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A B S T R A C T

Proteinopathies are key elements in the pathogenesis of age-related neurodegenerative diseases, particularly
Alzheimer’s disease (AD), with the nature and location of the proteinopathy characterizing much of the disease
phenotype. Susceptibility of brain regions to pathology may partly be determined by intrinsic network structure
and connectivity. It remains unknown, however, how these networks inform the disease cascade in the context of
AD biomarkers, such as beta-amyloid (Aβ), in clinically-normal older adults. The default-mode network (DMN),
a prominent intrinsic network, is heavily implicated in AD due to its spatial overlap with AD atrophy patterns
and tau deposition. We investigated the influence of baseline Aβ positron emission tomography (PET) signal and
intrinsic DMN connectivity on DMN-specific cortical thinning in 120 clinically-normal older adults from the
Harvard Aging Brain Study (73 ± 6 years, 58% Female, CDR = 0). Participants underwent 11C Pittsburgh
Compound-B (PiB) PET, 18F flortaucipir (FTP) PET, and resting-state MRI scans at baseline and longitudinal MRI
(3.6 ± 0.96 scans; 5.04 ± 0.8 years). Linear mixed models tested relationships between baseline PiB and DMN
connectivity on cortical thinning in a composite of DMN regions. Lower DMN connectivity was associated with
faster cortical thinning, but only in those with elevated baseline PiB-PET signal. This relationship was network
specific, in that the frontoparietal control network did not account for the observed association. Additionally, the
relationship was independent of inferior temporal lobe FTP-PET signal. Our findings provide evidence that
compromised DMN connectivity, in the context of preclinical AD, foreshadows neurodegeneration in DMN re-
gions.

1. Introduction

Although β-amyloid (Aβ) is a hallmark pathologic trait of
Alzheimer’s disease (AD), simply knowing levels of Aβ does not suffi-
ciently predict development of dementia. Additional biomarkers in-
cluding tau pathology (Brier et al., 2016; Gordon et al., 2018; Jack
et al., 2019; Mattsson et al., 2019; Sperling et al., 2019), neurodegen-
eration (Mormino et al., 2014a; Jack et al., 2019; Mattsson et al., 2019),
cardiovascular risk (Vemuri et al., 2015; Rabin et al., 2018), and
functional connectivity (Buckley et al., 2017; Van Hooren et al., 2018)

can help better predict risk for future decline in the context of elevated
Aβ burden. Regarding connectivity, a growing body of evidence has
implicated connectivity within the default-mode network (DMN) as
particularly vulnerable to AD pathology (Buckner et al., 2005; Sperling
et al., 2009; Jones et al., 2016; Palmqvist et al., 2017; Chhatwal et al.,
2018). DMN cortical regions overlap with late stage atrophy signatures
of AD (Dickerson et al., 2009), sites of high amyloid burden (Mormino
et al., 2011; Buckner et al., 2009), and a posterior subset of DMN re-
gions co-locate with patterns of neurofibrillary tau accumulation
(Johnson et al., 2016; Franzmeier et al., 2019; Ossenkoppele et al.,
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2019; Li et al., 2019). Recent evidence suggests lower functional con-
nectivity negatively impacts cognitive outcomes over time in in-
dividuals with elevated Aβ burden (Buckley et al., 2017). The long-
itudinal neurodegenerative implications of impaired DMN connectivity
and elevated Aβ in clinically-normal older adults, however, are still
unelucidated. If network integrity relates to neurodegeneration and
future cognition, then we predict network coherence should be in-
dicative of future atrophy, particularly in the context of amyloid, which
is associated with neurodegenerative processes.

To investigate this question, we examined the relationship of
baseline DMN connectivity and amyloid with longitudinal default mode
neurodegeneration in healthy older adults. Specifically, we tested the
hypothesis that lower DMN connectivity and higher Aβ burden at
baseline would interact to influence faster cortical thinning in a DMN
cortical composite. We also investigated the extent to which cortical
thinning in the DMN was specifically associated with DMN connectivity
by controlling for thinning and connectivity measures from the fron-
toparietal control network and tau-PET, as higher levels of tau accu-
mulation spatially intersect with thinner cortex in network hubs of the
DMN (Lapoint et al., 2017; Mak et al., 2018; Ossenkoppele et al., 2019;
Li et al., 2019).

2. Materials and methods

2.1. Participants

We included 120 clinically normal participants, aged
62.75–88.25 years at baseline (SD = 6.0), from the Harvard Aging
Brain Study (HABS) who had at least two MRI scans and a baseline PiB-
PET scan (see Table 1). Participants received MRI scans once every
2–3 years (Dagley et al., 2017). Structural MRI spanned an average of
5.04 years (range 3.69–6.96 years) over an average of 3.6 visits (range
2–8 visits). Four participants had 2 scans, 56 participants had 3, and 60
had 4 or more scans. PiB sessions occurred on average 0.25 year
(SD = 0.42, range 0–2.78 years) from the individual’s first MRI session.
As part of HABS, all participants at baseline had to score 0 on the
Clinical Dementia Rating scale, greater than 25 on the Mini-Mental
Examination, and<11 on the Geriatric Depression Scale. Most recent
diagnoses based on follow-up neuropsychological visits concluded 4
subjects were diagnosed with dementia, and 10 were diagnosed with
MCI.

2.2. Experimental Design: MRI

MRI scans were collected on one of two matched 3 T Trio Tim
scanners with a 12-channel head coil at the Martinos Center for Imaging
in Charlestown, Massachusetts. Scanner noise was attenuated using
foam earplugs, and foam padding was placed around the head to limit
head movement. T1-weighted magnetization-prepared rapid gradient

echo (MPRAGE) scans had the following parameters: TR/TE/inversion
time 2,300/2.95/900 ms, flip angle 9°, 1.1 × 1.1 × 1.2 mm resolution.
The T1 scans were processed with FreeSurfer v6.0 (FS6). After initial
FS6 recon, each scan was manually quality-checked for movement ar-
tifact and segmentation accuracy. Errors to the pial surface and white
matter were adjusted by removing non-brain matter voxels, placing
control points, and reprocessing cases until accurate segmentation re-
sults were obtained or the scan was deemed unusable. All scans were
run through the FS6 longitudinal pipeline. The longitudinal pipeline
creates temporally-unbiased templates for each person based on an
average of all timepoints from the corresponding participant (Reuter
et al., 2012). Each scan is resampled to the median space to reduce
random variability between timepoints and to improve sensitivity. Each
template was quality checked according to previously published
methods to ensure accuracy of pial and white matter surfaces (Dagley
et al., 2017). In accordance with the FS longitudinal pipeline (Reuter
et al., 2012), any poor template was monitored by 1) tracing to the
contributing cross-sectional scans and performing additional quality
edits before recreating the template, 2) editing the template directly
until satisfaction, or 3) deeming the subject’s data unusable. FcMRI data
were acquired using a gradient-echo echoplanar imaging sequence
sensitive to BOLD contrast. Whole-brain coverage, including the cere-
bellum, was acquired while aligned parallel to the anterior/posterior
commissure using the following parameters: TR/TE 3000/30 ms; flip
angle, 85°; field of view, 216x216 mm; matrix, 72x72; and 3x3x3 mm
voxels; 124 volumes were acquired in one or 2 6-minute runs (including
4 dummy volumes; 12 s which were subsequently discarded). Instruc-
tions were to lie still, remain awake, and keep eyes open and focus on a
fixation cross projected on a screen at the head of the bore.

Each 6-minute baseline resting state fMRI scan was realigned, re-
sliced, and then morphometrically aligned to the T1 image using
SPM12 (Function Imaging Laboratory, Wellcome Department of
Cognitive Neurology, London, UK), spatially normalized to MNI space
using the warping field derived on the T1 image, smoothed with a 6 mm
Gaussian smoothing kernel, and temporally filtered with a fourth order
Butterworth bandpass filter (0.08 Hz-0.1 Hz).

Tissue probability maps from the T1 (derived with the SPM12
unified segmentation/normalization routine) were used to identify
voxels with a maximum tissue probability belonging to white matter,
cerebral spinal fluid, or bone. For each of these three tissue classes we
performed a temporal PCA and retained the top 5 components from
each tissue class. We also used the 6 movement parameters from the
realignment step plus first derivatives and squared terms yielding a
total of 33 nuisance regressors. All nuisance regressors were temporally
filtered in the same manner as the resting state scan. We then per-
formed a PCA on the 33 z-scored regressors and retained the number of
PCs needed to account for 90% of the variance in the nuisance regressor
set within each individual. This PCA step was performed to reduce the
dimensionality of the nuisance regressor set and avoid overfitting of the

Table 1
Demographic information.

N Overall
120

low PiB
87

high PiB
33

t-test, Chi-square test

Mean SD Mean SD Mean SD Effect size p-value

Age 73.35 6.0 72.93 6.3 74.5 4.8 1.29 0.20
Education (yrs) 16.02 2.9 16.1 3.0 16.6 2.7 0.84 0.40
PiB FLR DVR 1.18 2.9 1.08 0.1 1.46 0.1 18.6 < 0.0001
Sex # F (% F) 70 (58) 52 (59.8) 18 (54.5) 0.03 0.67
APOE e4 # (% +) 37 (30.8) 17 (19.5) 21 (63.6)
AMNART VIQ 122.2 7.9 121.9 8.0 122.9 8.0 0.61 0.54
# MRI visits 3.6 0.96 3.6 0.95 3.6 1.0
Time span (yrs) 5.04 0.8 5.1 0.8 4.9 0.6 1.30 0.20

Note: PiB FLR DVR = Pittsburgh Compound-B distribution volume ratio of frontal, lateral, and retrosplenial tracer uptake; PiB positivity determined by FLR cutoff of
1.186 derived from a Gaussian mixed model; APOE = Apolipoprotein E; AMNART VIQ = American National Adult Reading Test Verbal IQ.
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nuisance regressors to the resting state fMRI data. For our sample, an
average of 7.7 ± 2.4 nuisance regressors were then removed from
each individual fMRI session.

We derived fcMRI maps for the default mode network (DMN) and
frontoparietal control network (FPCN) using our previously published
Template Based Rotation (TBR) method (Schultz et al. 2014; Fig. 1).
The FPCN measure was an average of measures from the Left and Right
FPCN templates. For an exploratory analysis, we extracted the signal
from the overlapping FPCN voxels within the DMN connectivity maps
to create an FPCN-within-DMN measure as well as a DMN-within-FPCN
measure to explore inter-network connectivity (see Fig. 2).

TBR maps variance from a given subject's fMRI run to a set of a priori

template maps. The process produces a least squares fit to the template
maps via a weighted linear summation of functional volumes. The
weights associated with each functional volume can be interpreted as
the time series that best recapitulates the spatial pattern in the tem-
plates. As with spatial group independent component analysis (ICA),
when using TBR there is no explicit requirement to clean data in ad-
vance of analysis. ICA can be written in matrix algebra form as
IC = X•M where IC is the independent components (m-voxels by n-
components), M is the unmixing matrix (m-volumes by n-components),
and X is the empirical data (m-voxels by n-volumes). Starting with only
X, M must be discovered which then provides IC. If IC is already known,
then the derivation of M is a straightforward algebraic problem that can

Fig. 1. Network template maps – Network template maps used for connectivity measures and cortical composites based on TBR methods (adapted from Schultz et al.,
2014). DMN = Default Mode Network; FPCN = Frontoparietal Control Network.

Fig. 2. Network composite volumetric maps – Overlap of the TBR-derived DMN (in white) and FPCN (in black) network composites over the Desikan-Killany atlas
(Desikan et al., 2006). The full list of atlas brain regions is listed on the left. DMN = Default Mode Network; FPCN = Frontoparietal Control Network.
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be solved as M = X−1 •IC, which is precisely the TBR formulation
(where X−1 is the pseudo-inverse of the matrix X). The only assumption
is that a given IC, derived on an independent dataset, is a sufficiently
close approximation to a true source in X, and is sufficiently in-
dependent of nuisance variance sources. This provides TBR with an
implicit ability to perform blind source/signal separation even when
not explicitly modeling all source’s variance. Complete details can be
found in Schultz et al., 2014.

Template maps were derived from a large independent sample of
675 young subjects from the Genome Superstruct project which utilized
identical functional sequences. The derivation utilized factor rotation
(orthomax rotation) on group level principal components to produce 20
spatial maps. These templates have been used in multiple prior pub-
lications. Complete details can be found in Schultz et al., 2014, and
both template maps and relevant code for TBR are publicly available at
mrtools.mgh.harvard.edu.

TBR connectivity measures for each participant and network were
computed using the average correlation strength of all brain voxels
within the network mask (greater than 40% maximum value in the
corresponding template map), resulting in a whole network con-
nectivity measure. Following functional connectivity analysis and ex-
traction of network measures for all subjects we regressed out all be-
tween subject variance associated with movement (mean frame-to-
frame displacement), and data dimensionality (number of principal
components) utilized by the TBR algorithm (see Schultz, 2014 for de-
tails). As TBR can perform implicit data scrubbing by down-weighting
specific volumes, no scrubbing is required (Schultz et al., 2019).

We made a group level template space version of the PETsurfer GTM
segmentations (Greve et al., 2013), using the spatial normalization
provided by the SPM12 unified segmentation/normalization algorithm
on the T1 MPRAGE images. The group level atlas coded each voxel as
the most frequently assigned label across 270 baseline MPRAGE scans
from HABS. We then took the functionally defined regions of interest
from Shaw et al., 2015, which were based on the 20 component par-
cellation from Schultz et al., 2014 (the same templates used in the
present report), resampled each node mask to 0.5 mm resolution using
cubic interpolation. Any voxel in the resampled space that contained a
resampled mask value greater than 0.25 and that lay within the group
level gray matter cortical partition was assigned the corresponding
label. Cortical voxels that were not part of a functional node were as-
signed to an undefined label.

We then took this high resolution map of functional parcels specific
to the group level MNI space gray matter partition and mapped it to
fsaverage using a custom algorithm whereby for each fsaverage vertex
we found all voxels that were within 2 mm of the vertex, and then
assigned the vertex the value of the most frequently occuring label.
These surface maps were then used to create an annotation file for the
fsaverage subject, which were then mapped onto each subject’s native
surface in order to obtain measures of cortical thickness associated with
default mode and fronto-parietal control networks for each subject at
each timepoint.

2.3. Experimental Design: PET

Full acquisition method details regarding 11C PiB-PET data collec-
tion in HABS are outlined in Johnson et al., 2013. In summary, PiB-PET
images were acquired with an 8.5–15 mCI bolus injection with a 1-hour
dynamic acquisition over 69 volumes (12 × 15 s, 57 × 60 s). PET
images were subjected to reconstruction and attenuation correction,
evaluated for head motion, and co-registered to the participant’s T1-
weighted image using 6 degrees of freedom rigid body registration. For
each participant, we calculated summary distribution volume ratio
(DVR) of frontal, lateral, and retrosplenial (FLR) tracer uptake, using
the average uptake across FreeSurfer defined ROI Desikan-Killany atlas
(Desikan-Killany et al., 2006): precuneus, rostral anterior cingulate,
medial orbito-frontal, superior frontal, rostral middle frontal, inferior

parietal, inferior temporal, and middle temporal regions from both
hemispheres. These target regions were then referenced to cerebellar
grey matter signal. For our additional analyses, we dichotomised our
sample according to a previously published PiB thresholding method
(Mormino et al., 2014b; high PiB [n = 33] and low PiB [n = 87]).

For tau-PET measures, data were acquired using a Siemens CTI
ECAT HR + scanner (3-dimensional mode, 63 image planes, 15.2 cm
axial field of view, 5.6 mm trans axial resolution, and 2.4 mm slice
interval). The scan took place in 4 × 5 min frames for 80–100 min after
a 9.0–11.oCi bolus injection of 18F Flortaucipir PET (FTP-PET), pre-
pared with a radiochemical yield of 14 ± 3% and specific activity of
216 ± 60 GBq/μmol at the end of synthesis as previously reported
(Johnson et al., 2016), and validated for human use (Shoup et al.,
2013). All PET images were reconstructed and attenuation corrected,
and each frame was evaluated to verify adequate count statistics and
absence of excessive head motion.

To evaluate the anatomy of cortical FTP-PET binding, PET scans
were rigidly coregistered to the individual’s T1-weighted MRI scan
closest in time to the FTP-PET scan using SPM12. FTP-PET data were
partial-volume corrected using the Geometric Transfer Matrix (GTM)
method (Rousset et al., 1998) using the FS6 PET-Surfer implementation
(Greve et al., 2013). FTP signal was measured in the bilateral inferior
temporal gyrus as a standardized uptake value ratio (SUVR), using FS6
defined cerebellar gray as the reference region. We used inferior tem-
poral tau signal as a proxy for AD-specific neocortical tau spread, which
has been associated with cognitive decline (Hanseeuw et al., 2017,
Sperling et al., 2019). Due to the relatively recent availability of FTP-
PET, FTP-PET scans were not collected at baseline, but approximately
in the middle of the MRI timeline (average 3.22 years from first MRI,
SD: 1.36 years).

2.4. Statistical analyses

For all analyses, we used the fitlme statistical package in MATLAB
R2017. We ran a series of linear mixed effect models with intercept and
slope included as random factors to examine the influence of baseline
DMN connectivity and continuous PiB on cortical thinning. Network
connectivity values were controlled for nuisance regressors for each
individual and demeaned based on the whole dataset before analyses.
In all models, we used time-varying DMN cortical thickness as the
outcome variable and included age, sex, and years of education as
covariates. For our main analysis, we used the following model:

DMN composite thickness ~ DMN FC* PiB*time + Covariates*time +
(time|subject)

To further investigate our findings, we ran the same analysis in 2
groups stratified by high and low PiB DVR without the PiB term in the
model in order to observe the effect of baseline DMN on atrophy within
each PiB group. We ran additional models to test specific post hoc hy-
potheses exclusively within the high PiB group to examine the influence
of FPCN connectivity, time-varying FPCN network composite thickness,
or inferior temporal tau-PET measurements on DMN composite cortical
thinning in order to establish the specificity of DMN connectivity on
DMN atrophy. PiB, FTP, and functional connectivity (FC) values were
treated as continuous variables and demeaned before analyses. As the
majority of statistical tests were post-hoc tests to unpack the primary
DMN FC:PiB:time interaction we did not correct for multiple compar-
isons.

3. Results

3.1. DMN node thinning over time is associated with baseline DMN
connectivity and higher PiB

We observed a significant interaction between baseline DMN
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connectivity and PiB on cortical thinning in the DMN composite (t
(421) = 2.43, p = 0.015, d = 0.24; see Table 2 for full statistical
results). Specifically, lower DMN connectivity and higher PiB levels at
baseline were associated with increased thinning in the DMN cortical
composite over time (see Fig. 3). Raw DMN composite thickness data
over time per participant is depicted in Fig. 4. To confirm our findings
using an alternate atlas parcellation, we ran our main LME model in-
teracting DMN functional connectivity and PiB signal from baseline to
predict longitudinal thinning in the DMN composite based on Yeo et al.,
2011. Similar with the TBR-derived DMN composite, we observed a
significant negative interaction between baseline DMN connectivity
and PiB signal (p = 0.024, t(421) = 2.27, d = 0.22). This result is
comparable to, but slightly weaker than, the outcome using the TBR-
derived DMN thickness composite.

Next, we stratified the model into high and low PiB groups based on
the methods outlined above and removed the PiB term from the model.
We found the effect of lower DMN connectivity at baseline in the high
PiB group was significantly associated with increased thinning in the
DMN composite (t(108) = 4.08, p= 0.00009, d= 0.78), but not in the
low PiB group (t(307) = 0.24, p = 0.81, d = 0.03). Considering the
high PiB group drove the effect of DMN connectivity on DMN thinning,
we conducted additional analyses only in the high PiB group to further
explore the relationship.

3.2. In high PiB individuals, the influence of baseline DMN connectivity on
DMN composite thinning is not fully explained by other AD-related
biomarkers

In additional analyses, we included other variables to the high PiB
DMN model known to be associated with AD-related decline. First, we

Table 2
Results of DMN composite thinning by DMN connectivity and PiB in all participants and in each PiB group.

DMN CT DMN CT (PiB + ) DMN CT (PiB-)

PiB*Time t(421) = −1.94; p = 0.053
DMN*Time t(421) = 1.69; p = 0.09 t(108) = 4.08; p = 0.00009 t(307) = 0.24; p = 0.81
PiB*DMN t(421) = 0.41; p = 0.68
PiB*DMN*Time t(421) = 2.43; p = 0.015

Note: DMN = Default Mode Network; CT = cortical thickness; PiB = Pittsburgh Compound-B; Age, sex, and years of education included as covariates.

Fig. 3. DMN composite thinning by baseline DMN and PiB: Predicted values
from LME model analyzing the effect of baseline DMN and PiB signal on
thinning in the DMN over time. Note: DMN and PiB signal values were median
split in this diagram. We observed faster rates of thinning in the DMN composite
in individuals with lower baseline DMN connectivity, but primarily in in-
dividuals who also have higher baseline PiB signal (solid red line). (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. Spaghetti plots of raw data by PiB group: Each line depicts a single participant and the demeaned DMN composite thickness over time. Line aesthetics have
continuous thickness and transparency values based on their continuous baseline DMN connectivity measure. Darker, thicker lines indicate lower baseline DMN
values, while thinner, lighter lines indicate higher baseline DMN values. The panels are split by PiB- group (N = 87) and PiB + group (N = 33).
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considered frontoparietal control network (FPCN) connectivity
(Buckley et al., 2017) in addition to the DMN connectivity variable in
order to investigate the specificity of within-network connectivity to
atrophy. In the high PiB group, we found that the FPCN connectivity
was not independently associated with cortical thinning in the DMN (t
(106) = 0.24, p = 0.81, d = 0.05), while the influence of DMN con-
nectivity became attenuated, but remained significant (t(106) = 2.48,
p = 0.01, d = 0.48). To explore the relationship of inter-network
connectivity and PiB on thinning in the DMN, we used an FPCN-within-
DMN measure and a DMN-within-FPCN measure in additional models
in the full sample but found no significant effect.

Next, we included time varying cortical thickness in the FCPN as an
independent variable in addition to DMN connectivity to determine
whether the observed atrophy in the DMN could be explained by
changes in cortical thickness in regions associated with other cognitive
networks. The DMN by time interaction remained significantly asso-
ciated with DMN cortical thinning (t(107) = 2.36, p = 0.02,
d= 0.46), even though the FPCN composite thickness variable was also
strongly related to DMN thinning (t(107) = 12.2, p < 0.00001,
d = 2.35).

Last, we investigated if inferior temporal (IT) tau-PET signal influ-
enced the association between baseline DMN connectivity and cortical
thinning in the DMN. We included IT FTP-PET by time as a covariate in
the high PiB DMN model; even with the significant tau by time term in
the model (t(106) = -3.73, p = 0.0003, d = -0.73), the effect of lower
DMN connectivity on increased DMN atrophy in the high PiB group
remained significant (t(106) = 3.67, p = 0.0004, d = 0.71). We in-
formally investigated the three-way interaction of IT tau, DMN con-
nectivity, and time on DMN thinning in the high PiB group but observed
no significant effect. We dismissed these results, as we are limited by
our sample size and the temporal incongruence in data collection of the
tau-PET and fcMRI. When all three of these variables (FPCN con-
nectivity, FPCN thickness, and IT tau) are included in the high PiB DMN
model, the DMN by time interaction was no longer statistically sig-
nificant, but still trended in the same direction (t(103) = 1.36,
p = 0.18, d = 0.27).

4. Discussion

4.1. Discussion of results

We found that in the presence of elevated baseline Aβ burden, lower
baseline DMN connectivity was associated with faster longitudinal
atrophy within DMN associated regions. We observed that the effect
was restricted to high Aβ individuals, and that the effect was in-
dependent of inferior temporal FTP-PET signal, baseline FPCN con-
nectivity, or longitudinal change in FPCN thickness. Further, we did not
observe an association between PiB-PET signal and DMN fcMRI
strength, suggesting that lower DMN fcMRI at baseline is not a simple
consequence of amyloid pathology. This suggests that functional con-
nectivity may represent a proxy of resilience to the AD pathological
cascade (Arenaza-Urquiljo and Vemuri, 2018; Franzmeier et al., 2017).
Our results suggest that individuals with high Aβ levels are more vul-
nerable to atrophy if the pathology is coupled with low baseline DMN
connectivity.

Within the high Aβ group, baseline DMN connectivity remained
significantly associated with DMN cortical thinning after controlling for
functional coherence in the FPCN or longitudinal atrophy in the FPCN.
The persistence of the DMN effect in the high amyloid group, despite
covarying for other strongly associated cognitive networks, indicates a
degree of specificity for DMN functional network connectivity to pre-
dict the rate of future atrophy within the default mode network. This
provides partial support for the general hypothesis that neurons that
fire together and wire together also die together, as illustrated by Seeley
et al. (2009). These results are also congruent with previous work im-
plicating the DMN’s particular vulnerability to AD-related pathology in

early stages of Alzheimer’s disease relative to other cognitive networks
such as the FPCN (Chhatwal et al., 2018). The DMN’s central role in
cognition and memory may predispose it to a broad range of patholo-
gies that affect brain networks in normal aging, but especially in disease
(Jones et al., 2011). It should be noted, however, that our analyses
within the high Aβ to understand DMN specificity were exploratory,
and interpretations with these results should be approached with cau-
tion.

Previous reports implicate disrupted connectivity within the DMN
as a reflection of accumulating biomarkers (Mormino et al., 2011, Jones
et al., 2016). As previously stated, our results don’t show a baseline
effect of Aβ on DMN connectivity, and our data do not align with the
notion that amyloid pathology drives network failure or that atrophy is
purely a product of tau pathology. These biomarkers may then con-
tribute separately to longitudinal atrophy. Our analyses, however, do
implicate that network disruption in the DMN precedes structural
changes. More research is required to delve into the question if the
high-DMN/high Aβ group reflects an excitotoxic or compensatory hy-
perconnectivity phase prior to DMN functional disruption.

In order to further understand the relationship between con-
nectivity, Aβ, and selective atrophy, future studies could investigate
other variables that could influence resilience and are related to func-
tional connectivity, such as cognitive reserve, longitudinal tau-PET,
cardiovascular risk, lifestyle, or genetic factors (Pietzuch et al., 2019).
Including years of education did not significantly attenuate the ob-
served effect in our models, however there could be other factors
contributing to cognitive reserve in the high-DMN/high-Aβ group.
Cardiovascular risk factors are also associated with rates of cognitive
decline and cortical thinning (Rabin et al., 2019). Since we do not have
tau-PET measures available at baseline, we cannot fully examine how
tau-PET influences thinning from the time of the resting state mea-
surements. It remains to be seen how these multiple facets are related to
functional connectivity and atrophy in the presence of Aβ.

While there has been recent work (Ahmed et al., 2014, Calafate
et al., 2015, Franzmeier et al., 2020, Hoenig et al., 2018, Vogel et al.,
2020) and interest regarding the hypothesis that tau pathology propa-
gates via networks (functionally or otherwise defined), our data and
results are not suitable for assessing questions of the network spread of
tau. We believe no observational study, even with longitudinal data,
can discriminate network spread versus shared vulnerability to a given
pathology or disease process. The general hypothesis that diseases can
have network specific effects is not dependent on a particular pa-
thology, process, or etiology. We know that brain networks exhibit si-
milarities across many different biological scales (e.g. gene expression,
metabolic processes, receptor distributions, evolutionary stage, etc…),
which means diseases can show network specificity through any
number of mechanisms or more generally via shared vulnerability
across the different regions of a network. We also know that proper
network functioning is a product of the constituent parts meaning pa-
thology in one specific region will have repercussions for the func-
tioning and health of the network as a whole. While we have demon-
strated that there does appear to be a DMN specific effect amongst high
amyloid individuals that is not accounted for by the FPCN or tau pa-
thology, the mechanism of this effect remains unclear.

Better understanding the longitudinal trajectory of DMN fcMRI in
the high-Aβ group is also intriguing, as recent longitudinal fcMRI work
finds impaired individuals with high amyloid experience longitudinal
degradation of the DMN and Salience networks (Schultz et al., 2019). A
prior report also suggests that functional connectivity may para-
doxically increase during certain early stages of disease (Schultz, et al.,
2017), and the high-DMN/high-PiB group might indicate an earlier
stage of disease relative to the low-DMN/high-PiB counterparts, and
may relate to some set of compensatory mechanisms in the presence of
amyloid pathology. With available diagnoses from neuropsychological
follow-up of this sample, 14 of 120 participants progressed to MCI or
dementia. 28.6% of those progressors were in the high-DMN/high-PiB
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group, while 50% of progressors were in the low-DMN/high-PiB group.
The remaining 21.4% of progressors were in the low-PiB group. It is
unclear if DMN functional connectivity is fully capturing a unique
factor of decline related to AD progression, but this description further
supports the findings of Buckley and colleagues (2017) implicating
worse cognitive outcomes for low-DMN/high-PiB individuals.

Our sample from the Harvard Aging Brain Study is comprised of
healthy, well-educated, elderly individuals who were cognitively
normal at baseline. The DMN effect we report was only observed in
those individuals with elevated amyloid burden at baseline, suggesting
that the effect we report is specific to preclinical and early prodromal
Alzheimer’s disease. In addition, while our overall sample size was
large, the effect was carried by the smaller high-PiB group (N = 33). It
will be important to replicate these results in other samples.

4.2. Conclusions

In summary, we have presented evidence that cortical thinning in
the DMN is associated with a combination of greater Aβ burden and
lower DMN functional connectivity at baseline in clinically-normal
older adults. By using longitudinal structural MRI, we observed that
neurodegeneration in the DMN in clinically-normal adults is associated
with elevated Aβ pathology and moderated by cross-sectional DMN
functional integrity, providing support for the hypothesis that func-
tional network disruption or impairment presages atrophic processes
within the regions and circuits that define the network. Although we
did not observe this effect in the low-Aβ group, the lack of a finding
may be due to the relative lack of pathologic heterogeneity and good
health in our population. Our results encourage further investigation of
longitudinal atrophy, particularly in regard to a temporal sequencing
with functional connectivity, to better understand the progression of
preclinical AD.
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