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Objectives: Systemic sclerosis (SSc) is an uncommon autoimmune disease that varies
with ethnicity. Single nucleotide polymorphisms (SNPs) in the GTFSI, NFKB1, and TYK2
genes have been reported to be associated with SSc in other populations and in
individuals with various autoimmune diseases. This study aimed to investigate the
association between these SNPs and susceptibility to SSc in a Chinese Han population.

Method: A case-control study was performed in 343 patients with SSc and 694 ethnically
matched healthy controls. SNPs in GTF2I, NFKB1, and TYK2 were genotyped using a
Sequenom MassArray iPLEX system. Association analyses were performed using PLINK
v1.90 software.

Result: Our study demonstrated that the GTF2I rs117026326 T allele and the GTF2I
rs73366469 C allele were strongly associated with patients with SSc (P = 6.97E-10 and
P = 1.33E-08, respectively). Patients carrying the GTF2I rs117026326 TT genotype and
the GTF2I rs73366469 CC genotype had a strongly increased risk of SSc (P = 6.25E-09
and P = 1.67E-08, respectively), and those carrying the NFKB1 rs1599961 AA genotype
had a suggestively significantly increased risk of SSc (P = 0.014). Moreover, rs117026326
and rs73366469 were associated with SSc in different genetic models (additive model,
dominant model, and recessive model) (P < 0.05) whereas rs1599961 was associated
with SSc in the dominant genetic model but not in the addictive and recessive models
(P = 0.0026). TYK2 rs2304256 was not significantly associated with SSc in this study.

Conclusion: GTF2I rs117026326 and rs73366469 SNPs were strongly associated with
SSc in this Chinese Han population. NFKB1 rs1599961 showed a suggestive association
with SSc, and no significant association was found between TYK2 rs2304256 and SSc in
this Chinese Han population.
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INTRODUCTION

Systemic sclerosis (SSc) is an autoimmune disease characterized
by limited or diffuse skin thickening, tissue fibrosis, and the
immune response. Most patients with SSc develop skin
thickening with variable organ involvement, including
interstitial lung disease (ILD), pulmonary arterial hypertension
(PAH), and renal crisis (1). The etiology and pathogenesis of SSc
involves genetic, epigenetic, and environmental factors. Genetic
factors in particular play an important role in susceptibility to the
disease (2).

At present, there have been many genetic studies on SSc,
including genome-wide association studies (GWAS) and
Immunochip analyses (3–5). Several immune loci related to
SSc susceptibility have been identified. Although great progress
has been made in the past few years, our understanding of the
genetic background of SSc remains limited, and the number of
convincing SSc genetic markers only accounts for a small part of
the total genetic variance. Therefore, further genetic research is
of the utmost importance to better understand the pathogenic
process of SSc, such as performing an association analysis of
candidate single nucleotide polymorphisms (SNPs).

GTF2I is a gene located on the long arm of chromosome 7
(7q11.23) and encodes for a signal-induced transcription factor
that functions as a universal regulator of numerous cellular
processes. Many genetic studies have found that GTF2I is
associated with multiple autoimmune rheumatic diseases. A
study from six East Asian cohorts identified SNPs located at
the GTF2I region that were associated with systemic lupus
erythematosus (SLE) susceptibility (6). A study on rheumatoid
arthritis (RA) in Asia confirmed that the GTF2I region may be a
pathogenic variant and identified the largest-ever effect by
heterogeneity mapping (7). A recent study has reported that
this region was associated with susceptibility to SLE and SSc in a
Japanese population (7).

Conversely, the deregulation of nuclear factor kB (NF-kB)
can lead to multiple autoimmune disorders, including type 1
diabetes (T1D), SLE, and RA (8). NF-kB is a ubiquitous
transcription factor of the Rel proto-oncogene family. It
regulates the expression of several genes involved in
inflammation and immune response. The NF-kB family is
composed of five related proteins, including p50 or NF-kB1.
The NF-kB signaling pathway plays an important role in the
development and progress of RA both in vitro and in vivo (9). A
study found that NF-kB1-deficient mice developed more fibrosis
compared with wild-type mice (10). Moreover, NFKB1 loci have
shown a suggestive association with SSc in a Middle Eastern
population (11).

The Janus kinase family (JAK1, 2, and 3 and TYK2) has been
recognized as important regulators of inflammation and immune
processes. The kinase encoded by TYK2 can regulate the signal
transduction of a variety of pro-inflammatory cytokines,
including IL12, IL23, and type 1 interferon (IFNa). A recent
fine mapping genetic study of RA found that three TYK2 protein
coding variants are the most likely pathogenic variants that lead
to the associated signals in this region (12). Simultaneously,
functional prediction tools confirmed that the TYK2 variant can
Frontiers in Immunology | www.frontiersin.org 2
also cause damage such as SLE and inflammatory bowel disease.
Furthermore, the TYK2 variant was reported to be associated
with SSc in the European population (4).

Considering the genetic overlap of autoimmune diseases and
the association of these genes with SSc in other populations, we
hypothesized that some of the related tag SNPs of GTF2I,
NFKB1, and TYK2 may also contribute to susceptibility to SSc
in the Chinese Han population. Therefore, this study aimed to
determine whether SNPs in GTF2I, NFKB1, and TYK2 were
associated with SSc in a Chinese Han population and to explore
the correlation of these loci and SSc clinical characteristics.
METHODS

Study Populations
The SSc cohort employed in this study included 342 clinically
diagnosed patients with SSc who fulfilled the 2013 ACR/EULAR
classification criteria for SSc (13). Patients were classified with
diffuse cutaneous systemic sclerosis (dcSSc) and limited cutaneous
systemic sclerosis (lcSSc), according to the LeRoy criteria (14). Tests
for the two SSc-related specific autoantibodies anti-topoisomerase I
(ATA) and anti-centromere (ACA), which are most commonly
tested in clinical applications, were performed in accordance with
standard clinical laboratory methods. In total, 694 healthy subjects
admitted to the Peking Union Medical College Hospital Health
Examination Center for physical examination were recruited as
negative controls for this study. ILD was identified with high-
resolution computed tomography, and PAH was identified with
right heart catheterization (PAH was diagnosed as a mean
pulmonary pressure of ≥25 mmHg). All serum samples were
stored at −80°C until use. All samples were obtained from
patients recruited from the Peking Union Medical College
Hospital (PUMCH). This study was approved by the Ethics
Committee of the PUMCH, and all recruited participants
provided informed consent.

DNA Extraction and Genotyping
The genomic DNA of each patient was extracted from peripheral
blood samples using Tiangen DNA kits (Tiangen, Beijing,
China). MassArray Assay Design 4.0 software (Sequenom, San
Diego, CA, USA) was used to design the primers for the
multiplex polymerase chain reaction (PCR) and locus-specific
extension. Approximately 10–20 ng of DNA was amplified by
multiplex PCR, and the DNA was genotyped using a Sequenom
MassArray system (San Diego, CA) according to the
manufacturer’s instructions. The final product was desalted
and added to a 384-element Spectro CHIP array (Sequenom).
Allele detection was performed by matrix-assisted laser
desorption ionization-time-of-flight mass spectrometry
(MALDI-TOF MS). Mass spectrometry data and genotype
were analyzed using MassArray Typer 4.0 software.

Statistical Analysis
PLINK v1.90, SPSS Statistics v.25 (IBM), and Prism v.8
(GraphPad) were used to analyze the data. The Chi-square test
June 2021 | Volume 12 | Article 640083
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was applied to analyze Hardy–Weinberg equilibrium (HWE). If
the P value of the SNP in the healthy control group was less than
0.05, the control group deviated from HWE and would be
excluded. The associations between alleles and SSc were
assessed with a logistic regression analysis, and the associations
between genotypes and SSc were assessed with a Chi-square test.
Three logistic regression models (additive, dominant, and
recessive) and subgroup stratification analyses were assessed
with a logistic regression analysis. All regressions were
subjected to age adjustment. The odds ratio (OR) and
confidence interval (95% CI) were calculated, and P values
were statistically significant when <0.05 and were bolded in
Tables 3–5 . Finally, haplotype analysis and linkage
disequilibrium were conducted using Haploview software v4.2.
RESULTS

Clinical Characteristics of Patients With
SSc and Healthy Controls
Our study included 342 patients with SSc [mean age ± standard
deviation (SD): 48.1 ± 12.5 years; 34 males and 308 females] and
694 healthy controls (mean age ± SD: 49.4 ± 11.0 years; 60 males
and 634 females) (Table 1). Among the 342 patients with SSc, 21
had dcSSc and 153 had lcSSc (168 patients with SSc had no
classification result). In total, 219 (64.0%) patients with SSc had
ILD and 74 (21.6%) had PAH.

Allele and Genotype Frequencies in SSc
Patients and Healthy Controls
DNA from all subjects in the study was genotyped for the four
selected SNPs, and the findings are summarized in Table 2.
Frontiers in Immunology | www.frontiersin.org 3
Four SNPs in the control group fulfilled the HWE criteria
(P > 0.05). The allele and genotype frequencies in the patients
with SSc and healthy controls are presented in Table 3. The
rs117026326 and rs73366469 loci of the GTF2I gene were
strongly associated with SSc. The T allele frequency of
rs117026326 was higher in patients with SSc than in controls
(24.6% vs. 13.9%, OR: 2.22, 95% CI: 1.72–2.86, P = 6.97E-10).
The C allele frequency of rs73366469 was higher in patients with
SSc than in controls (26.8% vs. 16.6%, OR: 2.02, 95% CI: 1.58–
2.57, P = 1.33E-08). Furthermore, the genotype frequencies
differed between patients with SSc and healthy controls. The
TT genotype of rs117026326 had a significantly increased risk of
SSc compared with the TC and CC genotypes (P = 6.25E-09).
The CC genotype of rs73366469 had a significantly increased risk
of SSc compared with the TC and TT genotypes between patients
with SSc and healthy controls (P = 1.67E-08). Additionally,
despite the lack of significant differences in the allele frequency
in rs1599961 of the NFKB1 gene, the AA genotype had a
suggestively significantly increased risk of SSc compared with
the AG and GG genotypes between patients with SSc and healthy
controls (P = 0.014). The genotype distributions of the three
significant SNPs ((A) rs117026326, (B) rs73366469, and (C)
rs1599961) in the patients with SSc and healthy controls are
summarized in Figure 1. However, we did not detect any
significant differences in the allele and genotype frequency
distributions of rs2304256 of the TYK2 gene between patients
with SSc and healthy controls (P > 0.05).

Genetic Models Determined by Logistic
Regression Analysis
Three genetic models were analyzed to explore the effect of
different genotypes on SSc (Table 4). rs117026326 was
significantly associated with SSc in the genetic addictive,
dominant, and recessive models (P = 1.62E-09, 1.23E-07, and
9.72E-06, respectively). rs73366469 was significantly associated
with SSc in the genetic addictive, dominant, and recessive models
(P = 6.93E-09, 3.26E-06, and 1.91E-06, respectively). rs1599961
was significantly associated with SSc in the genetic dominant
model (P = 0.0026) but not in the genetic addictive or recessive
models (P > 0.05), which indicates that the AA and AG
genotypes had a significantly increased risk of SSc compared
with the GG genotype between patients with SSc and healthy
controls. However, rs2304256 was not associated with SSc in any
of the three genetic models (P > 0.05).

The above data revealed that rs117026326 might be consistent
with rs73366469. A linkage disequilibrium analysis was
TABLE 1 | Clinical characteristics of patients with SSc and healthy controls.

SSc Patients Healthy Controls

Number 342 694
Mean age ± SD 48.1 ± 12.5 49.4 ± 11.0
Gender, male/female 34 /308 60/634
dcSSc, n (%) 21 (6.1%) –

lcSSc, n (%) 153 (44.7%) –

ILD, n (%) 219 (64.0%) –

PAH, n (%) 74 (21.6%) –
SSc, systemic sclerosis; ILD, interstitial lung disease; PAH, pulmonary arterial
hypertension; dcSSc, diffuse cutaneous systemic sclerosis; lcSSc, limited cutaneous
systemic sclerosis.
TABLE 2 | Characteristics of four SNPs.

Gene SNP Chromosome Position Distance to TSS** Function Allele MAF in CHB

GTF2I rs117026326 7 74711703 54,040 intron variant C>T 0.117
GTF2I rs73366469* 7 74619286 38,394 regulatory region variant T>C 0.155
NFKB1 rs1599961 4 102522412 21,083 intron variant G>A 0.388
TYK2 rs2304256 19 10364976 15,700 missense variant C>A 0.456
June 2021 |
 Volume 12 | A
*The distance between rs73366469 and GTF2IRD1 is 1 kb, whereas the distance between rs73366469 and GTF2I is 28 kb. Here, we assign rs73366469 to GTF2I. **TSS, transcription
start sites.
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performed to evaluate this potential, and the results indicated
that the two SNPs were in median linkage disequilibrium
(D’ = 0.942, r2 = 0.756).
Associations Between SNPs and
Patients With SSc With Different
Clinical Characteristics
To further investigate the association between these SNPs and
SSc susceptibility, we performed subgroup analyses (Table 5).
We compared the frequencies of SNPs in patients with SSc with
ILD with those of patients with SSc without ILD and with those
of healthy controls. We performed the same subgroup analyses
for PAH. We also compared the frequencies of SNPs in patients
with dcSSc patients with those in patients with lcSSc as well as
those in autoantibody-positive patients with those in
autoantibody-negative patients. According to our results, SSc–
ILD was associated with GTF2I rs117026326 (P = 1.34E-04) and
GTF2I rs73366469 (P = 2.22E-04). SSc-non-ILD was associated
with GTF2I rs117026326 (P = 5.74E-06), GTF2I rs73366469
Frontiers in Immunology | www.frontiersin.org 4
(P = 2.58E-05), and NFKB1 rs1599961 (P = 0.011). SSc–PAH
was associated with GTF2I rs117026326 (P = 3.54E-04) and
GTF2I rs73366469 (P = 3.10E-04). SSc–non-PAH was associated
with GTF2I rs117026326 (P = 1.46E-05) and GTF2I rs73366469
(P = 7.37E-05). No statistically significant association was found
between TYK2 rs2304256 and any SSc clinical characteristics
(P > 0.05). No statistically significant association was found
between the four SNPs and the two autoantibodies (P > 0.05).
Functional Annotations of SNPs
We annotated the epigenetic regulatory features for the fours
SNPs using Haploreg (15) and GWAS4D (16) online tools.
Supplementary Table 1 shows the results of the functional
annotations for binding motifs and epigenetic marks by
Haploreg. GWAS4D incorporates 127 tissue/cell type-specific
epigenomic data, integrates and refines transcription factor (TF)
motifs from eight public resources, uniformly processes Hi-C
data, etc. The results of annotation with GWAS4D are shown in
Supplementary Tables 2–7.
TABLE 3 | Allele and genotype frequencies in patients with SSc and controls.

Gene SNP Allele Frequency (%) Genotype Frequency (%)

Allele Case/control (%) P OR (95%CI) Genotype Case/control (%) P c2

GTF2I rs117026326 T 166/192 (24.6/13.9) 6.97E-10 2.22 (1.72-2.86) TT 23/10 (6.8/1.4) 6.25E-09 37.78
C 510/1190 (75.4/86.1) TC 120/172 (35.5/24.9)

CC 195/509 (57.7/73.7)
rs73366469 C 181/228 (26.8/16.6) 1.33E-08 2.02 (1.58-2.57) CC 26/14 (7.7/2.0) 1.67E-08 35.82

T 495/1148 (73.2/83.4) TC 129/200 (38.2/29.1)
TT 183/474 (54.1/68.9)

NFKB1 rs1599961 A 308/560 (40.8/45.3) 0.086 1.19 (0.97-1.46) AA 63/124 (18.5/18.1) 0.014 8.51
G 372/814 (59.2/54.7) AG 182/312 (53.5/45.4)

GG 95/251 (28.0/36.5)
TYK2 rs2304256 A 296/626 (45.4/43.5) 0.592 0.95 (0.77-1.56) AA 67/140 (19.7/20.3) 0.599 1.03

C 384/754 (54.6/56.5) CA 162/346 (47.7/50.1)
CC 111/204 (32.6/29.6)
June 2021 | Volume
 12 | Article 6
SSc, systemic sclerosis.
A B C

FIGURE 1 | The genotype distributions of the three significant SNPs [(A) rs117026326, (B) rs73366469, and (C) rs1599961] in the patients with SSc and healthy
controls are summarized. ***P < 0.001. *P < 0.05.
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DISCUSSION

To our knowledge, this is a candidate gene association analysis
that describes the association between functional GTF2I, NFKB1,
and TYK2 polymorphisms and SSc in a Chinese Han population.
This study demonstrated that the GTF2I polymorphisms were
strongly associated with SSc in the Chinese Han population and
that the NFKB1 polymorphism was suggestively associated with
SSc in the Chinese Han population.

GTF2I encodes general transcription factor Iii (TFII-I). It
binds to the initiator element (Inr) and E-box element in
promoters and functions as a regulator of transcription (17).
TFII-I is involved in the regulation of transcription, signal
transduction, and immune cell signaling (18). Among its
related pathways are RNA polymerase II transcription
initiation and promoter clearance and the B cell receptor
signaling pathway (KEGG). The GTF2I gene can regulate
immunoglobulin heavy chain transcription in B cells (19).
Makeyev et al. confirmed that the impaired expression of
GTF2I could contribute to the etiology of Williams syndrome
(20). Novel studies have shown that GTF2I is involved in an
array of human diseases including neurocognitive disorders and
cancer (21, 22). Our previous GWAS showed that GTF2I was the
most strongly associated gene in Chinese Han patients with
primary Sjögren’s syndrome (pSS) (23). Several association
studies of candidate genes have revealed that the GTF2I gene is
an important genetic susceptibility factor in SLE and RA (7, 24).
Furthermore, SSc, pSS, SLE, and RA are all connective tissue
diseases and share many clinical features, particularly in aspects
of immune activation (25). These diseases usually coexist in
patients in the form of overlap syndrome. Therefore, the GTF2I
Frontiers in Immunology | www.frontiersin.org 5
gene may also play an essential role in SSc. Our results indeed
confirmed that GTF2I SNPs rs117026326 and rs73366469 were
strongly associated with SSc in the Chinese Han population.
Interestingly, rs73366469 is located within conserved enhancers
and overlaps with transcription start sites (TSS) for GTF2I,
thereby demonstrating the meaningful regulation of GTF2I
(24). Additionally, rs117026326 and rs73366469 displayed
consistent allele, genotype, genetic model, and clinical
association results because of their medium linkage
disequilibrium. Therefore, the two SNPs were most likely to
have regulatory functions, which can also be verified by
functional annotation using the online tools.

We also compared SSc accompanied with ILD and SSc
accompanied without ILD and found no association between
the two factors. And there was no previous study assessing the
association between GTF2I and ILD. The significant result
identified when the two groups were compared with healthy
controls was possibly a result of the role of SSc disease itself
instead of the role of ILD or non-ILD. The same principle is also
applicable to the interpretation of the PAH results.

NFKB1 encodes a 105 kD protein that can undergo
cotranslational processing by the 26S proteasome to produce a
50 kD protein. The 50-kD protein is a DNA binding subunit of
the NF-kappa-B (NF-kB) protein complex. NF-kB is a
transcription regulator that is activated by various intra- and
extracellular stimuli such as cytokines, oxidant-free radicals, and
bacterial or viral products. The inappropriate activation of NF-kB
has been associated with a number of inflammatory diseases
whereas persistent NF-kB inhibition leads to inappropriate
immune cell development. Increased CD8+ T cell apoptosis in
SSc was reported to be associated with low levels of NF-kB (26).
TABLE 4 | Genetic models determined by logistic regression analysis.

Gene SNP Addictive Model Dominant Model Recessive Model

P OR (95%CI) P OR (95%CI) P OR (95%CI)

GTF2I rs117026326 1.62E-09 2.23 (1.72-2.89) 1.23E-07 2.25 (1.67-3.05) 9.72E-06 6.24 (2.77-14.05)
rs73366469 6.93E-09 2.11 (1.64-2.71) 3.26E-06 2.01 (1.50-2.69) 1.91E-06 5.76 (2.80-11.85)

NFKB1 rs1599961 0.089 1.19 (0.97-1.46) 0.0026 1.61 (1.18-2.20) 0.526 0.89 (0.61-1.29)
TYK2 rs2304256 0.591 0.95 (0.78-1.16) 0.292 0.85 (0.62-1.15) 0.786 1.05 7(0.74-1.50)
Jun
e 2021 | Volume 1
TABLE 5 | Associations between SNPs and patients with SSc with different clinical characteristics.

Clinical characteristics rs117026326 (GTF2I) rs73366469 (GTF2I) rs1599961 (NFKB1) rs2304256 (TYK2)

P OR P OR P OR P OR

SSc–ILD vs SSc–non-ILD 0.129 0.74 (0.50–1.09) 0.179 0.77 (0.52–1.13) 0.083 0.72 (0.50–1.04) 0.426 1.15 (0.81–1.63)
SSc–ILD vs HC 1.34E–04* 0.58 (0.44–0.77) 2.22E–04* 1.66 (1.27–2.17) 0.307 1.12 (0.90–1.38) 0.97 1.00 (0.81–1.25)
SSc–non-ILD vs HC 5.74E–06* 2.38 (1.64–3.46) 2.58E–05* 2.18 (1.52–3.14) 0.011* 1.49 (1.09–2.02) 0.388 0.87 (0.64–1.19)
SSc–PAH vs SSc–non-PAH 0.99 1.0 (0.63–1.60) 0.78 1.07 (0.67–1.70) 0.796 1.06 (0.69–1.62) 0.735 1.07 (0.71–1.61)
SSc–PAH vs HC 3.54E–04* 2.13 (1.41–3.23) 3.10E–04* 2.09 (1.40–3.12) 0.081 1.34 (0.96–1.87) 0.844 1.04 (0.74–1.46)
SSc–non-PAH vs HC 1.46E–05* 2.12 (1.51–2.99) 7.37E–05* 1.96 (1.40–2.73) 0.074 1.28 (0.98–1.67) 0.788 0.96 (0.73–1.27)
dcSSc vs lcSSc 0.601 1.23 (0.57–2.68) 0.68 1.17 (0.55–2.50) 0.448 0.77 (0.39–1.51) 0.134 0.61 (0.32–1.16)
ATA (+) vs ATA (–) 0.088 0.66 (0.40–1.07) 0.26 0.77 (048–1.22) 0.72 1.09 (0.69–1.70) 0.67 1.10 (0.72–1.67)
ACA (+) vs ACA (–) 0.55 0.83 (0.46–1.51) 0.86 0.95 (0.54–1.69) 0.77 0.92 (0.52–1.62) 0.51 0.84 (0.51–1.40)
2

SSc, systemic sclerosis; HC, healthy controls; ILD, interstitial lung disease; PAH, pulmonary arterial hypertension; ATA, anti-topoisomerase I antibody; ACA, anti-centromere antibody.
*The P value was still < 0.05 after Bonferroni correction.
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A meta-analysis suggested a possible association between NFKB1
polymorphisms and certain autoimmune and inflammatory
diseases in the Asian population but not in the Caucasian
population (27). A GWAS of SSc in Iranian and Turkish
populations identified a suggestive association between NFKB1
loci and SSc (11). However, NFKB1 polymorphisms showed no
association with RA and ankylosing spondylitis (AS) (28, 29) or
with SSc in Brazil (30), which may be due to the genetic
differences of the populations. Then, we used the Haploreg
online tool to annotated NFKB1 rs1599961. We found that
high-LD SNPs rs1585213(r2 ≥ 1), rs3774933(r2 = 0.99), and
rs4647980(r2 = 0.84) have multiple protein binding
confirmations. It is speculated that these SNPs may affect the
transcription factors such as ZNF263, CEBPB, FOXA1 and
POL24H8, and then affect the transcription of downstream genes.

In the present study, people carrying the NFKB1 rs1599961 AA
genotype had a suggestively significantly increased risk of SSc in the
Chinese Han population; moreover, rs1599961 was related to SSc in
the dominant genetic model but not in the addictive or recessive
models. This result may have occurred because the frequency of the
GG genotype was lower in patients with SSc than in healthy
controls. The distribution of rs1599961 significantly differed when
comparing patients with SSc without ILD with healthy controls.
Thus, NFKB1 rs1599961 could be a candidate locus involved in SSc,
particularly in Chinese Han patients without ILD.

TYK2 encodes a tyrosine kinase from the Janus kinase family.
This protein can bind to the intracellular domain of Th1 and Th2
cytokine receptors and conduct signal transduction through the
phosphorylation of receptor subunits. Previous studies have
found that TYK2 polymorphisms are associated with a variety
of autoimmune diseases such as RA, SLE, T1D, and multiple
sclerosis (31–34). An Immunochip study of SSc found a
suggestive association in the TYK2 region (35). Furthermore,
rs2304256 was revealed as a nonsynonymous variant (C>A)
located in TYK2 exon 8, causing the substitution of valine with
phenylalanine (c.1084 G>T, Val362Phe) (36). This substitution
thus affected the processing of pre-mRNA at exon 8. In addition,
the eQTL results showed that rs2304256 enhanced TYK2
expression in blood. In summary, TYK2 rs2304256 is not
neutral but has a potential impact on autoimmune diseases.
TYK2 rs2304256 was reported to be strongly associated with SSc
in a European population (4). However, this significant result
was not replicated in the Chinese Han SSc population. No
significant association was found between TYK2 rs2304256 and
SSc in the current Chinese Han population in any of the analyses,
which may be the result of racial differences.

In conclusion, GTF2I rs117026326 and rs73366469 were
strongly associated with SSc in this Chinese Han population.
Frontiers in Immunology | www.frontiersin.org 6
NFKB1 rs1599961 showed a suggestive association with SSc
whereas no significant association was found between TYK2
rs2304256 and SSc in this Chinese Han population.
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