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Abstract: As an important source of cholinesterase inhibitors, alkaloids in natural products have
high potential value in terms of exerting pharmacological activities. In this study, a strategy for
targeted preparation of cholinesterase inhibitors in Uncaria rhynchophlly (Miq.) Miq. ex Havil (UR) by
high-speed counter-current chromatography was provided. In the method, a two-phase polar solvent
system composed of ethyl acetate/n-butanol/water (1:4:5, v/v/v) was used, which isolated five
alkaloids from the UR extract for the first time. All alkaloids were identified by HR-ESI-MS and NMR
as 7-epi-javaniside (1), vincosamide (2), strictosamide (3), cadambine (4), and 3α-dihydrocadambine
(5). The poorly resolved compounds 2 and 3 were separated by preparative HPLC (prep-HPLC).
Among them, compounds 1, 4, and 5 were firstly obtained from UR. The purity of these plant isolates
was 98.8%, 98.7%, 99.2%, 95.7%, and 98.5%, respectively. Compounds 1–5 exhibited an inhibitory
effect on acetyl-cholinesterase and butyryl-cholinesterase with an IC50 from 1.47 to 23.24 µg/mL and
1.01 to 18.24 µg/mL. Molecular docking and inhibitory activities indicated that compound 1 showed
stronger inhibitory activity on acetyl-cholinesterase and butyryl-cholinesterase.

Keywords: Uncaria rhynchophlly (Miq.) Miq. ex Havil; HSCCC; alkaloids; cholinesterase inhibitory activity

1. Introduction

Cholinesterase inhibitors are a research hotspot in the treatment of Alzheimer’s disease
(AD), neurological, hypertension, and other diseases. According to their resources, they
can be divided into two categories: chemical synthesis and natural products. As an
important source of natural cholinesterase inhibitors, alkaloids have great potential in the
development of therapeutic drugs for AD. According to research, total alkaloids of Uncaria
rhynchophlly (Miq.) Miq. ex Havil (UR) can significantly reduce the activity of cholinesterase
in the serum of Alzheimer’s disease model rats [1]. The alkaloid components in UR as a
cholinesterase inhibitor have still not been identified. In view of these benefits, a study on
the separation and purification of alkaloids from UR is necessary.

UR is an evergreen vine of the Rubiaceae Uncaria and is an important traditional
Chinese medicine, also called double-claw, upside-down thorn, eagle claw thorn, etc. Many
phytochemicals, including alkaloids, triterpenes, phenol acids, and flavonoids are present
in UR. The major active components are alkaloids of UR, which have anti-hypertensive [2],
anti-convulsant [3], anti-epileptic [4,5], anti-inflammatory [6,7], and anti-cancer [8,9] ac-
tivities. Traditional methods used to isolate complex mixtures from UR include silica gel
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chromatography, polyamide column chromatography, ODS column chromatography, high-
pressure preparation of liquid phase, and others [10–13]. However, most of these methods
have disadvantages such as adsorption, small sample loading, difficulty in separating iso-
mers, and long preparation time. Therefore, traditional methods used for the separation of
single compounds with low content, complex components, high polarity, unstable property,
and similar structures are inefficient. These reasons lead to few reports in this direction.
Therefore, a method for separating and purifying alkaloids is in urgent need.

High-speed counter-current chromatography (HSCCC) is a simple, continuous, and ef-
ficient liquid–liquid partition chromatography technology developed by Ito in the 1980s [14].
It does not use solid carriers and avoid irreversible adsorption and denaturation of samples.
This processes the advantages of a high recovery rate and large preparation amount. CCC
uses a biphasic liquid system: one phase is the stationary phase, the other is the mobile
phase. Centrifugal fields are used to maintain the stationary phase stable and staying inside
the CCC column. Therefore, HSCCC is widely used in the isolation and purification of
natural products [15,16]. UR is rich in alkaloids and can be used as one of the natural
sources of cholinesterase inhibitors. In view of the disadvantages of traditional separation
methods such as slow separation speed, low yield, long time consumption, and the use
of many organic reagents, HSCCC can make up for these disadvantages. Therefore, us-
ing HSCCC to separate alkaloids is an efficient and feasible method for the separation of
cholinesterase inhibitors.

In this study, an effective method for targeted isolation of alkaloids with cholinesterase
inhibitory activity from UR using HSCCC was established (Figure 1). The crude extract
of n-butanol obtained from UR was segmented by macroporous adsorbent resin column
chromatography (AB-8), the activity was determined, and the activity fraction was selected
for HSCCC separation. Subsequent activity screening was performed on the isolated com-
pounds to realize an activity-guided separation. Finally, a new method was successfully
developed to isolate the five alkaloids rapidly and efficiently. The structures of the com-
pounds were elucidated by HR-ESI-MS combined with 1H and 13C-NMR. The chemical
structures of the isolated alkaloid are shown in Figure 2.
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2. Results and Discussion
2.1. Selection of the HSCCC Solvent Systems

HSCCC is different from other traditional chromatographic because its stationary
phase and mobile phase are both liquid. As a separation technology, HSCCC has advan-
tages: (1) no solid carrier, no irreversible adsorption of samples, high sample recovery;
(2) simple separation operation, short separation period, and less organic solvent consump-
tion; (3) a wide range of solvent systems covering various polarities. Complex compounds
are very suitable for the separation of complex components of plants; (4) the separation
mode is diverse, and it has good adaptability to compounds with large differences in
polarity; (5) the injection volume is large, which can be industrialized and meet the needs
of clinical research.

For HSCCC separation, it is crucial to choose a solvent system with moderate K values
for the target compounds. The K value is the ratio of the mass of the target compound
in the stationary phase to the mass in the mobile phase. Higher K values may result in
overly large peak breadth and extended elution time. However, lower K values may result
in poor peak resolution. In this study, an equal volume of the solvent system was taken
from the upper and lower phases, then a small amount of UR crude extract was added,
and the sample was fully dissolved in the solvent system by sufficient shaking. After the
equilibrium was attained, the two phases were separated, dried under reduced pressure,
and dissolved in methanol for analysis by HPLC. The partition value is the ratio of the
concentration of the target compound in the stationary phase and mobile phase of the
solvent system, which is very important for a suitable HSCCC separation. When the
partition value of the target compound is within an appropriate range (0.5–2), HSCCC can
obtain the target compound with high purity within the effective time. When the partition
value of the target compounds is relatively small, it will lead to shorter retention time,
faster peak emergence, low purity, and separation efficiency of the compound. When the
partition value of compounds is too large, a large number of target compounds remain
in the stationary phase, resulting in a very long separation time, which is not conducive
to efficient separation. The partition ratio of each compound in the solvent system was
calculated by the formula. In this study, several solvent systems with different proportions
were tested. The results are described in Table 1. When the solvent systems composed of
methyl tert-butyl ether:acetonitrile:water (4:1:5, v/v/v) were used, the K values were large,
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especially for compounds 3 and 4. Thus, it became difficult to elute target compounds.
Then, the solvent system composed of n-butanol:water (1:1, v/v) was tested but was not
suitable due to a lower K value. Therefore, it was once again difficult to separate target
compounds. Moreover, the solvent systems composed of ethyl acetate:n-butanol:water
with different proportions were tested. When the ratio (4:1:5, v/v/v) was used, the K value
of compound 1 was relatively low, which may lead to a short retention time and low purity.
The K values of other compounds indicated that the compounds were mainly distributed
in the lower phase, and their distribution in the upper phase can be increased by adjusting
the upper phase solvent system. This showed that the chemical composition was mainly
concentrated in the lower phase, which can be improved by increasing the proportion of
the upper phase solvent. Then, the ratios of 4:0.5:5, 3:2:5, 1:4:5, and 1:5:5 were tested. The
test results showed that when the proportion of ethyl acetate decreases, the proportion
of n-butanol increases will increase the K value of the five compounds. Therefore, the
two-phase solvent system consisting of ethyl acetate:n-butanol:water (1:4:5, v/v/v) was
selected as the optimal solvent system for the experiment. The separation results are shown
in Figure 3.

Table 1. The K values of target compounds in HSCCC separation with different solvent systems.

Slovent Systems Ratio (v/v/v)
K

1 2 3 4 5

Methyl-tert-butyl
Ether:acetonitrile:water 4:1:5 1.92 2.34 2.36 3.15 4.72

n-butanol:water 1:1 0.03 0.07 0.09 0.43 0.36
Ethyl acetate:n-
butanol:water 4:1:5 0.07 0.35 0.39 0.74 1.53

Ethyl acetate:n-
butanol:water 4:0.5:5 0.05 0.22 0.24 0.82 0.96

Ethyl acetate:n-
butanol:water 3:2:5 0.11 0.71 0.82 0.95 1.11

Ethyl acetate:n-
butanol:water 1:4:5 0.21 0.53 0.68 1.03 1.95

Ethyl acetate:n-
butanol:water 1:5:5 0.69 1.16 1.18 1.74 2.14
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Figure 3. The HSCCC separation chromatogram of fractions Ⅰ-Ⅴ. HSCCC conditions: solvent sys-
tem: ethyl acetate:n-butanol:water (1:4:5, v/v/v); stationary phase: UP; mobile phase: LP; rotating 
speed: 800 rpm; flow rate: 2.0 mL/min; separation temperature: 25 °C; detection wavelength: 220 
nm; sample solution: extract 80 mg + UP 10 mL + MP 10 mL. 

2.2. HSCCC Process and HPLC Analysis 

Figure 3. The HSCCC separation chromatogram of fractions I–V. HSCCC conditions: solvent system:
ethyl acetate:n-butanol:water (1:4:5, v/v/v); stationary phase: UP; mobile phase: LP; rotating speed:
800 rpm; flow rate: 2.0 mL/min; separation temperature: 25 ◦C; detection wavelength: 220 nm;
sample solution: extract 80 mg + UP 10 mL + MP 10 mL.

2.2. HSCCC Process and HPLC Analysis

The HSCCC process was carried out using ethyl acetate:n-butanol:water (1:4:5, v/v/v)
with other parameters: revolution speed, 800 rpm; flow rate, 2.0 mL/min; temperature,
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25 ◦C; 80 mg of the sample was dissolved in 20 mL of the lower phase with four continuous
sample injections in a single run. Fractions’ HPLC analysis results indicated that the three
alkaloids (4.5 mg (yield 0.045%) 7-epi-javaniside, 2.9 mg (yield 0.03%) cadambine, and
2.5 mg (yield 0.025%) 3α-dihydrocadambine) were obtained in one step separation within
3 h (Figure 3). Compounds 2 and 3 were purified by prep-HPLC to obtain 3.2 mg (yield
0.032%) vincosamide and 3.4 mg (yield 0.034%) strictosamide. The HPLC analysis of each
HSCCC fraction revealed that the purity values of compounds 1, 4, and 5 were 98.8%, 95.7%,
and 98.5%, respectively. Compound 2 and compound 3 were separated into prep-HPLC
to obtain purity of 99.2% and 95.7%. The HPLC chromatograms of the crude sample and
all the target compounds were shown in Figure 4. Compounds 1–5 purity was recorded
as 98.8%, 98.7%, 99.2%, 95.7%, and 98.5%, respectively, according to the HPLC peak-area
percentages. This result showed that HSCCC can successfully and effectively separate
compounds 1–5 from UR.

2.3. Structure Identification

The structure of the compound was determined by HR-ESI-MS and NMR. The MS
and NMR data of compounds agree with published data.

Compound 1 (Peak I in Figure 3, Figures S1–S3): Yellow powder, HR-ESI-MS m/z
515.2005 (M + H)+. 1H-NMR (600 MHz, CD3OD) δ: 4.08 (1H, dd, J = 11.4, 3.0 Hz, H-3),
3.96 (1H, td, J = 11.4, 7.3 Hz, H-5a), 3.84 (1H, brd, J = 12.4 Hz, H-5b), 2.48 (1H, dd, J = 12.8,
10.4 Hz, H-6a), 2.03 (1H, dd, J = 12.8, 7.3 Hz, H-6b), 6.90 (1H, d, J = 7.8 Hz, H-9), 7.03 (1H,
td, J = 7.8, 1.2 Hz, H-10), 7.26 (1H, td, J = 7.8, 1.2 Hz, H-11), 6.97 (1H, d, J = 7.8 Hz, H-12),
1.40 (1H, dt, J = 12.6, 3.0 Hz, H-14a), 0.88 (1H, m, H-14b), 3.07 (1H, m, H-15), 2.54 (1H, ddd,
J = 9.6, 6.8, 1.4 Hz, H-16), 5.42 (1H, d, J = 1.8 Hz, H-17), 7.41 (1H, d, J = 2.4 Hz, H-19), 5.30
(1H, dt, J = 16.8, 10.2 Hz, H-22), 5.07 (1H, dd, J = 17.1, 1.8 Hz, H-23a), 4.98 (1H, dd, J = 10.2,
1.8 Hz, H-23b), 4.64 (1H, d, J = 7.8 Hz, H-1′), 3.17 (1H, dd, J = 9.0, 7.8 Hz, H-2′), 3.35 (1H, m,
J = 2.4 Hz, H-3′), 3.25 (1H, d, J = 2.4 Hz, H-4′), 3.27 (1H, d, J = 2.4 Hz, H-5′), 3.64 (1H, d,
J = 12.0, 6.0 Hz, H-6′), 13C NMR (150 MHz, CD3OD) δ: 179.28 (C-2), 64.97 (C-3), 45.67 (C-5),
34.46 (C-6), 58.96 (C-7), 124.91 (C-9), 123.88 (C-10), 129.92 (C-11), 111.70 (C-12), 142.64 (C-13),
27.34 (C-14), 28.38 (C-15), 44.68 (C-16), 97.46 (C-17), 148.68 (C-19), 108.86 (C-20), 166.23
(C-21), 133.38 (C-22), 120.57 (C-23), 99.66 (C-1′), 74.84 (C-2′), 78.00 (C-3′), 71.69 (C-4′), 78.45
(C-5′), 62.80 (C-6′). Thus, the structure of 1 was defined as 7-epi-javaniside by comparison
of its MS, 1H- and 13C-NMR data with literature data [17].

Coumpound 2 (Peak II in Figure 3, Figures S4–S6): Yellow powder, HR-ESI-MS m/z
499.2058 (M + H)+. 1H-NMR (600 MHz, DMSO-d6) δ: 10.96 (1H, s, -NH), 4.91 (1H, m, H-3),
5.00 (1H, dd, J = 12.6, 5.4 Hz, H-5a), 2.89 (1H, dd, J = 12.6, 5.4 Hz, H-5b), 3.00 (1H, m, H-6a),
2.61 (1H, m, H-6b), 7.43 (1H, d, J = 8.4 Hz, H-9), 6.97 (1H, td, J = 8.4, 1.2 Hz, H-10), 7.07 (1H,
td, J = 8.4, 1.2 Hz, H-11), 7.33 (1H, d, J = 8.4 Hz, H-12), 2.51 (1H, m, H-14a), 1.30 (1H, dd,
J = 13.2, 11.4 Hz, H-14b), 2.73 (1H, m, H-15), 7.32 (1H, s, H-17), 5.34 (1H, dd, J = 17.2, 2.4 Hz,
H-18a), 5.17 (1H, dd, J = 11.4, 2.4 Hz, H-18b), 5.48 (1H, dt, J = 17.4, 11.2 Hz, H-19), 2.68 (1H,
m, H-20), 5.41 (1H, d, J = 2.4 Hz, H-21), 4.52 (1H, d, J = 7.8 Hz, H-1′), 3.04 (1H, m, H-2′), 3.18
(1H, m, H-3′), 3.12 (1H, m, H-4′), 3.21 (1H, m, H-5′), 3.67 (1H, m, H-6′a), 3.44 (1H, m, H-6′b);
13C-NMR (150 MHz, DMSO-d6) δ: 136.2 (C-2), 52.4 (C-3), 42.4 (C-5), 20.6 (C-6), 108.5 (C-7),
126.2 (C-8), 117.9 (C-9), 118.5 (C-10), 121.2 (C-11), 111.1 (C-12), 136.2 (C-13), 31.0 (C-14),
25.8 (C-15), 107.2 (C-16), 146.5 (C-17), 119.9 (C-18), 133.9 (C-19), 42.4 (C-20), 94.9 (C-21),
162.5 (C-22), 97.9(C-1′), 73.2 (C-2′), 77.2 (C-3′), 69.9 (C-4′), 76.5 (C-5′), 61.1 (C-6′). Thus, the
structure of 2 was defined as vincosamide by comparison of its MS, 1H- and 13C-NMR data
with literature data [18].

Compound 3 (Peak III in Figure 3, Figures S7–S9): Yellow powder, HR-ESI-MS m/z
499.2063 (M + H)+. 1H-NMR (600 MHz, DMSO-d6) δ: 11.06 (1H, s, -NH), 5.01 (1H, brd,
J = 4.2 Hz, H-3), 4.79 (1H, dd, J = 12.6, 5.4 Hz, H-5a), 2.99 (1H, m, H-5b), 2.80 (1H, m, H-6a),
2.61 (1H, m, H-6b), 7.35 (1H, d, J = 8.4 Hz, H-9), 6.97 (1H, td, J = 7.2, 0.6 Hz, H-10), 7.07
(1H, td, J = 7.2, 1.2 Hz, H-11), 7.33 (1H, d, J = 8.4 Hz, H-12), 2.51 (1H, m, H-14a), 1.89 (1H,
td, J = 13.2, 5.4 Hz, H-14b), 2.60 (1H, m, H-15), 7.22 (1H, d, J = 1.8 Hz, H-17), 5.34 (1H, dd,
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J = 20.4, 1.8 Hz, H-18a), 5.32 (1H, m, H-18b), 5.58 (1H, dt, J = 17.4, 9.6 Hz, H-19), 2.58 (1H,
m, H-20), 5.31 (1H, m, H-21), 4.42 (1H, d, J = 7.8 Hz, H-1′), 2.81 (1H, m, H-2′), 3.11 (1H,
m, H-3′), 2.79 (1H, m, H-4′), 3.05 (1H, m, H-5′), 3.67 (1H, m, H-6′a), 3.42 (1H, m, H-6′b);
13C-NMR (150 MHz, DMSO-d6) δ: 134.8 (C-2), 52.7 (C-3),42.2 (C-5), 20.6 (C-6), 108.8 (C-7),
127.2 (C-8), 117.9 (C-9), 118.5 (C-10), 121.3 (C-11), 113.3 (C-12), 135.5 (C-13), 25.7 (C-14),
23.4 (C-15), 107.8 (C-16), 146.8 (C-17), 119.9 (C-18), 133.2 (C-19), 42.8 (C-20), 96.2 (C-21),
162.8 (C-22), 98.9 (C-1′), 72.6 (C-2′), 77.2 (C-3′), 69.8 (C-4′), 76.7 (C-5′), 61.2 (C-6′). Thus, the
structure of 3 was defined as strictosamide by comparison of its MS, 1H- and 13C-NMR
data with literature data [18].

1 

 

 

Figure 4. HPLC analysis compounds ((a), extract crude; (b–f), compounds 1–5).
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Compound 4 (Peak IV in Figure 3, Figures S10–S12): Yellow powder, HR-ESI-MS m/z
545.2113 (M + H)+. 1H-NMR (600 MHz, CD3OD) δ: 2.82 (1H, m, H-5α), 3.14 (1H, m, H-5β),
2.80 (2H, m, H-6), 7.47 (1H, d, J = 8.4 Hz, H-9),7.01 (1H, t, J = 7.1 Hz, H-10), 7.11 (1H, t,
J = 7.5 Hz, H-11), 7.33 (1H, d, J = 7.8 Hz, H-12), 2.05 (1H, m, H-14α), 2.08 (1H, m, H-14β),
2.80 (1H, m, H-15), 7.57 (1H, s, H-17), 3.03 (1H, dd, J = 10.8, 7.8 Hz, H-18α), 3.49 (1H, brd,
J = 10.2 Hz, H-18β), 4.92 (1H, m, H-19), 1.73 (1H, m, H-20), 5.84 (1H, d, J = 9.0 Hz, H-21),
3.65 (3H, s, -OCH3), 4.80 (1H, d, J = 7.8 Hz, H-1′), 3.31~3.40 (4H, m, H-2′~5′), 3.61 (1H, dd,
J = 12.0, 6.6 Hz, H-6′α), 3.87 (1H, dd, J = 12.0, 2.4 Hz, H-6′β); 13C-NMR (150 MHz, CD3OD)
δ: 133.2 (C-2), 93.0 (C-3), 53.8 (C-5), 22.8 (C-6), 111.6 (C-7), 126.9 (C-8), 120.2 (C-9), 119.8
(C-10), 123.4 (C-11), 112.5 (C-12), 138.60 (C-13), 43.1 (C-14), 26.9 (C-15), 111.3 (C-16), 154.4
(C-17), 59.5 (C-18), 74.5 (C-19), 41.1 (C-20), 97.7 (C-21), 168.9 (C-22), 51.8 (-OCH3), 101.7
(C-1′), 74.9 (C-2′), 78.5 (C-3′), 71.7 (C-4′), 78.1 (C-5′), 62.9 (C-6′). Thus, the structure of 4
was defined as cadambine by comparison of its MS, 1H- and 13C-NMR data with literature
data [19].

Compound 5 (Peak V in Figure 3, Figures S13–S15): Yellow powder, HR-ESI-MS m/z
547.2261 (M + H)+. 1H-NMR (600 MHz, CD3OD) δ: 3.84 (1H, m, H-3), 2.80 (2H, m, H-6),
7.39 (1H, d, J = 7.8 Hz, H-9), 6.98 (1H, t, J = 7.4 Hz, H-10), 7.05 (1H, t, J = 7.6 Hz, H-11),
7.30 (1H, d, J = 8.0 Hz, H-12), 2.38 (1H, d, J = 14.6 Hz, H-14a), 1.79 (1H, dt, J = 14.6 Hz,
10.4Hz, H-14b), 3.08 (1H, m, H-15), 7.57 (1H, s, H-17), 3.29 (1H, m, H-18a), 2.93 (1H, m,
H-18b), 4.35 (1H, dd, J = 7.5Hz, 5.3Hz, H-19), 2.09 (1H, dt, J = 9.5 Hz, 5.9Hz, H-20), 5.61
(1H, d, J = 9.1 Hz, H-21), 3.82 (3H, s, -OCH3), 4.82 (1H, d, J = 7.9 Hz, H-1′), 3.31~3.42 (4H,
m, H-2′-5′), 3.86(1H, m, H-6′a), 3.68(1H, m, H-6′b); 13C-NMR (150 MHz, CD3OD) δ: 136.1
(C-2), 64.1 (C-3), 56.1 (C-5), 23.6 (C-6), 108.8 (C-7), 128.3 (C-8), 118.7 (C-9), 119.9 (C-10),
122.2 (C-11), 112.2 (C-12), 138.4 (C-13), 37.6 (C-14), 34.2 (C-15), 111.4 (C-16), 153.7 (C-17),
59.6 (C-18), 66.8 (C-19), 44.8 (C-20), 97.7 (C-21), 169.6 (C-22), 52.2 (-OCH3), 100.9 (C-1′), 74.7
(C-2′), 78.5(C-3′), 71.2 (C-4′), 78.1 (C-5′), 62.5 (C-6′), Thus, the structure of 5 was defined as
3α-dihydrocadambine by comparison of its MS, 1H- and 13C-NMR data with literature
data [20].

2.4. Cholinesterase Inhibitory Activity

Activity test results showed that the crude extract had strong cholinesterase inhibitory
activity and obtained five alkaloids with cholinesterase inhibitory activity through further
separation, which confirmed the feasibility of the experimental research method. Com-
pounds 1–5 showed strong acetyl-cholinesterase and butyryl-cholinesterase inhibitory
activities. Among them, compound 1 exhibited an inhibitory effect close to that of the posi-
tive drug, suggesting that this compound can be used as a lead compound for cholinesterase
inhibitors (Table 2).

Table 2. Cholinesterase activity of compound 1–5.

Samples
IC50 Value (µmol/L)

Acetylcholinesterase Butyrylcholinesterase

Crude extract 8.17 ± 0.17 22.53 ± 1.13
1 2.85 ± 0.50 2.13 ± 0.10
2 12.4 ± 0.86 23.18 ± 0.14
3 46.57 ± 0.58 6.47 ± 0.72
4 26.12 ± 2.12 30.69 ± 0.69
5 37.01 ± 1.57 33.34 ± 0.51

Tacrine 4.39 ± 0.80 3.25 ± 1.86

2.5. Molecular Docking Result

Mostly, molecular docking studies are applied to drug development, including the dis-
covery of novel AchE/BuchE inhibitors. Furthermore, molecular docking also predicts the
binding orientation of the ligands to the active sites of AchE/BuchE frequently. In this pro-
cess, AutoDock Vina has proven to be a powerful tool for evaluating the binding efficiency
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between ligands and protein targets [21]. Therefore, in the present study, AutoDock Vina
v1.1.3 was applied to simulate the molecular recognition process between AchE/BuchE
and the compounds separated above from UR, and the binding energies were calculated si-
multaneously (Table 3). The native ligands (Figure 5) of AchE and BuchE are pentaethylene
glycol (C10H22O6) and 2-acetamido-2-deoxy-β-D-glucopyranose (C8H15NO6).

Table 3. Molecular docking of compounds 1–5 with AchE and BuchE.

Ligands AchE (kcol/mol) BuchE (kcol/mol)

Native ligand (AchE) −3.9 —
Native ligand (BuchE) — −7.4

Compound 1 −7.6 −8.1
Compound 2 −6.3 −8.4
Compound 3 −7.5 −7.6
Compound 4 −6.0 −8.7
Compound 5 −6.9 −7.5

“—”: no binding.
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The affinity energy of the identified compounds ranges from −6.0 to −7.6 kcal/mol, a
more desirable result than organic ligand (−3.9 kcal/mol), indicating that those five compounds
may have the potential to be AchE inhibitors. As shown in Figure 6, the organic ligand interacts
with Ala88, Leu 98, and Leu86 residues, which also indicates that these residues may be in
the main AchE active sites. In this result, compared with other compounds, compounds 2
(−6.3 kcal/mol) and 4 (−6.0 kcal/mol) show higher affinity energy. Based on the phenomenon,
one of the reasons may be that they form interaction with AchE through Ala87, Ala88, Ile117,
and Gln101, respectively. Compounds 1 (−7.6 kcal/mol) and 3 (−7.5 kcal/mol) show more
stable binding, which may be related to the Val97, Pro95, and Ile117 residue sites. These residues
may be potential sites for inhibiting AchE activity. In the future, mutation experiments can be
carried out on their amino acid sites to verify whether they are active sites. Compared with
compound 4, compound 5 has a better binding ability, suggesting that it has a better AchE
inhibition ability. In terms of binding sites, although compound 5 has fewer binding sites, both
have the same binding sites Pro100 and Gln101 compared with compound 4. Therefore, from
the structural point of view, the dihydrogenation of compound 5 makes its ability to bind sites
more efficient. In addition, by comparing the interaction residue sites of all compounds with
AchE, it was found that Ala88, Leu86, Pro95, Pro100, Val97, and Ile117 can be used as the main
targets for the follow-up study of AchE inhibitors.
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The intermolecular interaction between compounds 1–5 and BuchE is shown in
Figure 7. Compounds 2 (−8.4 kcal/mol) and 4 (−8.7 kcal/mol) show more stable binding
ability, which may be related to amino acid residues, Trp32, Thr120, Gly117, Leu125, and
Phe398, which were involved in the interaction. However, compound 1 also showed good
binding ability (−8.1 kcal/mol), and the binding sites (Glu238, Arg242, Thr284, Pro359,
and Pro281) were different from compounds 2 and 4. This suggests that compound 1 may
have a specific mechanism of action, and the emergence of Arg242 means that this specific
mechanism may be related to this amino acid. Although compounds 3 (−7.6 kcal/mol)
and 5 (−7.5 kcal/mol) show poor BuchE binding ability, there were more hydrogen bonds
in the form of interaction. These hydrogen bonds overtly strengthened the interaction and
served as anchors for binding the inhibitor in the active site. This can be speculated as
it may be affected by the intermolecular force or hydrophobic interactions, which make
the binding energy unstable. In the in vitro experimental verification results, compound 1
showed better inhibition of AchE and BuchE, which were further supported by the molecu-
lar docking result. However, the simulation results of compounds 2 and 4 combined with
BuchE were inconsistent with those in vitro. This is not surprising, because the results
of molecular docking are not always consistent with experiments in vitro. In the process
of molecular docking, all possible spatial structures of molecules will be simulated, but
not all possible spatial structures can exist stably, which may be the main reason for the
different results between activity experiments and molecular docking. It is speculated that
it may have some spatial structures with good AchE and BuchE inhibitory activity, but
these structures can’t exist stably. The molecular docking results and in vitro experiments
of compound 1 may have a spiro ring structure, which makes its spatial structure diverse
and has good activity. The above experimental results show that molecular docking can be
used as an efficient screening tool for AchE and BuchE inhibitors.
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3. Experimental
3.1. Chemicals and Reagents

For the preparation of crude extract and counter-current chromatography (CCC)
separation of ethanol, ethyl acetate, methanol, methyl tert-butyl ether, and n-butanol were
analytical grade (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China). HPLC-grade
methanol and acetonitrile were purchased from Shanghai, China (Sinopharm Chemical
Reagent Co., Ltd., Shanghai, China). Acetyl-cholinesterase was from electric eel, butyryl-
cholinesterase was from equine serum, and acetylthiocholine iodide was purchased from
Sigma-Aldrich (Sigma-Aldrich company, St. Louis, MO, USA). Tacrine and 5, 5′-dithio-
bis-(2-nitrobenzoic acid) were provided by Macklin (Macklin Biochemical Technology Co.,
Ltd., Shanghai, China). AB-8 macroporous resin was purchased from Yuanye (Yuanye
Biochemical Technology Co., Ltd., Shanghai, China).

UR (1.0 kg) was collected from Zhuzhou, Hunan Province, China in March 2018, and
identified by Professor Li Feng of Shandong University of Traditional Chinese Medicine. A
voucher specimen (180301) had been deposited in the herbarium of Shandong University
of Traditional Chinese Medicine.

3.2. Apparatus

The HSCCC equipment was TBE-300C (Shanghai, Tauto Biotech, China) with three
multilayer coil separation columns of 300 mL (diameter of the PTFE tube as 2.6 mm) as
well as a 20 mL manual sample loop. The HSCCC apparatus was equipped with three
other instrument modules, including a TBP-5002s constant-flow pump, a TBD-2000 UV
detector (Tauto Biotechnique, Shanghai, China), and a DC-0506 low constant temperature
bath (Tauto Biotechnique, Shanghai, China) to maintain the temperature at 25 ◦C. HPLC
separation was performed on a 1260 LC system (Agilent Technologies, Santa Clara, CA,
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USA) consisting of a quaternary pump, an online degasser, a diode array detector, an
auto plate sampler, and a thermostatically controlled column compartment. Prep-HPLC
FL-H050G (Agela Technologies, Tianjin, China). An AMR-100 automatic enzyme label
analyzer (Allsheng Instruments Co., Ltd., Hangzhou, China) was used to determine the
absorbance. T5-100C A gas bath constant temperature oscillator (Kuang Bei Industrial
Co., Ltd., Shanghai, China) provided constant temperature incubation conditions. NMR
spectra were obtained from a Bruker Avance III 600 MHz spectrometer (Bruker corporation,
Saarbrucken, Germany). The chemical shift values are reported as δ in ppm relative to
tetramethylsilane (TMS) and the coupling constants (J) are in hertz (Hz). HR-ESI-MS
spectra were recorded on Thermo Scientific Q Exactive UHMR-Orbitrap (Thermo Fisher
Scientific company, Waltham, MA, USA).

3.3. Preparation of Crude Extract

The dried stems of UR (1.0 kg) were crushed and extracted three times using 5 L of
C2H5OH:water (7:3, v/v) at 25 ◦C for 15 days, and the extraction was repeated three times;
then dried under reduced pressure to obtain ethanol extract (100 g) and suspended in water
and extracted with n-butanol (1.0 L).

The n-butanol soluble fraction (22.3 g) was first separated over a macroporous adsor-
bent resin column (AB-8). The column was eluted with water:ethanol (90:10, 70:30, 50:50,
30:70, 10:90, v/v), yielding five fractions. Then, the 30% ethanol eluate (0.8 g) was ready to
be further separated by HSCCC.

3.4. Selection of Solvent System

The selection of the solvent system is based on the partition coefficients (K-values).
The K-values of the target compounds in the crude alkaloid extract from the UR were
determined by HPLC. Five milliliters of each phase of the equilibrated two-phase solvent
system was added to approximately 10 mg of the crude alkaloid extract and were shaken
vigorously for 1 min. After the phases had fully separated, 1 mL of each layer was removed
and dried in a stream of nitrogen. The residues were dissolved in 1 mL of methanol and
analyzed by HPLC. The K-values of the target compounds were calculated according to
Equation (1), where AU and AL were the peak areas of the target compound in the upper
and lower phases, respectively.

K = AU/AL (1)

3.5. Preparation of the Solvent System and Sample Solutions

For the HSCCC solvent system, a two-phase system, consisting of ethyl acetate:n-
butanol:water (1:4:5, v/v/v), was placed into a separating funnel. After shaking vigorously,
the solution was allowed to stand for several minutes and was separated into two phases
for the experiment. The upper phase was the stationary phase, while the lower phase was
the mobile phase. For this HSCCC sample, 80 mg of crude extract alkaloid was dissolved
in 20 mL isometric upper and lower phase.

3.6. HSCCC Separation Procedure

In the separation procedure, the multilayer coiled column was entirely filled with the
upper phase as the stationary phase at first. Then, the lower phase as mobile phase was
pumped into the head end of the column at a flow rate of 2.0 mL/min, while the apparatus
was rotated at 800 rpm. The temperature of the low-temperature constant temperature
bath was set to 25 ◦C. After a clear mobile phase eluted at the tail outlet, which means
hydrodynamic equilibrium was established, the sample solution was injected through the
sample port. A UV detector was used to monitor the effluent from the tail end of the column
continuously at 220 nm. Each peak fraction was collected according to the chromatogram.
The retention of the stationary phase was calculated from the volume of the stationary
phase collected from the column before the sample was injected.
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3.7. Further Separation by Prep-HPLC

In Figure 3, we can see that compounds 1, 4, and 5 reached the baseline separation
state with neighboring compounds. In this case, the fractions can be directly taken out
and tested for purity by HPLC and further identification. Compounds 2 and 3 did not
reach the baseline separation, and the two peaks inevitably crossed, resulting in reduced
compound purity. The mixture of compounds 2 and 3 from HSCCC was dried on a rotary
evaporator at a temperature of 55 ◦C and dissolved with methanol and water (4:6, v/v).
A ReproSil 100 C18 (250 mm × 10 mm, 5 µm) was used for the separation procedure. The
mobile phase was composed of water (A) and methanol (B), and a 45% B isocratic elution
in 40 min was used with a detection wavelength of 220 nm. The flow rate was 3.0 mL/min
and the injection volume was 0.5 mL.

3.8. HPLC Analysis Peak

HPLC analysis of the crude sample and each peak fraction were performed as follows:
a ZORBAX-SB-C18 column (5 µm, 150 × 4.6 mm) was used with gradient elution at a
flow rate of 1.0 mL/min. The mobile phase was water (contained 0.2% ammonia, A) and
acetonitrile (B) (0–35 min, 10–40% B). The work of structure identification was carried out
by HR-ESI-MS and NMR.

3.9. Cholinesterase Inhibitory Activity

The Ellman [22] method was used to determine the inhibitory activity of acetyl-
cholinesterase and butyryl-cholinesterase of each monomer compound. Briefly, 150 µL
of PBS buffer solution (pH = 7.4), 10 µL of the tested compound solution, and 20 µL of
acetyl-cholinesterase or butyryl-cholinesterase solution (concentration of 0.2 U/mL) were
transferred to a 96-well plate and placed in a gas bath constant temperature oscillator at
37 ◦C for 15 min. After that, 10 µL of 5, 5′-dithio-bis-(2-nitrobenzoic acid) solution (DNTB,
2 mmol/L) and 10 µL of acetylthiocholine iodide solution were added in sequence (AICI,
10 mmol/L), mixed well, and after 30 min, the absorbance of each well was measured
and recorded at a wavelength of 412 nm, repeated three times and the average was taken.
Tacrine was used as a positive control and DMSO was used as a negative control. Then,
10 µL PBS was added to the blank group to exclude other irrelevant factors from affect-
ing the experimental results and ensure the rationality of the experimental results. The
inhibition rate at each concentration according to the following Equation (2) and the half
inhibitory concentration (IC50 value) of AchE and BuchE were calculated.

Inhibition Rate = (Anegative control group − Atest group/Anegative control group − Ablank group) × 100% (2)

3.10. Molecular Docking

Molecular docking was chosen for understanding the mode of interactions between
target compounds and AchE/BuchE. The docking program was performed by using Auto
Dock Vina v1.1.3. Firstly, the structures of these compounds were saved as a docking ligand
in PDB format, and the energy of ligand molecules was minimized by using Chem 3D
20.0. The X-ray crystal structures of AchE (PDB ID: 6U37) and BuChE (PDB ID: 6R6W)
were download from the RSCB database (https://www.pdbus.org/, accessed on 21 August
2019). Secondly, hydrogen atoms were added to the protein structure to ensure the correct
protonation states. Then, all ligands including the protein were converted to PDBQT format.
Concurrently, the docking analysis was performed in a grid map of 18 × 20 × 20 with the
spacing of 1 Å centered on the active site of AchE/BuchE. Finally, the docking results were
visualized using PyMOL software (https://www.pymol.org/, accessed on 21 August 2019),
and docking results were evaluated by the affinity value.

4. Conclusions

In our study, a new method, using a two-phase solvent system composed of ethyl
acetate:n-butanol:water (1:4:5, v/v/v) combined with the further purification of the prep-

https://www.pdbus.org/
https://www.pymol.org/
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HPLC, was successfully established to isolate five high polar alkaloids from the UR crude
extract. After HPLC analysis, the purity of them was determined to be 98.8%, 98.7%, 99.2%,
95.7%, and 98.5%, respectively. Compounds 1, 4, and 5 were firstly isolated from the
plant of UR. In addition, the enzyme activity experiment and molecular docking showed
that the five alkaloids isolated have varying degrees of cholinesterase inhibitory activity,
indicating the feasibility of this method for targeted preparation of isolated cholinesterase
inhibitors. Compounds 2 and 3 are isomers of each other. HSCCC was successfully used
to separate isomers in UR, which provided a theoretical reference for the subsequent
separation of isomers. In short, the current study advances our understanding of the
chemical composition and biological effects of UR. Furthermore, the above compounds,
especially compound 1, can be used for in-depth studies for their inhibition of AchE/BuchE
and further accelerate the design of drugs for AD treatment.
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