTOR, and EEF2K 
(Figure 4B). These results suggested that the AMPK signaling pathway was closely related 
to glucolipid metabolism, mitochondrial homeostasis, and redox, which prompted us to 
elucidate the potential relationship between AMPK and hepatocyte steatosis comprehen-
sively. 

Figure 3. Effect of FFA treatment for 24 h on proliferation and apoptosis of primary hepatocytes
in laying hens. (A) The cell growth rate was monitored with an iCelligence real-time monitoring
system. (B) Flow cytometry analysis of MMP. (C) The plot of MMP changes. (D) AO/EB staining
and fluorescence microscopy analysis. (E) Data are expressed as the percentage of apoptotic cells in
histogram statistics. White arrows point to normal cells and red arrows point to apoptotic cells. Data
are shown as the mean ± SD (n = 6), with (**) p < 0.01.

3.4. Functional Enrichment Analysis of AMPK Signaling Pathway

We added genes into Metascape to examine the AMPK signaling pathway and its
possible mode of action. The analysis results are shown in Figure 4A,C, as based on the
results of functional enrichment analysis. AMPK signaling pathways were mainly associ-
ated with biological processes such as regulation of protein kinase activity, carbohydrate
metabolic processes, glucose homeostasis, positive regulation of cellular catabolic processes,
sterol biosynthesis processes, cellular response to fatty acids, cellular response to decreased
oxygen level, and autophagy of mitochondrial. The PPI network was mainly focused on
genes such as PRKAR, STRAD, SREBF1, AKT, ATG13, MTOR, and EEF2K (Figure 4B).
These results suggested that the AMPK signaling pathway was closely related to glucolipid
metabolism, mitochondrial homeostasis, and redox, which prompted us to elucidate the
potential relationship between AMPK and hepatocyte steatosis comprehensively.
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3.5. Effect of FFA on Genes Related to AMPK Signaling Pathway

Previously, we have shown that FFA could induce lipid accumulation and reduced
glycogen synthesis in the primary hepatocytes of laying hens and cause oxidative stress,
altering the onset of cell proliferation and apoptosis. Given that AMPK plays a crucial role in
regulating energy homeostasis and cellular metabolism, we further conducted an experimen-
tal study on the effect of adding FFA on the AMPK signaling pathway. We first detected the
changes in AMPK-related gene expression with a PCR array kit. As shown in Figure 5A,B,
several genes in the CK and FFA groups showed significant differences after modeling. In
comparison to the CK group, the expression of genes involved in lipid metabolism (fatty
acid synthase (FASN), Acetyl-CoA Carboxylase Beta (ACACB), adrenoceptor alpha 2A
(ADRA2A), adrenoceptor alpha 2C (ADRA2C), 3-Hydroxy-3-Methylglutaryl-CoA Synthase
1 (HMGCS1)), genes related to glucose metabolism (6-Phosphofructo-2-Kinase/Fructose-
2,6-Biphosphatase 3 (PFKFB3), 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase 4
(PFKFB4)), genes related to oxidative stress (Thioredoxin Interacting Protein (TXNIP), Fork-
head Box O3 (FOXO3)), and genes related to cell proliferation and apoptosis (mTOR, Tumor
Protein P53 (TP53), TSC Complex Subunit 1 (TSC1), TSC2) were significantly up-regulated,
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and the expression of genes related to lipid metabolism (CREB Regulated Transcription
Coactivator 1(CRTC1), Carnitine Palmitoyl transferase 2 (CPT2), CPT1A), genes related
to glucose metabolism (INSR, PPARG Coactivator 1 Beta (PPARGC1B)), genes related to
oxidative stress (Calcium/Calmodulin Dependent Protein Kinase 2 (CAMKK2)), and genes
related to cell proliferation and apoptosis (AKT Serine/Threonine Kinase 1 (AKT1)) were
significantly down-regulated. RT-PCR examined eight genes to validate the results of PCR
arrays. Differences between genes were represented with curve fitting, which indicated
that RT-PCR results were generally consistent with PCR array results (Figure S2).
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pathway in primary hepatocytes of laying hens. (A) Heatmap. The color indicates the gene expression
level of log10 transformation (red indicates high expression level, green indicates low expression
level). (B) Volcano plot. Gray dots indicate genes with no significant expression differences between
groups under the dashed line, and colored dots above the dashed line indicate genes with significant
expression differences between groups. Red indicates increased expression, while blue indicates
decreased expression. Data are shown as the mean ± SD (n = 6).

3.6. Translational Level Detection of the Effect of FFA on Hepatocytes

Further, to clarify the regulation effect of FFA on AMPK signaling pathway, the Western
blot was used to investigate the protein expressions of the AMPK signaling pathway. The
results were shown in Figure 6A–F compared with the CK group, the P-AMPK and P-ACC
protein levels were significantly lower in the FFA group (p < 0.01); ACC protein levels were
significantly higher (p < 0.05). AKT and P-AKT protein expression showed a decreasing
trend, but the difference was not significant (p > 0.05); conversely, INSR protein expression
showed a decreasing trend, but the difference was not significant (p > 0.05).
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4. Discussion

MAFLD is a primary cause of non-communicable disease mortality in laying hens,
resulting in significant economic losses in poultry production [24,25]. Additionally, chickens
and people have comparable lipid synthesis pathways, making chickens an ideal model
for human MAFLD research. Nevertheless, the actual cause of MAFLD in laying hens
is unknown, and no specific target genes have been identified [26]. Notably, AMPK is
regarded to be critical for maintaining cellular energy balance and may function as a key
protein in a variety of signaling pathways [12]. Previous research has demonstrated that
variations in the AMP/ATP ratio during the development of MAFLD in people have an
effect on the activation of AMPK [27]. However, the role of AMPK in MAFLD in laying hens
has not been studied in depth. In recent years, there have been numerous reports on chicken
hepatocytes as a study subject for MAFLD, and most of the sources for chicken hepatocytes
were obtained with chicks extraction [8,28]. Moreover, since the onset of MAFLD in laying
hens occurs at the peak of egg production, the use of FFA-treated primary hepatocytes from
adult laying hens is more representative of the process of MAFLD than that of chicks [29].
As such, we sought to determine the involvement of the AMPK signaling pathway in
controlling steatosis in primary hepatocytes from laying hens in order to provide some
support for the prevention and treatment of human MAFLD.

By far the most crucial stage in the progression of MAFLD is an increase in hepatic
free fatty acid concentration [30]. Additional fatty acid processing occurs in the synthesis
of TG and TC storage, which increases metabolic load and lipotoxicity in hepatocytes.
Additionally, several studies have shown that treating hepatocytes with FFAs might result
in lipid buildup and disruption of lipid metabolism [31,32]. As a consequence, we assessed
the effect of FFA-induced hepatocyte steatosis. The findings of this study demonstrated
that cells treated with free fatty acids produced more lipid droplets and had elevated levels
of TG and TC. In the majority of instances, aberrant lipid deposition is closely related to
the balance of adipogenesis and lipolysis and is regulated by lipid metabolism factors.
It has been proven that dissociating AMPK from its upstream kinase LKB1 decreases
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AMPK threonine 172 phosphorylation, resulting in lower AMPK activity, upregulation of
ACAC and FASN expression, and downregulation of CPT-1A expression in a nutrient-rich
environment [33,34]. We demonstrated in this study that FFA dramatically affected the
expression of AMPK and lipid metabolism-related factors in hepatocytes and observed that
fatty acid oxidation-related genes (CRTC1, CPT1A, and CPT2) were downregulated, whilst
lipid synthesis-related genes (FASN, ACACB, ADRA2A, ADRA2C, and HMGCS1) were
upregulated. By regulating the expression of lipid metabolism-related proteins, activating
AMPK has been shown to relieve free fatty acid-induced MAFLD in vivo and in vitro [35].
To conclude, FFA induces steatosis in hepatocytes and inhibits AMPK activity, increasing
lipid synthesis and decreasing fatty acid oxidation.

Excess FFA is regarded as a risk factor for the development of insulin resistance. In
gluconeogenesis, glucose absorption and gluconeogenesis are critical metabolic markers,
and glycogen synthesis helps maintain the dynamic balance of sugars [36]. It has been
proven that diabetic individuals’ liver glycogen levels are decreased [37,38]. The PAS
and glucose levels of the supernatant during this experiment also indicated that the FFA
group’s hepatocytes had a much lower glycogen content than the CK group. As a result,
we hypothesized that this was the outcome of insulin resistance, which results in decreased
glycogen synthesis and lower glucose consumption. It was discovered that AMPK signal-
ing pathways are critical for glucose homeostasis regulation, and that their inactivation
results in hepatic insulin resistance [39]. We detected a decrease in the expression of the
INSR/AKT/AMPK signaling cascade. Although in our study, P-AKT did not realize a
significant decrease, there was a definite downward trend, probably due to the expression
of the gene at the translational level lagging behind the transcriptional level. It indicates
that FFA promotes gluconeogenesis and inhibits gluconeogenesis, altering the balance of
glucose metabolism. Increased AMPK, INSR, and AKT phosphorylation has been shown
to enhance insulin sensitivity in the liver by inhibiting gluconeogenesis and increasing
glucose absorption [40]. Additionally, AMPK participates in glycolysis via PFKFB3. We
noticed a substantial increase in PFKFB3 and PFKFB4 mRNA expression in the FFA group
in this study. Notably, increased PFKFB3 expression and glycolysis are early indications
of activation of hepatic stellate cells and are associated with higher expression of fibrosis
markers [41]. We hypothesize that steatosis may result in hepatocyte fibrosis following
steatosis, a condition that resembles the development of MAFLD. The findings above imply
that the addition of FFA affected the expression of gluconeogenic genes in the AMPK
signaling pathway, hence decreasing hepatocyte glycogen production and disturbing the
gluconeogenic balance.

Steatosis in hepatocytes is intimately tied to oxidative stress. Disruptions in lipid
metabolism result in increased oxidation, which eventually results in elevated ROS lev-
els [42]. ROS is thought to be a critical regulator of oxidative stress, which is often generated
by an imbalance of pro-oxidants and antioxidants [43]. According to our present findings,
the addition of FFA increased the buildup of ROS and MDA and reduced the activity of
SOD and T-AOC. Numerous studies have demonstrated that cells lacking AMPK activation
produce excessive ROS and induce oxidative stress [19,44]. Subsequently, we examined the
AMPK signaling pathway following FFA addition and discovered that FFA lowered AMPK
activity while increasing FOXO3 and TXNIP expression. Metformin, an AMPK activator,
was shown to inhibit FOXO3 and reduce cellular ROS levels. TXNIP is a redox switch that
enhances oxidative stress in cells by inhibiting thioredoxin (TRX) and lowering oxidant
scavenging capacity [45]. Furthermore, FOXO3 is a transcription factor upstream of TXNIP
that induces its transcription. As a result, we reasoned that steatosis increased the genera-
tion of ROS in hepatocytes, changed the expression of the AMPK/FOXO3/TXNIP signaling
cascade, created an imbalance between pro-oxidants and antioxidants, and resulted in
oxidative stress.

The buildup of free fatty acids results in an abnormal accumulation of ROS in hepato-
cytes, and oxidative stress can induce apoptosis, which has an effect on the development
of MAFLD [34]. The addition of FFA dramatically decreased hepatocyte proliferation,
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increased MDA content, decreased cell MMP, and increased apoptotic cells. These findings
imply that FFA has an influence on hepatocyte growth and apoptosis. Numerous regulatory
variables are known to affect cell growth and death. Increased AMPK phosphorylation
has been demonstrated to prevent apoptosis in hepatocytes, and liver-specific AMPK defi-
ciency exacerbates liver damage in a mouse model of NASH [46]. Notably, the relationship
between the AMPK pathway and apoptosis and proliferation in the etiology of MAFLD
remains unknown. To this goal, we investigated the AMPK signaling pathway’s impact
on apoptosis and proliferation blockade. FFA treatment lowered AMPK activity while
increasing TP53, TSC1, TSC2, and mTOR expression in hepatocytes. Derdak et al. showed
that AMPK regulates cell proliferation and death mostly through the TP53-TSC2-mTOR
pathway [47]. TP53, an upstream gene of AMPK, detects a variety of stress signals and
initiates cell proliferation arrest, senescence, or apoptosis, and activation of TP53 can induce
TSC1/2 expression. Additionally, AMPK acts as a negative regulator of TSC1/2-mTOR
signaling, and AMPK deficiency results in mTOR overexpression [48]. Additionally, it has
been observed that activating AMPK and delaying TP53 activation with exercise can sup-
press hepatocyte proliferation and attenuate steatosis and liver damage in an obese mouse
model [49]. Steatosis, in conclusion, inhibits hepatocyte growth and induces apoptosis.

In addition to this, it is widely recognized that the use of the activators of AMPK can
improve NASH by promoting AMPK phosphorylation, reducing hepatic lipid metabolism
disorders, decreasing inflammation, and attenuating fibrosis in in vivo and in vitro tri-
als [50]. One study found that, in mice, metformin activated AMPK downstream signaling
and reduced hepatic lipid accumulation [51]. Treponelactone reduces hepatic lipid de-
position, inflammation, and fibrosis in NASH patients, and has the potential to reduce
NAFLD as a metabotropic AMPK agonist [52]. This also reminds us of the therapeutic role
of increasing AMPK activity in subsequent studies for MAFLD in laying hens.

5. Conclusions

In conclusion, FFA can induce disruption of lipid metabolism and reduction of glyco-
gen synthesis by altering the AMPK signaling pathway in primary laying hen hepatocytes,
causing oxidative stress, contributing to cell proliferation arrest, and inducing the onset
of apoptosis. This lays the foundation for further study of the inhibitory mechanism of
MAFLD on the AMPK signaling pathway.
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