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Abstract

Gene regulatory network (GRN) inference can now take advantage of powerful machine

learning algorithms to complement traditional experimental methods in building gene net-

works. However, the dynamical nature of embryonic development–representing the time-

dependent interactions between thousands of transcription factors, signaling molecules,

and effector genes–is one of the most challenging arenas for GRN prediction. In this work,

we show that successful GRN predictions for a developmental network from gene expres-

sion data alone can be obtained with the Priors Enriched Absent Knowledge (PEAK) net-

work inference algorithm. PEAK is a noise-robust method that models gene expression

dynamics via ordinary differential equations and selects the best network based on informa-

tion-theoretic criteria coupled with the machine learning algorithm Elastic Net. We test our

GRN prediction methodology using two gene expression datasets for the purple sea urchin,

Stronglyocentrotus purpuratus, and cross-check our results against existing GRN models

that have been constructed and validated by over 30 years of experimental results. Our

results find a remarkably high degree of sensitivity in identifying known gene interactions in

the network (maximum 81.58%). We also generate novel predictions for interactions that

have not yet been described, which provide a resource for researchers to use to further

complete the sea urchin GRN. Published ChIPseq data and spatial co-expression analysis

further support a subset of the top novel predictions. We conclude that GRN predictions that

match known gene interactions can be produced using gene expression data alone from

developmental time series experiments.

Introduction

Transcription factors regulate cell-specific gene expression to create phenotypes, respond to

disease, drive evolution, and guide embryonic development [1]. Taken together as a system,

gene regulation can be organized and modeled as a hierarchical network, a Gene Regulatory
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Network (GRN), as first proposed by Davidson [2, 3]. GRN models are now routinely used to

follow the causal links from regulatory genes to cell fate decisions or cell activities. Using a

GRN model to create hypotheses about the function of actors in a regulatory program aids in

experimental design.

Animal and plant developmental programs have been described by GRN models, beginning

with the construction of the sea urchin endomesoderm GRN [3, 4] and followed soon thereaf-

ter by the Drosophila melanogaster dorsoventral patterning network [5, 6] and the Xenopus lae-
vis mesoderm specification network [7]. Traditionally, GRNs are compiled through extensive

experimental perturbations, often involving a combination of knockdown techniques and

visualization of changes in gene expression. Accuracy of the GRN is improved when further

experiments confirm cis-regulatory interactions at the level of transcription factor binding

sites. However, there is now a pressing need to facilitate GRN modeling using computational

prediction tools to help fill in the gaps in existing GRNs and to help create new GRN models

with testable predictions.

GRN prediction algorithms from gene expression data alone have been proposed [8], and

several have been compared and tested through the DREAM consortium [9]. The overall accu-

racy of these previous methods using gene expression data alone is at or below 50% even with

a consensus of several computational methods. GRN inference methods assessed by the

DREAM consortium were designed to infer network relationships from unicellular organisms

and in silico data. The goal of the approach described in this manuscript is to improve the sen-

sitivity of GRN prediction while performing GRN inference on multicellular organisms during

the dynamic process of embryonic development. Developmental GRNs are inherently chal-

lenging to predict due to the temporal and spatial transcriptional complexity inherent in the

developmental process they seek to model. In the decade since the initial DREAM network

inference challenge, next generation sequencing and machine learning algorithms have

become increasingly sophisticated, and new approaches have emerged with solutions to

address more challenging GRN inference problems.

To address the significant challenge of GRN inference in multicellular organisms during

development, we used the Priors Enriched Absent Knowledge (PEAK) network inference algo-

rithm to reconstruct GRN interactions [10]. PEAK uses differential equations, context likeli-

hood of relatedness (CLR), and the machine learning method Elastic Net to predict the most

likely interactions between transcription factors and target genes. The execution of PEAK con-

sists of two phases, a coarse-grained phase and a fine-grained phase, to predict network inter-

actions. In the coarse-grained phase, potential regulators for each gene are extracted using

mixed context likelihood of relatedness (mixed CLR). In the fine-grained phase, two modified

versions of Elastic Net are employed to refine the predictions and to integrate curated or noisy

prior knowledge, when available. Prior knowledge about the network can also be added if

available; however, to be most broadly applicable across established and emerging model sys-

tems, we used PEAK without prior knowledge in this study.

To test GRN inference in a multicellular developmental context, we chose two sea urchin

embryonic GRNs governing endomesoderm and ectoderm specification as test networks

because they are widely regarded as some of the most well-supported developmental GRN

models with many cis-regulatory interactions verified at the base-pair level. We also obtained

two sea urchin gene expression datasets to use as input. The California purple sea urchin,

Strongylocentrotus purpuratus, is a marine invertebrate. The sea urchin is a member of the phy-

lum Echinodermata, which, along with the Hemichordata, are the closest known sister groups

to the Chordates, the phylum to which humans belong. The genome of S. purpuratus was

sequenced in 2006, which produced an estimated gene count of ~23,000 [11]. Later transcrip-

tome sequencing found evidence for ~21,000 gene models [12]. S. purpuratus develops rapidly
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from a single cell (the fertilized egg) to a late gastrula embryo in 48 hours at 14˚C and then

into a prism-shaped larva by 72 hours. Over the last 20 years, GRN models describing the regu-

lation of embryonic development of S. purpuratus have been built by experimentation and col-

laboration of sea urchin researchers around the world. The GRN models describing

development are divided into the network describing the ectodermal tissue layer [13, 14],

which will give rise to the nervous system and outer tissues of the larvae, and the network con-

trolling the endomesodermal tissue layer, which will give rise to the gut and the larval skeleton

[3, 4]. The two GRN models are hosted on the BioTapestry website, which is also the home of

the open source platform used to construct and visualize these models [15].

The goal of our approach is to successfully employ PEAK to predict gene regulatory interac-

tions using only whole embryo temporal gene expression data. The specific motivation for test-

ing PEAK using gene expression data only is to develop a pipeline that is most broadly

applicable to researchers investigating all kinds of metazoan species. For many emerging

model systems, traditional transcriptomic gene expression data from developmental time

series are readily available but extensive omics data sets describing spatial expression, tran-

scription factor binding sites, ChIPseq, functional gene annotation, and proteomics are often

lacking. Therefore, there is a demonstrated need for a GRN inference approach based on tem-

poral gene expression data alone to make use of existing transcriptomic sequencing data and

to guide future experiments on regulatory interactions during embryonic development [16,

17]. The PEAK method is also applicable for researchers in possession of additional prior

information, including single-cell RNAseq experiments and other types of omics datasets.

Our method using PEAK on time series gene expression data describing sea urchin devel-

opment was able to achieve a maximum of 81.58% sensitivity using 32 experiments. In com-

parison, previous large-scale assessment of network inference methods aimed at predicting

gene networks using gene expression data alone in unicellular organisms found a maximum of

50% precision using 800 microarray experiments and much less accuracy using 300 experi-

ments [9].

Results

GRN models are concerned with genes whose expression is regulated and the regulators them-

selves. To identify the set of regulated genes to input into the PEAK machine learning algo-

rithm, we started with the sea urchin RNAseq transcriptome dataset covering 0-72hpf, which

represents genes expressed during embryogenesis [18]. The RNAseq dataset was filtered to

identify the set of transcripts that are differentially expressed during embryonic development

and are regulative in nature.

Differential gene expression analysis

We employed three programs (NOISeq, EdgeR, and GFold) to determine the set of differen-

tially expressed genes (DEGs) with the parameters described in the methods section [19–21].

There was variation in the number of DEGs determined by NOISeq, EdgeR, and GFold in the

RNAseq dataset. We compared the overlap of genes above the threshold identified by each

method to obtain a core set of DEGs (Fig 1). The core set contained 10,627 genes that were

consistently specified as differentially expressed no matter which method was used. This figure

is in line with a previous analysis that found that 10,800 of ~16,700 genes expressed during sea

urchin embryogenesis showed changes in relative abundance [18]. We found that the result

from NOISeq (λ1 = 0.9) contained the most overlap and the least difference with results from

the other methods, while maintaining a more selective number of genes determined to be dif-

ferentially expressed (see Table 1 where a total of 5 methods are detailed). Only .01% of the
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genes determined by NOISeq (λ1 = 0.9) are unique to that method; in contrast, more than 5%

of the genes from the result of EdgeR are unique to EdgeR. All the genes determined by GFold

(λ4 =� 1.5) overlapped with the results from other methods, but the GFold DEG set was miss-

ing 2,755 genes that were identified as differentially expressed by the other 4 methods.

Gene ontology filter

NOISeq reduced the 21,092 total transcripts to a set of 15,496 differentially expressed tran-

scripts. However, this set of DEGs is still too large to be effectively used as input into the PEAK

prediction algorithm. Therefore, we applied a second filter to the gene set to achieve a more

appropriate number of regulatory genes. The second filter was a Gene Ontology (GO) filter for

genes related to transcription and signaling. We used the custom GO annotation generated by

the authors of the transcriptome [12]. The GO filter identified 1,038 transcripts that are regula-

tory in nature, of which 544 were also identified as differentially expressed (S1 File). The 544

transcripts represent 504 unique gene models annotated by a single gene identifier (SPU_ID).

Fig 1. Differentially expressed genes. Intersection of unique differentially expressed genes determined by NOISeq, EdgeR and GFold.

The intersection of all 5 methods contains 10,627 unique genes specified as differentially expressed as seen where all the ovals overlap in

the center. The number of genes uniquely described as DE by each program is the outermost number closest to the label, 2 for NOISeq

(λ1 = 0.9), 411 for NOISeq (λ1 = 0.85), 16 for GFold1 (λ3 =� 1), 0 for GFold2 (λ4 =� 1.5), and 988 for EdgeR.

https://doi.org/10.1371/journal.pone.0261926.g001

Table 1. Differential gene expression analysis.

Program Total DEGs # Unique Genes % Unique Genes # Overlap Genes % Overlap Genes

NOISeq (λ1 = 0.9) 15496 2 0.01% 15494 99.99%

NOISeq (λ2 = 0.85) 16996 411 2.42% 16585 97.58%

GFold 1 (λ3 =� 1) 17046 16 0.09% 17030 99.91%

GFold 2 (λ4 =� 1.5) 12950 0 0.00% 12950 100.00%

EdgeR 19166 988 5.15% 18178 94.85%

Differential gene expression analysis results summary from three programs (NOISeq, GFold, and EdgeR) using two different thresholds for NOISeq and GFold.

https://doi.org/10.1371/journal.pone.0261926.t001
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PEAK analysis

We applied the PEAK GRN prediction algorithm on the filtered gene set of 504 DEGs as deter-

mined by NOISeq that are also identified by the GO filter. We specified to PEAK the set of 254

transcription factors (TFs) used during embryonic development, according to Materna et al.

[22] and Tu et al. [12] (S2 File). We used the filtered gene set and TF specification file as inputs

into PEAK and set all the other parameters as default except for “Repeat,” which was set to 1

(S3 File). The output from PEAK contained 14,802 predicted interactions in total (S4 File).

Among the set of predictions from PEAK representing the top 5 hits for each gene, there are

both known interactions and new predictions (Fig 2).

To evaluate the performance of PEAK, we repeated the PEAK analysis with data relating

only to genes present in the publicly available sea urchin GRNs, using the same procedure and

parameters as with the set of all DGE genes that fit the GO filter. The set of known GRN inter-

actions is defined as the ground truth. For our analysis, we used three measures to perform the

evaluation. Sensitivity (or true positive rate) is a common assessment measure for classification

problems [23]. Sensitivity represents the proportion of our predicted gene interactions that hit

the corresponding ground truth GRN interaction list, indicating the percentage of gene inter-

actions that are correctly identified by the PEAK algorithm among the total known ones.

Another common metric used alongside sensitivity is specificity. However, specificity is only

applicable when the ground truth is fully known. We have not used the specificity measure

here because the GRN models are missing an unknown number of undiscovered gene interac-

tions, and the solidity of the data underlying the connections the GRN model is variable. Addi-

tionally, there are other complexities inherent in developmental gene regulation that present

limitations, including transient TF binding, multiple upstream regulators, and indirect

Fig 2. Example PEAK predicted interactions. An interactome visualization of a subset of PEAK-predicted interactions within

the top-5 predictions (highest confidence scores) for each gene. Both known interactions (yellow gene boxes and red arrows) and

new predicted interactions (blue gene boxes and black arrows) are included among these predictions.

https://doi.org/10.1371/journal.pone.0261926.g002
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interactions dependent on signaling [24]. The second measure we used was the set of new pre-
dictions, which designated new gene interactions predicted by the algorithm that were not yet

known in the ground truth GRN. Finally, the miss rate (or false negative rate), another com-

mon metric, represented the proportion of known gene interactions not discovered by the

algorithm.

We evaluated the ground truth from the ectoderm GRN and the endomesoderm GRN sepa-

rately, and compared the results, as summarized in Table 2. For the known ectoderm GRN,

there are 37 genes out of 39 that had a clear match in the transcriptome RNAseq data and were

designated as a DEGs. When gene expression data from the transcriptome RNAseq dataset

were used as input for PEAK, the algorithm successfully predicted 54 of 76 gene-to-gene inter-

actions present in the ground truth GRN, yielding 71.05% sensitivity (Table 2). PEAK failed to

predict 22 known connections but provided 530 possible new ones. The sea urchin endomeso-

derm GRN is currently a larger network model, with 55 genes and 121 edges. We found 53 of

those 55 genes had a clear match in the transcriptome RNAseq data and were designated as a

DEGs. When TFs were specified, 74 of the 115 connections were correctly predicted for a sen-

sitivity of 64.53% (Table 2).

To achieve a higher sensitivity, we considered what limitations might be present in the ini-

tial approach. A limitation of the transcriptome RNAseq data when applied to the ground

truth GRN is that only 10 timepoints were sampled in total and, of those, only 5 timepoints

covered the period of time during early development (0-30hrs) which the ground truth GRN

models describe. Therefore, we sought a second data set with more timepoints at closer sam-

pling intervals. For the second data set, we chose a high-density embryonic data set where 335

genes critical to early development were sampled every 2 hours for 72 hours in duplicate, and

gene expression was quantified using Nanostring technology, an alternative to RNAseq that

requires a probe set [25]. Because there were genes in the ground truth GRNs that did not have

a match in the Nanostring probe set, we only retained the genes that were sampled in the

Nanostring data set. For the ectoderm data, there was a clear match for 30 of 39 genes, and the

corresponding number of gene interactions in the ground truth ectoderm GRN that are there-

fore possible to predict was 61. Comparing PEAK predictions to the corresponding ground

truth table resulted in 44 successful gene-to-gene interactions predicted out of 61, yielding a

sensitivity of 72.13% (Table 2). Thus, for the ectoderm GRN, we found that PEAK gave similar

prediction results for the Nanostring data and the RNAseq data. For the endomesoderm data,

38 genes were present in both the ground truth GRN and the Nanostring data set, which corre-

sponded to 76 known GRN interactions. Comparing PEAK predictions to the corresponding

Table 2. Statistic PEAK result.

Dataset Transcriptome RNAseq data Nanostring data

Ground Truth GRN (GT) Ectoderm GRN Endomesoderm GRN Ectoderm GRN Endomesoderm GRN

True predictions (TP) 54 74 44 62

Sensitivity 71.05% 64.53% 72.13% 81.58%

Miss rate 28.95% 35.65% 27.87% 18.42%

New predicted edges 530 1103 508 788

Total predictions 584 1177 552 850

Statistic result for transcriptome RNAseq data and the Nanostring data compared with each ground truth GRN. Sensitivity represents the proportion of our predicted

gene interactions that hit the corresponding ground truth GRNs. Miss rate represents the proportion of known gene interactions not discovered by the algorithm. New

predicted edges are predicted interactions that are not part of the ground truth GRN. Total predictions include both new predicted edges and predictions that are

known.

https://doi.org/10.1371/journal.pone.0261926.t002
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ground truth table resulted in a total of 62 successful gene-to-gene interactions predicted out

of 76, for a sensitivity of 81.58% (Table 2). The improved performance of PEAK on the endo-

mesoderm GRN using the Nanostring data set as compared to the RNAseq data was likely due

to the additional timepoints in the Nanostring data set.

We further tested the impact of adjusting the parameter describing transcript turnover due

to maternal and zygotic degradation mechanisms in terms of transcript half-life on the predic-

tion results. Recent estimates of transcript turnover in sea urchin are in the range of 6 to 9

hours [26]. We explored the performance of PEAK for a range of median half-life times from 3

hours to 15 hours (Fig 3). In general, the sensitivity of the predicted results did not have any

obvious increase or decrease trend with the increase of half-life. We obtained the highest sensi-

tivity on the transcriptome RNAseq data when the half-life was set to 7 hours. For the Nano-

string data set, which was sampled every 2 hours, we used even-numbered half-life values. We

obtained the highest sensitivity on the Nanostring data when the half-life was set to 4 hours.

Further investigation of predictions

To assess the quality of our predicted network connections, we looked for corroborating data

based on existing genome-wide binding assays. Among our top 50 predictions from PEAK,

there were 5 predicted targets for aristaless-like homeobox (Alx1), a well-known transcription

factor involved in S. purpuratus skeletogenesis [27]. One of the PEAK predictions for a target

of Alx1 is glial cells missing (Gcm), which represents a known target of Alx1 [28]. The next 4

predicted Alx1 targets with the highest confidence scores are unknown connections. Genome-

wide Alx1 ChIPseq has recently been performed and published [29]. We analyzed Alx1 ChIP-

seq peaks marking putative binding sites within 20kb of the 4 unknown predicted targets and,

for 3 of the 4 targets, we found Alx1 peaks that overlapped with open chromatin as marked by

Fig 3. Half-life value evaluation. Sensitivity as a measure of accuracy for the prediction of ectoderm and endomesoderm gene

regulatory relations calculated with 5 different median mRNA half-life settings. For the Transcriptomic RNAseq data, 3hrs, 5hrs,

7hrs, 10hrs, 15hrs were tested. For the Nanostring data, 2hrs, 3hrs, 4hrs, 5hrs, 6hrs was tested.

https://doi.org/10.1371/journal.pone.0261926.g003
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ATAC-seq and DNase-seq (S5 File) [30]. We extended the analysis to all 27 of the predicted

targets of Alx1 returned by PEAK, ordered by confidence scores, and found peaks within

20KB for additional predicted targets, with more variance in the statistical relevance of the

peak calls and more variance in the degree of overlap with markers of open chromatin as the

confidence score predicted by PEAK diminished (S5 File).

Spatial co-expression can also be used to evaluate the likelihood of gene interaction. The

spatial expression of many developmentally important genes has been examined in S. purpura-
tus. Echinobase organizes known spatial expression profiles using a matrix of distinct cell

types at each time point during development. We made use of these published profiles to eval-

uate spatial co-expression for our top 50 predictions (S6 File) and compared them to the co-

expression of our bottom 50 predictions (S7 File). Only 5 of the top 50 predicted interactions

were between genes with non-overlapping expression patterns. All 5 of those interactions that

occurred between genes with mismatched spatial expression patterns involved regulation by a

TF with known repressor activity in sea urchin (Eve, Alx1) or other organisms (Hmx, Runt1)

[31, 32] where non-overlapping expression would be expected or conceivable. We were not

able to identify any of the top 50 predicted interactions as definite false positives by spatial

expression analysis alone. Among the top 50 predicted interactions, 21 interactions displayed

overlapping spatial expression patterns. For the remaining 24 interactions, or almost 50%,

either 1 or both genes did not have spatial expression data readily available in the database.

The large number of predicted interactors without spatial expression information indicates

that even in an extensively studied model organism there remains a significant number of

unknown and untested genes. The bottom 50 predictions, as sorted by PEAK confidence

scores, contained 2 interactions with non-overlapping expression patterns, 46 interactions

without known spatial information for 1 or both genes and 2 interactions with SPU IDs that

did not match the database. Comparing the top 50 predicted interactions with the bottom 50

predicted interactions revealed that there were clearly more interactions with spatial co-

expression in the top 50 (42% versus 0%).

Discussion

Computational prediction methods of GRN components have been explored in many organ-

isms. In bacteria, for example, researchers used an integrative method to predict a GRN in B.

subtilis with a large amount of input data [33]. Specifically, the B. subtilis study used more than

600 gene expression experiments and incorporated prior knowledge from the ground truth

network to improve accuracy. The sensitivity of their GRN prediction is 74% and they pre-

dicted 2,258 new regulatory interactions. The scale of experiments used in the B. subtilis study

by Arrieta-Ortiz et al. is difficult to achieve in multicellular organisms [33]. Also, as with most

other machine learning applications, the more prior knowledge available to train the algo-

rithm, the better predictions one can expect the algorithm to produce. The approach using

PEAK described in this manuscript achieved a similar level of sensitivity while meeting three

additional challenges. First, there is an extended challenge when working with a multicellular

animal with many different cell types expressing different transcriptional programs. Second,

there is a challenge of working with the highly dynamic embryonic developmental program in

which new cell types are created and transcriptional programs change rapidly. Finally, we lim-

ited input to gene expression data, instead of adding additional prior information, to see what

can be achieved with expression data alone. Our maximum result of 81.58% sensitivity allowed

us to conclude that a relatively high level of sensitivity can be achieved from gene expression

data alone, even when working with complex developmental GRNs. Although a successful

result was achieved, there were limitations to the application of S. purpuratus data in
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evaluating PEAK on a developmental GRN. The RNAseq data set we used, although still refer-

enced on individual gene pages in Echinobase as the source of expression data, has low tempo-

ral resolution during the period of embryogenesis covered by the GRN. We addressed this

limitation by using the Nanostring gene expression data set which had a much higher temporal

resolution, but the Nanostring data set did not include every gene in the GRN model. The

ideal gene expression data set would have both high temporal resolution and complete tran-

scriptomic coverage.

A few developmental model systems like Drosophila melanogaster have extremely large

research communities producing extensive prior knowledge data sets in the form of ChIP

assays, protein-protein interaction databases, functional gene annotation, extensive tissue

expression information, TF-binding sites, and known regulatory interactions. In this case, the

richness of prior knowledge was harnessed in a combination of supervised and unsupervised

machine learning approaches to produce novel network interaction predictions [34]. Despite

the wealth of omics data, only 204 network edges were available in D. melanogaster to train

their supervised network, pointing to the need in all systems to continue rigorously verifying

gene network connections. Uncovering universal regulatory mechanisms will require GRN

knowledge from a wide variety of model species. The first omics step in many research pro-

grams establishing new model species is often the creation of a transcriptome, which inher-

ently creates a quality source of gene expression data [17, 35–39]. Collectively, there is a glut of

sequencing data that researchers are eager to use to understand the network of regulatory

interactions that govern building the animal body plan. The investigation of the way changes

in the GRN controlling embryonic development have shaped evolution is a particularly active

research question and one that can benefit directly from using GRN inference approaches to

create model networks. Our approach of using only gene expression data as input to generate

regulatory interaction predictions will be particularly useful to researchers who are rapidly

establishing new model systems.

One goal of GRN inference is to narrow the search space to a subset of promising interac-

tions to be further studied and validated experimentally. With approximately 21,000 to 23,000

gene models predicted in the sea urchin, there are up to ~540 million possible gene-to-gene

interactions. Using time series gene expression data as input into the PEAK prediction algo-

rithm for the 547 transcripts most likely to be a part of the regulatory program, we generated

14,802 predicted interactions that can be ordered by confidence or searched for specific regula-

tors or target genes. One caveat to our approach is the differential equations that PEAK is

based on cannot predict self-interactions in which genes turn on or off their own expression.

These self-interactions are known to be important to the precision and robustness of regula-

tory programs. Self-activation is known to give rise to bistability which is harder to model and

train computationally; thus, most methods for GRN inference do not model self-regulation

[40, 41]. While it is always advantageous to have an algorithm that can predict the greatest

number of biologically meaningful interactions, experimental design can take this limitation

into account and experimentally check for self-regulation when investigating the targets of reg-

ulatory genes. Another caveat to our approach is that while PEAK does return a direction of

interaction (positive/enhancing or negative/repressing) and the direction is included in our

list of all predictions (S4 File), we did not include direction in our analysis in order to compare

our results to previously published methods. Without spatial expression in the input, it is chal-

lenging for the algorithm to always correctly predict the direction of the interaction. Neverthe-

less, we found that within the top 5 predictions for each target gene, the correct direction of

interaction was predicted 75% of the time.

Although a set of putative TFs can be generated from any transcriptome using BLAST-to-

GO, we also tested the ability of PEAK to make predictions using our data sets without
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specifying the set of TFs [17, 42]. Surprisingly, the sensitivity was not dramatically different

with or without a specified TF list. Since the performance of PEAK was not overtly affected

when the list of TF was not specified to the algorithm, a lack of complete functional gene anno-

tations is not a hindrance to using our approach. It is also possible to specify the transcript

half-life to PEAK, yet it is challenging to determine the optimal average half-life to use consid-

ering the differences between maternal and zygotic transcripts and individual variation. Our

current recommendation is to use a range of half-life values to find the best fit to the data

empirically. Future directions for improvement to the algorithm could include a more custom-

izable way to vary half-life values for different transcript types.

While it is difficult to assess the rate of false positives in our predictions without targeted

experiments, we investigated of the quality of our results using publicly available ChIPseq data

sets and spatial expression data. Examining Alx ChIPseq data for our top predictions involving

Alx as the regulator provided encouraging feedback. While the peaks would need to be vali-

dated with cis-regulatory analysis to confirm functionality, the similarity of number and posi-

tion of peaks to those of known targets of Alx1 indicates that at least some of the peaks may

represent functional binding sites and true targets. Spatial co-expression analysis alone was

not able to identify any definitive false positives in the top 50 interactions. The five interactions

with known mis-matched spatial expression profiles all involved a known repressor as the reg-

ulator. Furthermore, nearly half of the top 50 predictions were for interactions between genes

where one or both genes did not have spatial expression data in Echinobase. Spatial expression

analysis will be crucial to confirming any predictions and ideally could be included as input in

the form of a single-cell RNAseq data set.

We found that using gene expression data as the sole input for machine learning GRN pre-

dictions was sufficient to generate predictions that match known regulatory interactions when

using the PEAK program. Our approach also generated new possible gene-to-gene interactions

that are not currently described. The new predictions from our data set will serve as a resource

for the sea urchin community; a relatively small, but influential group, in the areas of cis-regu-

latory biology and developmental regulatory networks. Our future research will include apply-

ing PEAK to emerging model species where transcriptomic gene expression data exists in

order to generate predictions for building and testing initial GRN models. Our method is

broadly applicable and accessible to any organism with gene expression data. Although no

prior knowledge is required, PEAK can accept many forms of prior knowledge to improve the

quality of predictions [10].

Materials and methods

Data sets

Two gene expression data sets were obtained to use as input into the PEAK algorithm. The

first data set comes from the sea urchin transcriptome project [12] where 10 embryonic time-

points (labeled with time in units of hours-post-fertilization (hpf)) were assayed for transcript

expression by RNAseq. The sequenced transcripts in the transcriptome data set derived from

cDNA collected from: (1) the unfertilized egg, 0 hpf; (2) cleavage stage, 10 hpf; (3) hatched

blastula stage, 18 hpf; (4) mesenchyme blastula, 24 hpf; (5) the early gastrula, 30 hpf; (6) mid-

gastrula stage, 40 hpf; (7) late-gastrula stage, 48 hpf; (8) prism stage, 56 hpf; (9) late prism

stage, 64 hpf (10) the pluteus stage, 72 hpf. All embryonic samples were obtained from a single

male and female mating pair, except the 24hr sample which was done separately as a pilot

experiment. Only a single replicate was sequenced for each time point, presumably due to limi-

tations of the amount of material that can be obtained from a single spawning event and the

decision not to introduce biological variation due to individual differences if multiple urchins
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were used. Each sample generated approximately 36.5M reads, of which 79% mapped to the S.

purpuratus genome v3. Gene models were built by Cufflinks, and, after quality filtering, 21,092

transcript models were defined and assigned an 8-digit WHL ID number beginning with “22.”

These models have been incorporated into the annotated sea urchin gene database and

assigned to previously established “SPU ID” numbers. Initially, values of expression for each

gene model were expressed in FPKMs (Fragments Per Kilobase of transcript per Million

mapped reads) as determined by Cufflinks. The gene expression values were then converted

into transcripts per embryo by the authors [12]. We obtained the full data set with gene models

identified by WHL ID and SPU ID and expression values for each timepoint in transcripts per

embryo. We converted the expression values into RPKMs (Reads Per Kilobase of transcript

per Million mapped reads) for our analysis.

The existing GRN models for sea urchin development cover the time period from 0 to 30

hpf. Of the 10 time points sampled in the transcriptome data set from Tu et al. only 5 are repre-

sented in the range of 0-30hpf [12]. Therefore, we decided to also use data from a high density

time series containing 34 time points, sampled every 2 hours over the first 72 hours of develop-

ment. The data set from Roberto Feuda uses Nanostring technology, which is often used as a

gold standard for absolute quantitation due to the fact that it measures RNA directly as

opposed to using an enzymatic reaction [43]. Even the Tu et al. transcriptome data set was vali-

dated using independent Nanostring quantitation [18, 22]. A key difference between RNAseq

and Nanostring is that Nanostring will only produce data for specific known gene models for

which probes were designed, whereas RNAseq surveys the entire transcriptome. The sea

urchin Nanostring data set we used queried 335 regulatory gene products, including transcrip-

tion factors and other modulators of gene expression. This gene set overlaps nicely with the

gene set present in the sea urchin ectoderm and endomesoderm GRN models. Specifically, 62

genes in total overlap between the Nanostring probe set and the ground truth GRN genes. The

overlap includes 29 of 38 genes overlapping with the ectoderm GRN and 38 of 54 genes over-

lapping with the endomesoderm GRN. There are 6 genes in the Nanostring probe set that

appear in both the ectoderm and endomesoderm GRNs (namely, unc4.1, not, foxA, eve, myc,
and bra). The normalized RNA counts produced by the Nanostring’s Ncounter were used

directly in our analysis.

Sea urchin GRN models

The most recently updated versions of the complete S. purpuratus GRNs for endomesoderm

and ectoderm development are hosted by the Institute for Systems Biology and can be accessed

online using the web application BioTapestry Interactive Network Viewer [15]. The endome-

soderm GRN can be found at http://grns.biotapestry.org/SpEndomes/, and the ectoderm GRN

can be found at http://grns.biotapestry.org/SpEcto/. These two GRN models were built by a

collaboration of sea urchin labs over the last thirty-some years. Each regulatory interaction is

depicted as a directional line connecting two gene nodes, and each interaction is supported by

experimental evidence, which can be accessed in the BioTapestry viewer directly. We obtained

lists of the genes present in each network and a list of every gene-to-gene interaction present

in the current version of the models from the BioTapestry director William Longabaugh.

There are 39 genes represented in the ectoderm GRN and 55 genes represented in the endome-

soderm GRN. The interaction list we obtained includes direct interactions and indirect inter-

actions that are driven by signaling molecule intermediates. Interactions derived from

signaling intermediates were not used in our comparison list. We also removed interactions

where a gene regulates its own expression because the PEAK algorithm is not designed to be

able to predict this type of interaction, due to the mathematical equations that it is built on.
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The final list used in our analysis contained 82 unique gene-to-gene interactions present in the

ectoderm GRN and 121 unique gene-to-gene interactions present in the endoderm GRN (S8

File). These unique interactions made up our ground truth GRN models, which were used for

comparison to the interactions predicted by the PEAK algorithm. The number of genes and

connections included in our analysis when requiring a match between gene expression data

set and corresponding ground truth network are described in Table 3 and listed as separate

tabs in S8 File.

Preprocessing and differential gene expression determination

The RNAseq data set was constructed with only one biological replica. Multiple methods have

been developed to perform differential gene expression analysis on RNAseq data when only a

single biological replica is available. These methods include: NOISeq [19], based on the multi-

nomial distribution; GFold [21], based on the posterior distribution of log fold change; and

EdgeR [20], based on the negative binomial (NB) distribution. To discover quantitative

changes in expression levels between experimental time points, we first applied NOISeq,

GFold, and EdgeR to determine the set of differentially expressed genes for further analysis.

For NOISeq, we normalized the data by RPKM (Reads Per Kilobase of transcript per Mil-

lion mapped reads), which takes into account that more sequencing reads are generated from

longer transcripts. The length of each transcript was obtained from the sea urchin database,

Echinobase (https://www.echinobase.org) [44]. We omitted genes that had no record in the

gene database. We set the simulation parameters as recommended in the NOISeq handbook,

where the percentage (pnr) of the sequencing depth is pnr = 0.2, the number of samples to be

simulated (nss) for each condition is nss = 5 and a small variability (v) is v = 0.02. We selected

the differentially expressed genes with the higher NOISeq probabilities based on our chosen

thresholds λ1 = 0.9, λ2 = 0.85. For GFold, we set the thresholds for the GFold value to λ3 =�1,

λ4 =� 1.5, since the GFold value is similar to the log2 fold change that is reliably used to select

differentially expressed genes. For EdgeR, we set the log2 fold change (log2fc) cutoff as 2 and

the edgeR dispersion as 0.01.

We used the gene database at Echinobase [44] to map all WHL IDs to SPU IDs to ensure

that the IDs we analyzed before and after are consistent and unique.

Computational GRN prediction

PEAK was used for our computational GRN predictions [10]. PEAK is a previously tested and

published algorithm that relies on differential equations, context likelihood of relatedness

(CLR), and Elastic Net. The particular mathematics underlying PEAK limit the computational

load to enable gene network inference to be an efficiently solvable problem. For each target

Table 3. Summary of data sets.

Data set Transcriptome RNAseq data set Transcriptome RNAseq data set Nanostring data set Nanostring data set

Ground Truth GRN (GT) Ectoderm GRN Endomesoderm GRN Ectoderm GRN Endomesoderm GRN

Method RNAseq RNAseq Nanostring Nanostring

Timepoints (T) 10 10 16 16

Genes (N) 37 53 30 38

Edges in GT 76 115 61 76

Summary of data sets used in the evaluation of PEAK’s predictions. For each data set, we only used the genes that appear both in the gene expression data and the

ground truth GRN data. We also only used the timepoints in the Nanostring data set corresponding to the time period covered by the GRN (0-30hrs), which

corresponded to 16 timepoints, sampled every 2 hours.

https://doi.org/10.1371/journal.pone.0261926.t003
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gene, PEAK builds a model using differential equations to predict the likelihood of being regu-

lated by each transcription factor in the dataset. PEAK initially uses CLR to filter out unlikely

TFs, then solves a regularized linear regression model (Elastic Net) to further optimize the pre-

dicted TFs and find their confidence score.

PEAK can be accessed as a front-end web application that is friendly to biologists, available

here: http://detangle.cs.vt.edu/. For each experiment, the corresponding gene expression table

is uploaded as input along with the corresponding list of transcription factors and metadata

about the experiments. We also experimentally tested different half-life values. PEAK returns

predicted interactions for each gene that scores above the confidence threshold set by the

‘PEAK value’. Each target gene has up to 30 ranked regulator (TF) predictions. Predictions are

marked positive or negative when representing an enhancing interaction or a repressive inter-

action, respectively. Each interaction is assigned a confidence score, allowing users to sort the

interactions with the highest confidence or the top 5 or top 10 predicted interactions for each

gene.

Assessment of Alx1 ChIPseq peaks

The Integrative Genomics Viewer (IGV) was used to visualize ChIPseq data for the Alx1 tran-

scription factor, which had several novel predicted targets among our top predictions [45, 46].

The S. purpuratus genome version 3.1 was used as the reference genome because the newer

version 5 release is still undergoing annotation and was more difficult to map existing datasets

that organize genes by SPU_ID and transcripts by WHL IDs. Indexed transcript models were

first loaded into IGV [12]. Alx1 ChIPseq data was obtained from a recent publication [29], and

peak calls for three P-value cutoffs, p<0.1, p<0.05, and p<0.005 were loaded as individual

tracks into IGV. To mark open chromatin, ATAC-seq and DNase-seq data from 24-hr S. pur-
puratus embryos were also loaded into the IGV [30]. For each of the 27 predicted target genes

for Alx1, we analyzed a window of +/- 20kB from the endpoints of the gene model and counted

the number of peaks called in that region at each of the P-value cutoffs. Images from IGV for

windows containing the genes chordin, cpb, homeo1, and hmg2, and a table of the peak counts

are included as S7 File.

Spatial co-expression analysis

Spatial co-expression analysis was performed using published spatial expression information

available within either the legacy Echinobase website or underlying the Biotapestry GRN

model, which stores data for each gene and data supporting each interaction. We visualized

the spatial expression information for each gene in a predicted interaction and marked the

overlap with a distinct color pattern. The matrix of spatial expression catalogs tissue-specific

expression over the first 30 hours of development. Using this analysis, we compared co-expres-

sion for our top 50 interactions to our bottom 50 interactions and marked each prediction as

“overlapping,” “non-overlapping,” or “missing expression.” An interaction was marked as

missing expression if either gene in an interaction was missing spatial expression information

in the database. The results are all part of S8 File.

Supporting information

S1 File. Gene lists after GO and DEG filtering. This excel sheet contains 2 tabs. Sheet ‘Gen-

eOntology_filter’ contains 1038 genes determined to be regulatory in nature by Gene Ontol-

ogy, annotated by their SPU_ID and sheet ‘GO_filtered_DEGs’ contains 544 transcripts that

passed both the GO filter and DEG filter.

(XLSX)
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S2 File. Transcription factors list. The 254 Transcription Factors (TFs) used during embry-

onic development according to a compilation of genes specified as TFs by Materna et al. [22]

and genes specified as TFs according to the custom GO annotation by Tu et al. [12].

(XLSX)

S3 File. Input files for PEAK prediction. This zipped file contains the metadata file, gene

expression file and the Transcription Factor list used for PEAK prediction.

(ZIP)

S4 File. Prediction result of PEAK. The output file of the PEAK prediction. Each row repre-

sents a predicted gene-to-gene interaction. The first column is the predicted regulating TF or

Gene1 and the second column is the target gene or Gene 2. The third column is the confidence

score of the prediction. Each target gene has up to 30 ranked regulator predictions. Predictions

are marked with a positive or negative confidence score when representing an enhancing

interaction or a repressive interaction, respectively. The genes are annotated by SPU_ID.

(CSV)

S5 File. Analysis of Alx1 ChIPseq, ATAC-seq and DNAseq data for predicted Alx1 targets.

Mapped Alx1 ChIPseq, ATAC-seq and DNAseq data onto sea urchin genome visualized in the

region of 4 novel PEAK-predicted target genes for Alx1.

(PDF)

S6 File. Spatial coexpression analysis for the top-50 predictions. The spatial expression com-

parison it its entirely for the Top-50 interactions, as sorted by absolute PEAK confidence

scores. Starts with a summary table. For each interaction a separate page displays the spatial

expression for each gene in each interaction presented as a color-coded co-expression matrix.

(DOCX)

S7 File. Spatial coexpression analysis for the bottom-50 predictions. The spatial expression

comparison it its entirely for the Bottom-50 interactions, as sorted by absolute PEAK confi-

dence scores. Starts with a summary table. For each interaction a separate page displays the

spatial expression for each gene in each interaction presented as a color-coded co-expression

matrix.

(DOCX)

S8 File. GRN ground truth interactions for each experimental analysis. This file has 6 tabs

representing the ground truth GRN interactions used for comparison to each gene expression

data set. Tab 1 is the ground truth ectoderm GRN interactions used for comparison to PEAK

output from the RNAseq data. Tab 2 is the ground truth endoderm GRN interactions used for

comparison to PEAK output from the RNAseq data. Tab 3 is the ground truth ectoderm GRN

interactions used for comparison to PEAK output from the Nanostring data. Tab 4 is the

ground truth endoderm GRN interactions used for comparison to PEAK output from the

Nanostring data. The last two tabs show a direct comparison of which interactions were able

to be used for analysis using the RNAseq dataset or the Nanostring dataset.

(XLSX)
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