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Systematic inference and comparison of
multi-scale chromatin sub-compartments
connects spatial organization to cell phenotypes

1234 12,3

Yuanlong Liu® 23, Luca Nanni , Stephanie Sungalee® 2°, Marie Zufferey%3, Daniele Tavernari ,
Marco Mina'%3, Stefano Ceri® 4, Elisa Oricchio® 2 & Giovanni Ciriello® 123

Chromatin compartmentalization reflects biological activity. However, inference of chromatin
sub-compartments and compartment domains from chromosome conformation capture (Hi-
C) experiments is limited by data resolution. As a result, these have been characterized only
in a few cell types and systematic comparisons across multiple tissues and conditions are
missing. Here, we present Calder, an algorithmic approach that enables the identification of
multi-scale sub-compartments at variable data resolution. Calder allows to infer and compare
chromatin sub-compartments and compartment domains in >100 cell lines. Our results
reveal sub-compartments enriched for poised chromatin states and undergoing spatial
repositioning during lineage differentiation and oncogenic transformation.
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ARTICLE

n interphase, the chromatin is packaged into a hierarchy of

three-dimensional (3D) structural elements (SEs) emerging

from interactions and insulation of distinct DNA regions!~3.
Hi-C technologies have allowed to quantify and computationally
model such interactions to unravel chromatin spatial
organization*-®. The formation of chromatin SEs is driven by two
major mechanisms: loop extrusion of chromatin fibers mediated
by CTCF and cohesin, and chromatin compartmentalization,
which segregates chromatin regions with different patterns of
histone acetylation and methylation”. Loop extrusion has been
associated with the formation of topologically associating
domains (TADs) and structural loops®-10, whereas chromatin
compartmentalization segregates the chromatin into spatial
compartments!>12 and compartment domains!®. At a broad
scale, chromatin segregates into two major compartments, one
preferentially localized at the core of the nucleus and exhibiting
high transcriptional activity (A compartment), and another
localized closer to the nuclear lamina and enriched for repressed
and gene-depleted chromatin (B compartment). Within each
chromosome, DNA regions belonging to a given compartment
are defined as compartment domains. Interestingly, recent
experiments based on CTCF and cohesin depletion have shown
that although often overlapping and sometime coincident, TADs
and compartment domains are in fact distinct SEs!3. Compart-
ment domains from the same compartment preferentially interact
among each other and, in Hi-C contact correlation maps, the
alternance of A and B compartment domains generates a chess-
board or “plaid” pattern reflecting enrichment or depletion of Hi-
C interactions®.

Computational inference of A and B compartments has been
performed across multiple cell types and it showed, for example,
that compartments are less conserved across cell types than
TADs” and phenotypic changes are more frequently associated
with compartment repositioning of a given genomic region than
with structural disruption of loops or TADs!4. Importantly, A
and B compartments have been shown enriched for distinct
histone modifications, which are consistent with the observed
transcriptional activity. However, chromatin activity encompasses
multiple states!®, some of which can only be captured through a
more refined subcompartmentalization®. It was previously pro-
posed that the A and B dichotomy might not be sufficient to
explain chromatin compartmentalization!®. Indeed, up to 6 sub-
compartments have been inferred by clustering inter-
chromosomal interactions using a Gaussian Hidden Markov
Model (GHMM)?10 and, recently, an intermediate compartment
was characterized using Hi-C and imaging techniques in color-
ectal tumor samples!”. Computational inference of subcompart-
ments has so far relied on interchromosomal contacts and, thus, it
has been possible only for high-resolution experiments. For
example, the GHMM approach was exclusively applied to the
GM12878 cell line (4.9 billion read pairs). Machine learning-
based imputation of Hi-C contacts has been used to enhance data
resolution and allow subcompartment inference in eight addi-
tional Hi-C experiments!8, However, as we will show, this
approach frequently fails to correctly infer subcompartments
when challenged with relatively low-resolution experiments or
when patterns of interchromosomal interactions deviate sig-
nificantly from the training dataset. As a consequence, the
identification of chromatin subcompartments and compartment
domains remains unfeasible for the vast majority of available Hi-
C datasets. Here, we propose an algorithm able to infer com-
partment domains and hierarchies of subcompartments in Hi-C
contact maps with highly variable total number of reads. By
inferring chromatin subcompartments across multiple cell types
and states, we could study repositioning of compartment domains
and its association with cell phenotypes.

Results

The Calder algorithm. We introduce an algorithmic approach
that infers a complete hierarchy of compartment domains using
exclusively intrachromosomal interactions, which are more fre-
quent than interchromosomal ones and thus alleviate the
requirements on data resolution (Fig. la). Our approach consists
of two main steps plus an optional one. First, it computes whole-
chromosome contact similarities among genomic loci (Fisher’s z-
transformed correlations) and identifies compartment domains
by segmenting each chromosome into regions having high
intraregion similarity and low inter-region similarity. Next,
compartment domains are clustered using a divisive hierarchical
clustering approach exclusively based on their interdomain con-
tacts (3D-proximity) and ignoring their contiguity along the
genome sequence (1D-proximity). Dendrograms generated for
each chromosome are internally reordered, without disrupting
the clustering structure, to match subcompartments among dif-
ferent chromosomes. Finally, a mixture log-normal distribution
model can be applied to short-range contacts within each com-
partment domain to estimate the likelihood of nested subdomains
(see Methods for an in-depth description of the algorithm). The
resulting compartment domain hierarchy describes how com-
partment domains group to progressively form subcompartments
at various scales. As such, subcompartments can be explored at
multiple levels of granularity, as each internal node of the den-
drogram can in principle be thought as a subcompartment
comprising all the domains descending from it. For analytical
purposes, compartment domains within each chromosome are
assigned a normalized rank between 0 and 1, which identifies
their position in the dendrogram (0 being the most inactive and 1
the most active compartment domain). Importantly, the position
of a compartment domain in the dendrogram can vary across cell
models since it depends exclusively on 3D-proximity with other
domains. This is in stark contrast to previous approaches infer-
ring TAD hierarchies!®-21, which invariably preserved TAD 1D-
proximity, i.e., two contiguous TADs along the genome sequence
will also be contiguous in the inferred hierarchy. We called our
approach Calder to draw a suggestive analogy between the non-
static nature of compartment domain hierarchies and the mobile
sculptures of Alexander Calder (Supplementary Fig. 1a).

Chromatin subcompartments and compartment domains.
First, we used Calder to infer chromatin compartmentalization in
seven cell lines analyzed by Hi-C at high data resolution (Sup-
plementary Data 1 and 2). Note that, in the following, we will refer
to the total number of reads of an Hi-C experiment as its data
resolution, which is related but distinct from the Hi-C map
resolution, which typically refers to the bin size of the Hi-C
contact map. At the top of the hierarchy, Calder identified A and
B compartments that were largely coincident with those deter-
mined using previous approaches>%!8 (Supplementary Fig. 1b).
Descending the hierarchy, subcompartments could be explored at
different levels of granularity (Fig. 1a) and were independent of
data normalization (Supplementary Fig. 2a). Given that chromatin
compartmentalization is expected to be associated with histone
modifications’, we determined a biologically meaningful number
of subcompartments by analyzing chromatin immunoprecipita-
tion and sequencing (ChIP-seq) data for seven histone marks. We
found that eight subcompartments were sufficient to capture
significant changes of these histone modifications in all cell lines
(Fig. 1b): 4 within the A compartment (A.1.1, A.1.2, A.2.1, A.2.2)
and 4 within the B compartment (B.1.1, B.1.2, B.2.1, B.2.2). His-
tone modifications associated with active transcription were
overall enriched in A.1.1, A.12, and A.2.1 subcompartments,
whereas the repressive chromatin mark H3K27me3 was enriched
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Fig. 1 Inference and characterization of chromatin subcompartments using Calder. a Main steps of Calder: Step 1) identifying compartment domains
from whole-chromosome contacts (top left); Step 2) deriving sequence-independent hierarchy of compartment domains (right); Step 3) finding nested
domains from short-range contacts (bottom left). b Maximum number of subcompartments among which significant differences between mean ChiP-seq
intensities of the domains were found for different histone marks (rows) and cell lines (columns). ¢ Enrichment of histone marks (rows) in each
subcompartment (columns) of IMR9O0 cell line. Log, fold-changes between the median value within a compartment and the expected median value is color
coded. Histone modification names are color coded based on the regulatory element they mark. d Enrichment of ChromHMM states (rows) in each
subcompartment (columns) for GM12878. Ratios between the distribution of compartment labels for each ChromHMM state and their expected
distribution is color coded and reported. e Representative examples of subcompartments inferred by Calder and SNIPER (colored tracks at the bottom) in
two regions of Chr.1. of the GM12878 cell line. ChIP-seq tracks for H3K27me3 (blue), H3K4me3 (green), and H3K27ac (red) are shown in these regions.
The bivalent/poised promoter (marked by both H3K4me3 and H3K27me3) of the ASAP3 gene is marked.

in the intermediate subcompartments B.1.1 and B.1.2, and the
heterochromatin mark H3K9me3 in B.2.1 and B.2.2 (Fig. 1c and
Supplementary Fig. 2b). To infer chromatin activity states from
histone modifications, we used the ChromHMM algorithm?Z and
confirmed the associations between active states (e.g., active pro-
moters and enhancers) and A.1.1-A.1.2 and between hetero-
chromatin and B.2.1-B.2.2 (Fig. 1d). Interestingly, this analysis
further highlighted the associations between intermediate sub-
compartments and poised chromatin states, with poised pro-
moters enriched in A.2.1-to-B.1.1 and H3K27me3-rich polycomb
repressed chromatin in B.1.1-to-B.2.1 (Fig. 1d). These results show
that the broad dichotomy into A and B compartments is insuffi-
cient to capture the diversity of chromatin states and their bio-
logical activity.

Next, we compared Calder 8 subcompartments with those
inferred using the few available approaches. First, we used the
adapted K-means (AKm) approach, originally used to detect
three subcompartments!®, to infer k=8 subcompartments.
However, AKm sometimes failed to call the desired number of
compartments, a behavior already observed in a previous study?3.
Correlations between Akm compartment assignments and
average histone mark intensities or mRNA expression were
consistently lower than observed for Calder subcompartments
(Supplementary Fig. 3a). Next, we compared Calder 8 subcom-
partments to the previously proposed partition into
5-6 subcompartments?: Al, A2, B1, B2, B3, and B4 (the latter
however is specifically associated with a ~11MB region of Chr. 19

in GM12878). Although the original GHMM approach was
applied only to the GM12878 Hi-C map, a Hi-C contact
imputation approach called SNIPER!8 was later proposed to
enhance data resolution in five additional Hi-C maps? (IMR90,
HMEC, K562, HUVEC, and HelLa) and infer five subcompart-
ments in these models. Subcompartments inferred by Calder and
SNIPER in these six cell lines were highly concordant
(Supplementary Fig. 3b) although those identified by Calder
exhibited a stronger association with histone modifications and
transcriptional activity than the ones identified by SNIPER
(Supplementary Fig. 3a). To test the robustness and versatility of
the two approaches, we inferred subcompartments in 38 cell lines
representing diverse conditions and with different data resolu-
tion. Here, we found that SNIPER frequently called highly
unbalanced subcompartments (Supplementary Fig. 4a): in 50% of
the cases at least one subcompartment (most often Al) accounted
for less than 1% of the genome, and in eight cases the method
could not identify all five subcompartments (Supplementary
Data 3). In these unbalanced cases, subcompartment assignments
did not correlate with transcriptional activity, further suggesting
that these did not reflect the true chromatin compartmentaliza-
tion (Supplementary Data 4). Vice versa, Calder always
called balanced subcompartments (Supplementary Fig. 4a) exhi-
biting high correlation with transcriptional activity (Supplemen-
tary Data 4). In particular, we found that SNIPER failed to
call subcompartments in cell lines where interchromosomal
contacts exhibited different frequency distributions from what
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was observed in the GM12878, which SNIPER uses as training
dataset. This was most evident in cell lines that exhibited
chromosomal translocations, which are frequent in cancer (e.g.,
see Supplementary Fig. 4b). Furthermore, by inferring subcom-
partments at high map resolution (10kb bin), Calder revealed
fine subcompartmentalization of the chromatin that could not be
captured by SNIPER (100kb bin). Representative examples
showed that a shift to intermediate subcompartments, such as
B.1.1 or A.2.2, was associated with increased H3K27me3 even in
regions smaller than 100kb, or that transitions from A.1.1 to
A.1.2 and A.2.2 was associated with decreasing H3K27ac peak
intensity (Fig. le). Overall, these results confirmed that histone
mark heterogeneity is tightly linked to chromatin subcompart-
mentalization, and Calder can robustly reveal this association
across multiple experiments and with greater detail than previous
approaches.

At the bottom level of the hierarchy, compartment domains were
clustered and ranked based on their 3D interdomain contacts and,
indeed, the distance between two domains was anticorrelated with
the mean number of interdomain interactions (Supplementary
Fig. 5a). Compartment domain ranks were highly associated with
histone mark intensities. For example, markers of active enhancers
(H3K27ac), promoters (H3K4me3), and transcribed regions
(H3K36me3) were all positively correlated with the ranks of
chromosome 1 domains in GM12878 whereas, H3K27me3 showed
significant anticorrelation (Fig. 2a). These trends were confirmed
for all chromosomes (Fig. 2b) and all cell lines used for testing
(Fig. 2¢). Whereas several TAD callers have been proposed in the
literature?4, compartment domain boundaries have been simply
inferred as genomic positions where a change of A/B compartment
or subcompartment occurs! or as positions where there is a switch
of contact propensity towards either A or B compartments?>. We
obtained compartment domain boundaries using these approaches
in the GM12878 cell line, based on available subcompartment
annotations?, On the one hand, compartment domain boundaries
inferred by Calder covered 92-93% of boundaries determined based
on these annotations and approaches (Supplementary Fig. 5b). On
the other hand, Calder inferred a much larger number of
boundaries, consistent with its ability to infer a finer chromatin
compartmentalization than other approaches. To explore the
features of boundaries identified exclusively by Calder, we
computed fold-changes of histone mark intensity between the
contiguous domains that they separated. Histone mark fold-changes
were significantly higher than expected at these boundaries
(Supplementary Fig. 5c¢), supporting that they delimited domains
within different subcompartments. To further explore the features
of compartment domain boundaries inferred by Calder, we assigned
each boundary to one of four classes based on how far apart in the
dendrogram were the domains it separated (Fig. 2d). Histone mark
fold-changes were greater when the two domains were assigned to
distinct A and B compartments (Level 1) and decreased as the
domains were assigned to more similar subcompartments,
independently of CTCF binding status (Fig. 2e). Boundaries
separating nested domains (Calder Step 3—Fig. la) exhibited the
lowest histone mark fold-changes (Fig. 2e). Interestingly, the
enrichment of CTCF and cohesin binding also decreased from
level 1 to level >3 compartment domain boundaries, but it was
greatest at nested boundaries (Supplementary Fig. 5d). These results
suggest that nested domain boundaries are not compartment
domain boundaries, but they are more likely to be associated with
structural loops or TADs.

To further assess the overlap and differences between
compartment domain boundaries inferred by Calder and TAD
boundaries inferred by other callers, we compared our results in
the GM12878 cell line with those obtained using TopDom?® and
Arrowhead?, two top performing TAD callers as evaluated in a

recent benchmarking study?. Between 50% and 70% of Calder
compartment domain boundaries were within one bin distance
(10 kb) from TAD boundaries inferred by TopDom or arrow-
head, but this percentage increased to 75-85% for nested domain
boundaries (Fig. 2f). Genome-wide, boundaries inferred exclu-
sively by one of these tools exhibited different features. Calder-
specific boundaries were associated with greater changes of
histone mark intensities than arrowhead- or TopDom-specific
boundaries (Fig. 2g). Conversely, even though all boundaries
identified by only one method were less enriched for CTCF and
cohesin binding, this trend was particularly evident for Calder-
specific boundaries (Supplementary Fig. 5e). Visual inspection of
genomic regions where Calder and TopDom identified different
boundaries further confirmed that TopDom boundaries delimited
domains exhibiting local contact enrichment consistent with loop
domains or TADs (Fig. 2h—left-side map). Conversely, Calder
boundaries were aligned with the ‘plaid’ pattern characteristic of
chromatin compartments, (Fig. 2h—right-side map). Lastly, we
analyzed independent Hi-C cohorts generated before and after
degradation of CTCF® or deletion of the cohesin loading factor
Nipbl!!. Across both comparisons, we observed a consistent loss
of nested domain boundaries, with 44% and 37% fewer nested
boundaries upon CTCF and cohesin removal, respectively
(Supplementary Fig. 5f). Interestingly, after Nipbl deletion, we
found that loss of nested boundaries was accompanied by an
increased number of compartment domain boundaries inferred
by Calder (Supplementary Fig. 5f), consistent with the fine
compartmentalization reported after cohesin depletion!!. The
different effect on compartment domain boundaries induced by
CTCF and cohesin depletion was consistent with evidence that
only cohesin loss impairs loop extrusion and lead to fine
compartmentalization’. These results demonstrate that Calder
specifically infers compartment domains, which are associated
with histone post-translational modifications and, although often
overlapping, are not coincident with TADs.

Compartment domain inference and repositioning across >100
cell lines. Consistent with the chromatin epigenetic status,
compartment domains ranks correlated with transcriptional
activity (Supplementary Fig. 6a). As transcriptional activity is
highly variable among different cell types, we wondered whether
this variability is reflected in spatial repositioning of compartment
domains. We first tested this hypothesis by comparing the posi-
tion of the domain containing the B-cell marker CD20 (gene
name MSA41) in lymphoblastoid cells (GM12878), where the
gene is highly expressed, and in lung fibroblasts (IMR90), where
the gene is silenced (Fig. 3a). Calder inferred a drastic reposi-
tioning of the CD20-containing domain between IMR90 (rank:
0.0035, B.2.2 subcompartment) and GM12878 (rank: 0.92,
A.1.1 subcompartment). Conversely, we did not observe any
repositioning for the domain containing the OSBP gene (ran-
kimroo: 0.92, rankgpiogzs: 0.98, A.1.1 subcompartment) (Fig. 3b),
which is proximal to CD20 in the genome sequence but similarly
expressed in the two cell lines (Fig. 3a). CD20 repositioning was
associated with a different enrichment of Hi-C contacts at its
locus in GM12878 and IMR90, whereas contact frequencies were
similar at the OSBP locus (Fig. 3c). Notably, previous approaches
to infer TAD hierarchies always preserved 1D-proximity, i.e.,
genome sequence contiguity, and thus cannot be used to capture
repositioning events (Supplementary Fig. 6b).

To explore chromatin subcompartments and compartment
domain repositioning across a broader and more diverse set of
conditions, we collected Hi-C data for 114 cell lines and tissue
samples (Supplementary Data 1 and 2, Supplementary Fig. 7a).
To assess the robustness of our approach to Hi-C data and map
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Fig. 2 Association between compartment domains, topologically associating domains, and histone modifications. a ChIP-seq intensity of H3K27ac,
H3K4me3, H3K36me3, and H3K27me3 for chromosome 1 compartment domains in GM12878. Each dot is a chromatin domain color coded by ChIP-seq
intensity (blue-to-red). Domains were ordered by Calder-derived domain rank. r values are Spearman’s correlation coefficients. All correlation tests return
p-values <1E-100. b, ¢) LOESS fit lines of ChIP-seq intensity of H3K27ac, H3K4me3, H3K36me3, and H3K27me3 based on domain rank, for 22
chromosomes of GM12878 (b), and for chromosome 1 of GM12878, Hela, HMEC, HUVEC, IMR90, K562 and NHEK (¢). Lines were normalized to the same
maximum value. d Compartment domain boundaries are classified (Level 1, 2, 3, >3) based on the distance in the hierarchy of the domains separated by the
boundary. e Fold-change of H3K27ac, H3K4me3, H3K36me3, and H3K27me3 ChlP-seq intensity at boundaries in GM12878, grouped by their level (from
left to right) and presence/absence of CTCF (color coded). Each panel comprises n samples per boxplot with n =1716, 2531, 2462, 2824, 2006, 2007,
2278, 1979, 850, and 1640 (from left to right). f Fraction of compartment domain boundaries inferred by Calder and inferred as TAD boundaries by
arrowhead (black bars) and TopDom (white bars). g H3K27ac fold-changes at domain boundaries exclusively inferred by arrowhead (gray left), TopDom
(gray right), and Calder (blue). Each panel comprises n samples per boxplot with n = 2296, 1411, 2339, 2054, 2383; 5860, 1003, 1597, 1351, 1551 (from left
to right). h Visual comparison of compartment domains inferred by Calder (yellow track) and TADs inferred by TopDom (white track) on a Chr. 6 genomic
region of the GM12878 cell line. The corner of the TAD identified by TopDom but not by Calder is circled. Domain tracks are overlaid to the Hi-C contact
map (left) and the matrix of correlations of observed/expected contact ratios (right), which has been previously shown to reveal chromatin compartments.
Subcompartment annotations and ChlP-seq tracks for H3K27ac (dark red), H3K4me1 (red), and H3K36me3 (orange) are shown on the left. The bounds of
the boxplots in the plot are first quartile (Q;) and third quartile (Q3). The lower and upper whiskers are computed by extending the box bounds by 1.5*/QR,
where IQR=Q3 — Q;.

resolution, we analyzed 8 cell lines using different bin sizes (10 kb
and 40kb) and five downsampled versions of the GM12878
interaction map, retaining only 50, 20, 10, 1, and 0.5% of its total
number of contacts. Overall, we clustered 127 Hi-C datasets based
on Calder subcompartment (n=8) assignments for each bin
(Supplementary Data 5). Cell lines clustered largely based on their
lineage instead of resolution (Fig. 3d-f and Supplementary
Fig. 7b), as shown by downsampled or differentially binned

contact maps of the same cell line that always clustered together
(Fig. 3c). For example, B-lymphoblastoid GM12878 contact maps
(Fig. 3f—green cluster) and cancer cell line models of B-cell
malignancies (Fig. 3f—red cluster) formed two separate but
contiguous clusters, and together with other B-lymphocytes were
characterized by the repositioning of the CD20-containing
domain to the active compartment (Supplementary Fig. 7c).
Other lineage-associated clusters included a stem-like cluster
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Fig. 3 Subcompartments and compartment domain repositioning analysis across 114 cell lines. a mRNA expression levels (RNA-seq, log-transformed
FPKM) of OSBP and CD20 (gene name: MS4AT) in the IMR9O cell line and two replicates of the GM12878. b Chromatin domain hierarchy built by Calder
for chromosome 11 in IMR90 (bottom) and GM12878 (top). TADs containing OSBP and CD20 and the 8 subcompartments are indicated in the hierarchy.
The CD20 domain is repositioned from B.2.2 to A.1.1 compartment (arrow). ¢ Observed/expected (O/E) contact map of GM12878 (lower triangle) and
IMR9OO (upper triangle) at Chr.11:58,700-61,000 kb. The OSBP and MS4AT gene loci are indicated in red. d-f Clustering of 127 Hi-C maps based on the
subcompartment annotation of each bin (8-compartment model). Hi-C maps are annotated with their contact density (histogram), bin size for maps
analyzed at different bin sizes, and based on whether they were derived from a healthy or cancerous tissue (black boxes) (e). Representative clusters and
cell lines are highlighted (f). g Compartment entropy distribution of genomic bins colored by their compartment annotation. h Gene ontology enrichment
[-log10(g-value)] for genes in low (S < 0.15) and high (S >0.95) entropy bins. i Comparison of the number of bins assigned to each compartment (color
coded) between H1 embryonic stem cells (X-axis) and H1 lineage differentiation in mesendoderm (left), neural progenitors (center), and trophectoderm
(right).

comprising cardiac and neural progenitor and embryonic stem  resolution clustered based on their lineage, we cannot exclude the
cells (Fig. 3f—blue cluster), as well as two separate clusters possibility that our results were here affected by low read counts
comprising normal epithelial and cancer cells (e.g., breast and and/or other technical issues. Previous approaches used the first
prostate normal and cancer cell lines—Fig. 3f—pink and purple principal component of the contact enrichment correlation
clusters, respectively). A lineage-independent cluster was found matrix (PC1) either to rank genomics bins within a chromosome
for a set of low data resolution Hi-C experiments generated from (based on the values of PCl) or to determine A and B
tissue specimen (Fig. 3f). Even though other Hi-C maps at similar compartments (based on the sign of PC1). Clustering of the
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Hi-C datasets based on PC1 values was largely dependent of data
and map resolution, failing to recover lineage-associated clusters
and clustering apart even Hi-C profiles from the same cell line
(Supplementary Fig. 8a,b). Clustering using the sign of PC1 (i.e.,
A/B compartment calls) was less sensitive to resolution, but still
could not recover lineage-associated clusters to the same extent of
the 8-subcompartment classification inferred by Calder (Supple-
mentary Fig. 8a, ¢). Finally, to further corroborate the relevance of
intermediate compartments, we compared Hi-C maps from stem-
like cell lines and fully differentiated tissues, using exclusively
genomic bins that were assigned to the same compartment (A or
B) in all cell lines, but that differed at the level of subcompart-
ments. Clustering based on these bins perfectly separated stem-
like models from differentiated tissues (Supplementary Fig. 8d).

Using Shannon’s information entropy (S), we examined which
regions were found in the same subcompartment across multiple cell
lines (low entropy) and which instead were frequently repositioned
(high entropy). The overall compartment entropy was significantly
lower than expected by chance (Supplementary Fig. 9a), and it was
higher in cancer than in normal cell lines (Supplementary Fig. 9b),
suggesting that tumor molecular heterogeneity is also reflected in
structural heterogeneity. Low-entropy bins were almost exclusively
assigned to the most extreme compartments, i.e., B2.2 and A.1.1. In
contrast, intermediate subcompartments only appeared in bins with
high-entropy values (Fig. 3g), indicating that genomic regions in an
intermediate subcompartment in one cell line are more likely to be
repositioned in other cell lines. Among the 114 cell lines that we
analyzed, on average 49-54% of regions in A.1.1 or B.2.2 in a given
cell line changed subcompartment in another, as opposed to 80-85%
of regions in the intermediate subcompartments (A.2.1 to B.1.2)
(Supplementary Fig. 9c). Protein-coding genes located in genomic
regions of low entropy (S<0.15, n=532) were significantly
enriched for fundamental cellular processes, such as protein
transport, localization, and phosphorylation, RNA processing and
metabolism, and cell cycle (Fig. 3h—top). Vice versa, high-entropy
genes (S>0.95 n=315) were significantly enriched for cell
differentiation, development, and morphogenesis (Fig. 3h—bottom
and Supplementary Data 6). To explore how lineage differentiation
is reflected in compartment repositioning, we examined Hi-C maps
of H1 human embryonic stem cells and 3 HI-derived lineages.
Compartment hierarchies exhibited extensive compartment changes.
However, in each comparison, only a minor fraction corresponded
to A to B (or B to A) switches, whereas in all comparisons more than
50% of the genome exhibited subcompartment repositioning
(Fig. 3i). Overall, these results suggest that subcompartments
repositioning is frequent and potentially associated with lineage
commitment and cell differentiation.

Lastly, we investigated subcompartment repositioning in
malignant transformation and analyzed three relatively homo-
geneous groups of cell lines including normal and cancer cells
derived from breast, prostate, and pancreatic tissues (Fig. 4a).
Subcompartment repositioning between cancer and normal cells
was associated with changes in gene expression (Supplementary
Fig. 9d) and these were on average higher with greater
repositioning. By focusing on common subcompartment reposi-
tioning events between normal and cancer cell lines (Supple-
mentary Data 7), we found a shift from active to inactive
compartment of the Forkhead box O transcription factor FOXO1,
which has been frequently associated with tumor suppressive
functions?”-28. The FOXOI locus was in A.l.1 or A.1.2 in all
normal cells and it shifted towards intermediate and inactive
compartments in cancer cell lines (Fig. 4b). Although it was not
genetically altered in these cells?, FOXOI repositioning was
associated with loss of H3K27ac upstream of the gene (Fig. 4c)
and downregulation of FOXOI mRNA expression (Fig. 4d).
Interestingly, by analyzing large human tumor cohorts profiled by

The Cancer Genome Atlas’0 (TCGA), we found that FOXOI was
downregulated in the vast majority of human breast, prostate, and
pancreatic tumors (Fig. 4e) despite being only rarely target of
genetic alterations in these tumor types: ~8% in prostate, <2% in
breast, and never in pancreatic cancer (source cBioPortal3!).
To verify that subcompartment repositioning was effectively
associated with modified 3D-proximity to other domains, we
analyzed intrachromosomal contact frequencies between the
FOXOI-containing compartment domain and other compart-
ment domains that remained in the same subcompartment in
normal and cancer cell lines (Fig. 4f). In normal cell lines, FOXO1
interacted more frequently with regions in active than with
regions in inactive subcompartments, but this trend was reversed
in cancer cells (Fig. 4g), supporting a physical repositioning of the
FOXOI1 locus in the chromatin 3D structure. Subcompartment
repositioning events hence allow to map transcriptional changes
to modified chromatin interactions, pinpointing associations
between gene expression and spatial organization.

Discussion

Computational analyses of DNA interaction maps generated by
Hi-C experiments have allowed to define the structural building
blocks of chromatin architectures, such as loops, TADs, (sub-)
compartments and compartment domains!3. In contrast to
TADs, the inference and comparison of chromatin subcompart-
ments and compartment domains has so far been limited to a
handful of cell lines, mostly due to the limited number of
approaches for this task, and their demanding data resolution
requirements. Here we showed that Calder outperformed pre-
vious approaches on high data resolution experiments and,
especially, it enabled this type of analyses on a wide variety of cell
lines at different resolutions.

We showed that subcompartment differences are extensive
between different cell lines, even when domain boundaries are
preserved, and these differences were often associated with epige-
netic and transcriptional heterogeneity among tissue types, dif-
ferentiation stages, and malignant states. These results caution
against assuming that subcompartments partitions derived from
one cell line can be applied to other samples. Intriguingly, the most
different subcompartments (i.e., A.1.1 and B.2.2) were the most
stable across cell lines, whereas regions in intermediate sub-
compartments were rarely the same across samples. These findings
indicate a different degree of chromatin plasticity along the gen-
ome. Future studies should investigate the biological relevance of
this plasticity and whether it reflects the chromatin conformation
of individual cells or the average conformation of a heterogeneous
cell population.

Moreover, we found that subcompartment repositioning was
frequently associated with changes of gene expression and
enrichment for different histone marks. Although the chain of
causality of these events needs further investigation, recent evi-
dence indicated that altering histone modifications is sufficient to
increase and decrease the frequency of chromatin interactions32-33
or lead to changes in chromatin compartmentalization3*. In this
context, robust inference of chromatin subcompartments and
compartment domains will be crucial to appreciate the effect of
altered epigenetic states on chromatin compartmentalization.

Overall, the identification of chromatin subcompartments
across a variety of cell types and conditions opens the possibility
to their systematic comparison and quantification of spatial
repositioning to aid the understanding of the link between
structure and phenotype.

Methods
Generating Hi-C contact matrices. Hi-C intrachromosomal contact maps (or
matrices) were either generated from raw FASTQ files using Juicer tools>> with
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Fig. 4 Subcompartment repositioning between normal and cancer cell lines. a Schematic comparison of the comparison between normal and cancer cell
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default parameters or obtained from processed public data. Data sources are
provided in Supplementary Data 1. The Knight-Ruiz (KR) method was used for
contact matrix normalization when the source data was not normalized. In cases
when KR normalization failed to converge, the VR (vanilla coverage) normalization
was applied. All Hi-C contact maps were binned at 40 kb resolution. Contact maps
of GM12878, HUVEC, IMR90, K562, NHEK, HMEC, KBM7, and HeLa were
additionally analyzed using 10 kb bins. In addition, for subcompartment com-
parisons, SNIPER was run with a bin size equal to 100 kb and Adapted k-means
with a bin size equal to 1 Mb. Contact maps from tamoxifen-control and cohesin-
removed datasets were binned at 20 kb. The 100 kb, 1 Mb, or 20 kb bin sizes were
chosen to be consistent with the setting used in the study where each method was
original proposed. Lastly, we generated six downsampled contact maps for
GM12878 at 40 kb resolution by randomly retaining 50, 20, 10%, 1, or 0.5% of the
total contact reads. To reduce technical noise within regions of low mappability,
matched rows and columns with more than 99% values equal to 0 were removed.
For each processed contact map, we defined its contact density as the fraction of
non-zero entries. Only autosomal chromosomes were analyzed.

Analyzing ChlIP-seq data of histone modifications. Processed ChIP-seq value
(fold change over control, pooled replicates) were retrieved from ENCODE
[https://www.encodeproject.org/] or GEO [https://www.ncbi.nlm.nih.gov/geo/].
We also processed H3K27ac for BT474 from publicly available raw sequencing
data. FASTQ files were aligned to hgl9 reference genome by bowtie23¢ version

8

2.3.4.3 with local alignment option. Peaks of H3K27ac enrichment compared to the
corresponding input control were identified using MACS237 version 2.1.1. Extreme
values, defined as those greater than the upper 0.999 quantile of each chromosome,
were replaced with the 0.999 quantile. Data sources are provided in Supplementary
Data 1.

Quantification of gene expression. Gene expression values at mRNA level for cell
lines were quantified by FPKM (fragments per kilobase per million mapped
fragments) and were retrieved from ENCODE or processed from publicly available
raw FASTQ files using RSEM?3® v.1.3.1. For running RSEM, we set hgl9 as the
reference genome and used STAR3® 2.7.0d for alignment. Other parameters were
set as default. We also retrieved gene expression values for normal and cancer
human samples from The Cancer Genome Atlas (TCGA) collected in the FireHose
data repository [https://gdac.broadinstitute.org/]. We used TPM (transcripts per
million) as a measure of gene expression level for these samples. Data sources are
provided in Supplementary Data 1.

The Calder Algorithm

Step 1: Compartment Domain Calling. We defined compartment domains as
consecutive bins having high intradomain similarity while low interdomain simi-
larity, where the similarity is measured based on whole-chromosome interaction
pattern. Identification of compartment domains proceeds through the following
steps (Supplementary Fig. 10a).
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(1) Providing an intrachromosomal contact matrix A, we generated an
aggregated matrix A* if the bin size is smaller than 40 kb, by compressing
every 10 columns into a single column, thus the iy, row of A* represents the
total contacts between bin; and every 10 bins. If the bin size is 240 kb we
omit this step thus A* = A. The purpose of this step is to sum up contact
values to reduce data sparsity for small bin size, thus, to allow applying our
method to bin size up to 10 kb.

(2) A correlation matrix pA was computed storing all pairwise correlations of
the rows of A*. To enhance the correlation signals, we computed pairwise
column correlations again from pA to generate a second correlation matrix
p2A.

(3) p2A was transformed into a similarity matrix defined as sA = arctanh(p,A).
The function arctanh was chosen such that correlations with absolute value
greater than ~0.3 have a greater amplification ratio. This is also commonly
referred to as Fisher z-transformation, which the converted correlation score
is approximately normally distributed.

(4) Finally, we called compartment domain boundaries separating regions
having high intraregion values and low inter-region values. To this purpose,
we used the same strategy proposed in the TopDom algorithm applied to
the sA matrix (instead of the Hi-C contact matrix).

Step 2: Deriving the hierarchy of chromatin domains. Given k chromatin domains
identified at Step 1, we derived a clustering dendrogram based on the similarity of
whole-chromosome interdomain contacts. To build a hierarchy of chromatin
domains, we proceed through the following steps (Supplementary Fig. 10b).

(1) First, we computed 4 raw trend matrices T™, with m =1,...,4, each of
dimension (k-m) x k, to summarize the plaid pattern commonly observed in
the Hi-C contact matrix and that reflects compartmentalization. Values of
T™ are defined as: T™(i,j) =1 if the mean contact value between bins in
domain i and in domain j+ m is greater than the mean contact value
between bins in domain i and bins in domain j (thus indicating enrichment
of contacts); otherwise T™(i,j) = 0 (depletion of contacts). These four trend
matrices were concatenated by rows to form a combined trend matrix T. A
correlation matrix pT was computed storing all the pairwise correlations of
the columns of T and then converted to a score matrix sT using arctanh
transform. Although a single raw trend matrix (m = 1) can also be used to
compute the correlation in this step, we found the concatenation of multiple
matrices can increase the correlation signals, however the marginal gain is
negligible when the number if greater than 4.

(2) Next, we used the first 10 principal components (PCs) of sT to perform a
divisive hierarchical clustering. Starting from the complete set of compart-
ment domains, we iteratively split a set into two sub-sets using k-means (k
= 2), until each compartment domain is on a separate set. PC values can be
rescaled by a factor w, to give different weight to different PCs. Given the
first PC (PC;) was the most associated with chromatin compartmentaliza-
tion (similarly to the PC; of normalized Hi-C maps*0), in the analyses
presented in this manuscript, we set w =1 for PC; and w = 0.25 for all other
PCs. We chose the first 10 PCs in this step as we observed the marginal
variance explained by each additional PC is negligible.

(3) Fianlly, since there are multiple possible ways to order the dendrogram
branches without disrupting its structure, we sought a consistent ordering
among chromosomes reflecting chromatin compartmentalization.

(a) Given the sign of PCs is arbitrary, we fixed the sign of PC; such that it
correlates with gene density (gene density is expected to be higher in A
than in B compartment).

(b) Then we derived the non-linear major axis of the point cloud (each
point represent one domain) formed by PC, and PC, using loess
regression, i.e. loess(PC, ~ PC;), and projected each data point, i.e.,
domain, [PC,(x),PC,(x)] to this major axis.

(c) To each domain we assigned a score z based on its ranking j of this

major axis: z; =0 if j = 1; and z;= Yo/ (x; — x,.,])2 + (y; 7)/,-71)2
if j > 1, which is the Euclidean distance of between each pair of adjacent
domains along this axis.

(d) Finally, we ordered the branches of the dendrogram such that the
branch on the right side should have a greater average z value than the
branch on the left side, for any sibling branch pair.

The left and right branch at the top level of the ordered dendrogram were
labelled as B and A respectively. For a sub-branch X, its left child branch was
labelled as X.2 and right child branch as X.1. The chromatin domain ranks were
derived from the order of the domains in the final dendrogram and normalized by
the total number of chromatin domains in that dendrogram.

Step 3: Calling for nested subdomains. A stochastic approach was developed to call
nested subdomains within each compartment domain exclusively based on short-
range contacts. The basic idea is to determine whether a hierarchical structure of
smaller domains can be further inferred from local contact patterns within a given
compartment domain. In this step of the Calder (and unlike what is done in the

previous step) hierarchies of nested domains contained in a domain are anchored
to the genome sequence, i.e., adjacent nested domain in the hierarchy are also
contiguous along the genome sequence. This step can be split into two major tasks:
(1) finding the best-fitting dendrogram D; (2) trimming D to get meaningful nested
domains.

(1) Finding the best-fitting dendrogram: We assume the contact probability
between bins from two sibling domains in the dendrogram D follows a
mixture log-normal distribution with parameter 6, = {ay, p;., 0 }

Ponix (% | s 1 01) = oepo (%) + (1 = ag)py (e, o)
where p;(x) is the density function of a degenerate distribution which has P
(X=0)=1; p,(x) is the density of a log-normal distribution which has
In(X) ~ N(u, 0%).
Given the contact matrix A, the likelihood function of the dendrogram and
the associated parameters is given by

L6314 = ]

k{all sibling pairs}

P (A16)

We computed the best-fitting dendrogram and corresponding parameters
using maximum likelihood estimation

{D; {63} = argmaxy, 1, L(D, {6, }|A),
which can be computed via dynamic programming and has a computation
complexity of O(n’), where n is the number of bins in the chromatin
domain under investigation (Supplementary Fig. 10c—left).
(2) Trimming the dendrogram to get meaningful nested domains: Given the
best-fitting dendrogram D, we extracted meaningful nested domains by
splitting iteratively a domain into subdomains as described below.

(a) First, we compute the observed vs. expected contact matrix A, to
eliminate distance-bias of the contact matrix A, is defined as the ration
between the contact maps A and E, where E is the expected contact
matrix with:

E;; = mean(4; forall|j — klequal to|i — j]).

(b) A,e within a given domain is split into four parts: A: the triangle
delimited by the off-diagonal corner of the domain and the two off-
diagonal corners of the candidate nested domains; B: the triangle
comprising the contacts between the two nested domains that are not
included in (a); C-D: contacts within the two nested domains
(Supplementary Fig. 10c—right).

(c) Finally, a given split was accepted if (1) contacts within A were
significantly higher than those in B and (2) contacts in C and D were
significantly higher than contacts in B. Contact differences are tested
using a one-tailed Wilcoxon test and considered as significant if p-value
<0.05 and Amean between the compared regions is greater than 0.1 (0.1
is equivalent to 10% of relative difference given that the expected mean
in any region of the distance-corrected matrix A, is 1).

The above procedures result in a trimmed dendrogram representing nested
subdomains in a compartment domain.

Number of compartments required to capture chromatin epigenetic pattern
variation. To determine the number of compartments that is sufficient to explain
the chromatin epigenetic pattern variation, we proceed as follow:

(a) For each histone mark, we first log-transformed (In(x + 1)) bin-level ChIP-
seq intensity values and took the mean of these for each chromatin domain.

(b) Next, given two sibling compartments in the domain hierarchy with mean
intensity values X = {xy,...,X,} and Y = {y;,...,ym} and overall mean u(X) >
u(Y), we defined the effect size Ap as the maximum possible value such that
u(X)-Ap is significantly greater than p(Y) (one-tailed t-test, significance
threshold a = 0.001).

(c) Mean intensity values of two adjacent compartments were considered as
significantly different if the median Ay of all 22 chromosomes was above a
threshold y. To penalize large number of compartments that did not lead to
high gains in terms of explained variance (similar to what is done in a
penalized regression), we used progressive thresholds: y = 0.05 for 2 and 4
compartments, y=0.1 for 8 compartments, and y=0.2 for >8
compartments.

We performed this test for each histone mark starting from the top (A/B
compartment) and iteratively on lower levels of the hierarchy until no significant
differences were reached. The number of compartments corresponding right before
the stopping step was retained as the minimal number of compartment sufficient to
explain epigenetic pattern variation.

Comparison with (sub-)compartments identified by SNIPER and Adapted K-
means. We applied SNIPER on 38 Hi-C datasets at the resolution of 100 kb. SNIPER
is a machine learning-based method which first learned the relation between the

interchromosomal contact pattern and compartment annotation of (Rao et al. 2014)2,
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then predict five compartments (labeled as A1, A2, B1, B2, B3) of a new dataset using
the new interchromosomal contact pattern. The author provided five trained models
for different downsample ratios (2%, 3%, 4%, 5%, 10%). We chose the downsample
ratio that best matches the observed ratio between a given dataset and the training
dataset of GM12878 (ratio is defined as total interchromosomal contacts of the given
dataset divided by total interchromosomal contacts of the GM12878 dataset). We also
applied Adapted k-means on 7 Hi-C datasets (GM12878, Hela, HMEC, HUVEC,
IMR90, K562, and NHEK), using 1 Mb bin size as specified in the original paper. We
set k =8 with the aim to identify the same number of subcompartments as Calder.
We ordered the inferred subcompartments based on the average H3Kme3 intensity of
each subcompartment (By default, Adapted-kmeans does not give a label or rank to
each compartment it infers).

Comparison with domain boundaries defined from other approaches. Compartment
domain boundaries have been simply inferred as genomic positions where a change
of A/B compartment or subcompartment occurs!?, or as positions where there is a
switch of contact propensity with A/B compartments?’. For the first approach, we
retrieved compartment domain boundaries based on the publicly available sub-
compartment annotation from?2. For the second approach, we computed for each
10 kb bin the average distance-corrected contact intensity with A or B compart-
ment. An A-B index was defined as the difference between the A/B intensity.
Compartment domain boundaries were retrieved at positions where a switch of the
sign (+) of A-B index occurs. Switches that occupy only 1 bin were considered as
noise and omitted. To compare boundaries identified by these approaches or
Calder, we considered two boundaries as overlapping if they are less than 100 kb
apart (100 kb was the resolution of subcompartment annotation from?).

We also applied Arrowhead? and TopDom? to the Hi-C map of GM12878 at
10 kb bin size to call TADs, using default parameters. Two boundaries were
considered as overlapping if they are less than 40 kb apart.

Inferring genome sequence-dependent hierarchies using TADpole. We applied
TADpole to the Hi-C data of GM12878 binned at 40 kb to derive genome
sequence-dependent hierarchies, for the purpose to compare with Calder’s genome
sequence-independent hierarchies as shown in Supplementary Fig. 6b. Parameters
for TADpole was set as max_pcs = 50, bad_frac = 0 and centromere_search =
FALSE.

Computing the chromatin entropy. Given the 8-compartment model, we defined the
Shannon’s information entropy of a bin b as:

I s

S, = @) i1 PjIn(P;)
where P; is the frequency with which b is assigned to compartment j across the 114
datasets. The normalizing factor In(8) ensures that S is in the [0,1] range. We
defined the distribution of entropy values for all bins of the genome as chromatin
entropy. To estimate the expected chromatin entropy, we performed 1000 per-
mutations of compartment labels. In each permutation, we randomly shuffled the
compartment labels of each bin, within each dataset independently. Chromatin
entropies computed from each permutation were aggregated to derive the overall
random distribution.

Enrichment of histone mark intensities and ChromHMM states at compart-
ments. For each histone mark, mean intensity values for each chromatin domain
were computed. Next, we determined the enrichment of these values within a given
compartment (8-compartment model) as the log,-transformed ratio between the
median value in the compartment and the overall median value.

To determine the enrichment of ChromHMM states in each compartment, we
used the 15-state definition reported in: [http://genome.ucsc.edu/cgi-bin/
hgTrackUi?2db=hgl19&g=wgEncodeBroadHmm]

To each genomic region associated to a given state by ChromHMM, we
assigned the domain rank value and compartment label of the chromatin domain
overlapping with that region. If a region was covered by multiple chromatin
domains, we assigned to that region the mean domain rank and the “least active”
compartment label, i.e. the label closest to B.2.2. As a result, each of the 15
ChromHMM states were associated with a vector of domain ranks and a vector of
compartment labels. To determine the enrichment of a given compartment label in
a ChromHMM state, we computed the number of occurrences of each
compartment label for regions annotated with a given ChromHMM state S, and
divided these numbers by the expected values obtained by multiplying the number
of regions in S by the vector of compartment label frequencies across the entire
genome. Genomic regions that did not overlap with any chromatin domain were
discarded in this analysis.

Geneset enrichment analysis. Coding genes located in genomic regions of low
entropy (S <0.15, n=532) and of high entropy (S > 0.95, n = 315) were tested for
enrichment of Gene Ontology terms in the Molecular Function and Biological
Process categories using the mSigDB web service [https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp] and retaining the top 100 solutions with adjusted p-value <
0.01. In the geneset enrichment analysis of genes with high entropy, we noticed

strong enrichment for GO categories associated with cell adhesion (Supplementary
Data 6). However, this enrichment was due to the presence of a cluster of proto-
cadherin encoding genes within a single chromatin domain. For this reason, we
decided to flag and disregard these results as they do not reflect functional simi-
larities among genes in different high-entropy domains.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data that support this study are available from the corresponding author upon
reasonable request. All Hi-C, ChIP-seq, and RNA-seq datasets used in this study are
publicly available and described in detail in Supplementary Data 1: Hi-C datasets were
retrieved from the Gene Expression Omnibus (GEO) repository GSM1631184,
GSE66733, GSE71831, GSE63525, GSE95014, GSE44267, GSE63525, GSE118514,
GSM2809542, GSM3111886, GSE109229, GSE118588, GSE99051, GSM3112385,
GSM3112403, GSE105194, GSE105318, GSE105381, GSE118514, GSE71072,
GSM2334832, GSM1902603, GSM3262956, GSM3262958, GSM3262960, GSM3262962,
GSM 3262964, GSM3262966, GSM3263085, GSM3263087, GSM3263089, GSM3734950,
GSM3734952, GSM3734958, GSM3734960, and the ENCODE repository ENCSR079VTJ,
ENCSR105KFX, ENCSR312KHQ, ENCSR346DCU, ENCSR401TBQ, ENCSR444WCZ,
ENCSR4890CU, ENCSR549MGQ, ENCSR834DXR, ENCSR8620GI, ENCSR440CTR,
ENCSR5040TV; ChIP-seq datasets were retrieved from ENCODE ENCFF002DDH,
ENCFF003CLZ, ENCFF010PHG, ENCFF038HNR, ENCFF039DZS, ENCFF039XYU,
ENCFF041YQC, ENCFF046ABB, ENCFF062LIE, ENCFF104GFP, ENCFF107PYQ,
ENCFF110GQH, ENCFF114EGM, ENCFF116RLU, ENCFF118MMT, ENCFF129XGlI,
ENCFF143CUR, ENCFF167NBF, ENCFF167TFD, ENCFF175PNA, ENCFF180LKW,
ENCFF191EXE, ENCFF195CYT, ENCFF1980NW, ENCFF203KHF, ENCFF226 MQR,
ENCFF236IFZ, ENCFF240SOO, ENCFF240TPI, ENCFF242SA0, ENCFF247P]JA,
ENCFF254UZP, ENCFF255NQJ, ENCFF269UZG, ENCFF272ZUB, ENCFF282RLY,
ENCFF283KXE, ENCFF312ELW, ENCFF322]JKF, ENCFF335YSY, ENCFF388WMD,
ENCFF391MRG, ENCFF396]IR, ENCFF420DLT, ENCFF421DIE, ENCFF432DS],
ENCFF437CJP, ENCFF445UCR, ENCFF453XKM, ENCFF465KNK, ENCFF488GZA,
ENCFF526QTS, ENCFF5310EA, ENCFF551YLH, ENCFF557RSD, ENCFF573VUK,
ENCFF585TQE, ENCFF602QRW, ENCFF615INK, ENCFF662QFK, ENCFF674X0OM,
ENCFF678IWR, ENCFF682WPF, ENCFF693WQF, ENCFF699TXY, ENCFF707]NT,
ENCFF709GNN, ENCFF738TKN, ENCFF758SEW, ENCFF761QZP, ENCFF7680PK,
ENCFF790BNV, ENCFF790YPL, ENCFF792Z1Y, ENCFF828CQV, ENCFF831WYD,
ENCFF834HNV, ENCFF834YLI, ENCFF846MPX, ENCFF879AFU, ENCFF885XEM,
ENCFF903WOV, ENCFF9340WP, ENCFF935ID], ENCFF958BAN, ENCFF977DET,
ENCFF981TTA, ENCFF981WTU; RNA-seq datasets were retrieved from ENCODE
ENCFF170MOO, ENCFF374KZN, ENCFF554RBN, ENCFF582THK, ENCFF612EVW
and the Sequence Read Archive (SRA) SRR1634434, SRR2125669, SRR2125670,
SRR2125671, SRR2125672, SRR2149928, SRR2149929, SRR2149930, SRR2149931,
SRR2149932, SRR2149933, SRR2532390, SRR2567462, SRR2567463, SRR2567464,
SRR3677548, SRR3677549, SRR3677550, SRR3677551, SRR3677552, SRR3677553,
SRR4341895, SRR4341896, SRR4341897, SRR4341898, SRR4341899, SRR4341900,
SRR5120472, SRR5266566, SRR5266567, SRR5266568, SRR5364126, SRR5364127,
SRR5364128, SRR5364129, SRR5454441, SRR5454442, SRR5454459, SRR5454460,
SRR5511204, SRR5511205, SRR5511206, SRR5511207, SRR5558489, SRR5558490,
SRR5558491, SRR5558492, SRR5558493, SRR5808857, SRR6048770, SRR6048771,
SRR6048794, SRR6048798, SRR6290531, SRR6290532, SRR6290533, SRR6290534,
SRR6804604, SRR6804605, SRR7063017, SRR7063018, SRR7063019, SRR7063020,
SRR7063021, SRR7063022, SRR7063023, SRR7063024, SRR7071094, SRR7071095,
SRR710092, SRR710093, SRR710094, SRR710095, SRR7585372. Chromatin domain
hierarchies and compartment scores generated by Calder for all 127 Hi-C maps are
available as Supplementary Data 2 in a bed format.

Code availability

The Calder algorithm is implemented in R and is available on Github [https://github.
com/CSOgroup/CALDER] along with a detailed user manual and test dataset. It is also
deposited at Zenodo [https://doi.org/https://doi.org/10.5281/zenodo.4555593].
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