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SUMMARY

Inferring molecular networks can reveal how genetic perturbations interact with environmental 

factors to cause common complex diseases. We analyzed genetic and gene expression data from 

seven tissues relevant to coronary artery disease (CAD) and identified regulatory gene networks 

(RGNs) and their key drivers. By integrating data from genome-wide association studies, we 

identified 30 CAD-causal RGNs interconnected in vascular and metabolic tissues, and we 

validated them with corresponding data from the Hybrid Mouse Diversity Panel. As proof of 

concept, by targeting the key drivers AIP, DRAP1, POLR2I, and PQBP1 in a cross-species-

validated, arterial-wall RGN involving RNA-processing genes, we re-identified this RGN in 

THP-1 foam cells and independent data from CAD macrophages and carotid lesions. This 

characterization of the molecular landscape in CAD will help better define the regulation of CAD 

candidate genes identified by genome-wide association studies and is a first step toward achieving 

the goals of precision medicine.

Graphical abstract

INTRODUCTION

Coronary artery disease (CAD) is a heritable complex disease caused by the interactions of 

multiple genetic and environmental risk factors that change the molecular landscape of 

vascular and metabolic tissues to accelerate atherosclerosis. Despite lifestyle improvements 

and the successful targeting of CAD risk factors, such as hypercholesterolemia (Samani and 

de Bono, 1996) and hypertension (Bangalore et al., 2012), CAD still accounts for the 

majority of cardiovascular diseases. In fact, the clinical manifestations of CAD and 

atherosclerosis—myocardial infarction (MI) and stroke—are responsible for nearly 50% of 
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all deaths globally (Mensah et al., 2014). New research strategies are urgently needed to 

battle CAD. One promising strategy is systems genetics (Barabási et al., 2011; Björkegren et 

al., 2015; Civelek and Lusis, 2014; Schadt, 2009; Schadt and Björkegren, 2012), which will 

help achieve a global understanding of how regulatory gene networks (RGNs) act within and 

across tissues to cause CAD. Such knowledge is central to tailor therapies to the specific 

molecular pathology of the individual patient (Collins and Varmus, 2015).

An important part of systems genetics is genome-wide association studies (GWASs), the 

predominant approach to genetic analysis of complex diseases for the last decade, which 

have led to the discovery of more than 150 genetic risk loci for CAD alone (Deloukas et al., 

2013; Peden and Farrall, 2011;). However, these information-rich datasets have been 

analyzed only from the perspective of single DNA variants and, therefore, are a largely 

untapped resource to further elucidate the genetic basis of complex diseases. We and others 

(Barabási et al., 2011; Björkegren et al., 2015; Civelek and Lusis, 2014; Schadt and 

Björkegren, 2012) propose to use systems genetics to integrate the analyses of GWASs with 

functional genomic datasets where the combined effects of many, sometimes subtle, genetic 

and environmental influences are captured within molecular networks. In this study, we 

applied a systems genetics pipeline (Figures 1 and S1), including integrative multi-tissue, 

GWAS, and cross-species analyses to robustly identify RGNs in CAD. In sum, we identified 

30 CAD-causal RGNs harboring 59 CAD-related GWA candidate genes (Deloukas et al., 

2013), whereof 26 RGNs were validated in corresponding gene expression and phenotypic 

data from the Hybrid Mouse Diversity Panel (HMDP) (Bennett et al., 2010). As proof of 

concept, key drivers in CAD-causal RGNs active in both the human and mouse 

atherosclerotic arterial wall (AAW) were further evaluated in a THP-1 foam cell model 

(Figure 1G) and in independent data from primary CAD macrophages and carotid lesions.

RESULTS

Inference of Co-expression Network Modules

In the first step of our analysis (Figure 1), we used weighted gene co-expression network 

analysis (WGCNA) (Zhang and Horvath, 2005) to infer functionally related genes in the 

form of co-expression modules from 612 newly generated gene expression profiles from 

seven tissues—AAW and non-AAW (internal mammary artery [IMA]), liver, skeletal muscle 

(SM), visceral fat (VF), subcutaneous fat (SF), and whole blood from the late-stage CAD 

patients of the Stockholm Atherosclerosis Gene Expression (STAGE) study (Hägg et al., 

2009; Table S1; Figures 1A, 1B, and S1). We identified 94 tissue-specific and 77 cross-

tissue modules (Figure 2A; Tables S2 and S3). The relevance of these 171 modules for CAD 

was reflected in the top ten biological processes and molecular functions according to gene 

ontology (Table S3; Supplemental Experimental Procedures). Moreover, we found 2,467 

genes previously related to CAD/atherosclerosis (33%, p = 1.5 × 10−24; Supplemental 

Experimental Procedures) and 147 genes of 309 candidate genes proposed for risk loci 

identified by GWASs (Table S4; GWA genes) for CAD (n = 33 of 53 GWA genes) 

(Deloukas et al., 2013), plasma lipids (n = 87 of 183), and measures of plasma glucose 

metabolism (n = 22 of 43), including type 2 diabetes (n = 45 of 98) (Welter et al., 2014).
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To test the robustness of cross-tissue modules against the contribution of gene expression in 

individual tissues, we removed gene expression data from one tissue and re-clustered the 

data. The 171 modules could largely be retrieved, except when data from dominant tissues in 

cross-tissue modules were removed (Supplemental Experimental Procedures).

Identification of Modules Associated with Main CAD Phenotypes

In the third step of the analysis pipeline (Figures 1C and S1), we used regression analysis 

and second-step clustering to identify linear and non-linear associations between module 

gene expression and CAD phenotypes (Supplemental Experimental Procedures). We found 

61 modules that were associated with at least one of the following four major CAD 

phenotypes: (1) extent of coronary atherosclerosis as measured in preoperative angiograms 

(Hägg et al., 2009) (resulting in 14 atherosclerosis modules); (2) plasma levels of total 

cholesterol (TC), very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL), or 

high-density lipoprotein (HDL) (29 cholesterol modules); (3) plasma glucose (fasting), 

HbA1c, insulin, or pro-insulin levels (14 glucose modules); and (4) the inflammatory marker 

C-reactive protein (CRP) (15 CRP modules) (Figure 2B). Ten modules were associated with 

more than one of the four phenotypes (Figure 2B; Table S2). Manual analysis of the 

atherosclerosis-, cholesterol-, glucose-, and CRP-associated modules suggested that, 

depending on phenotype association, the modules were more likely to be tissue specific 

(atherosclerosis, cholesterol, and CRP modules) or cross-tissue (glucose modules). 

Moreover, some modules were associated with more than one of the four major CAD 

phenotypes (Supplemental Experimental Procedures).

Inferring Module Causality by Using GWAS of CAD

The associations between the 61 co-expression modules and the four CAD phenotypes do 

not reveal whether the module activity alters the phenotypic values (causal) or is caused by 

changes in phenotypic values (reactive). Therefore, in the fourth step of our analysis 

(Figures 1D and S1), we assessed if the phenotype-associated modules were CAD causal or 

not. As in previous studies (Emilsson et al., 2008; Foroughi Asl et al., 2015; Schadt and 

Björkegren, 2012), we defined causal modules as those containing either of the following: 

(1) cis-acting expression quantitative trait loci (cis-eQTLs) (or, if a module had <10 eQTLs, 

cis-located SNPs) enriched in association with CAD according to CAD GWAS (Deloukas et 

al., 2013; Figure 2B, column 2); or (2) one or more CAD candidate genes (Brænne et al., 

2015) already identified for CAD GWAS risk loci (Figure 2B, column 3; Table S4).

Using these definitions, we identified 30 CAD-causal modules (Figure 2B): eight 

atherosclerosis modules (of 14), ten cholesterol modules (of 29), five glucose modules (of 

14), four CRP modules (of 15), and three additional CAD-causal modules that were 

associated with more than one of the four CAD phenotypes (Figure 2B). By integrating 

GWASs also for CAD risk factors (Welter et al., 2014), we found that the 30 CAD-causal 

modules contained 59 unique GWA genes for CAD (n = 19), plasma cholesterol (n = 39), 

and glucose metabolism (n = 14, including type 2 diabetes GWA genes) (Table S4) and 42% 

CAD/atherosclerosis genes (p = 1.2 × 10−5). Of the CAD-causal modules, 18 were also 

causal for plasma cholesterol levels (n = 15) or glucose metabolism (n = 12), based on their 

eQTL risk enrichment or the presence of GWA genes (Table S2).
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Inference of RGNs and Key Drivers from the Co-expression Modules

In the next step of the analysis (Figures 1E and S1), to define the directions of edges 

between genes in the 30 CAD-causal modules, we inferred RGNs including key drivers by 

Bayesian network modeling, using transcription factors, eQTL genes, and GWA genes as 

prior candidate regulators (Figures 3 and S2–S5; Tables S5 and S6; Supplemental 

Experimental Procedures).

Of the RGNs inferred from the 30 CAD-causal modules, eight associated with the extent of 

atherosclerosis (i.e., atherosclerosis modules) are shown in Figure 3. A nearly SF-specific 

RGN related to steroid and lipid metabolism (n = 231 genes, including one liver and one 

AAW gene) contained ten GWA genes identified for CAD, cholesterol, or glucose traits 

(APOA1CAD,LDL,HDL,TC, ANGPTL3LDL,TC, HPRLDL,TC, LIPCHDL,TC, LIPGHDL,TC, 

NPC1L1LDL,TC, PPP1R3BLDL,HDL,TC,insulin,glucose, PROX1glucose, SLC2A2glucose, and 

TMEM195glucose). Of these 10 GWA genes, only APOA1 was a key driver; the other key 

drivers were CYP4F2, F11, KLKB1, KMO, MYCL1, and ZGPAT. This RGN also was 

highly enriched in association with fasting glucose (8.0-fold, p < 3.3 × 10−272) and TC (8.7-

fold, p < 1.0 × 10−300) (Figure 3A). Another truly SF-specific RGN, related to metabolic 

processes and oxidoreductase activity (n = 195 genes), contained as many as 15 GWA genes 

(ABCG5LDL,CAD,TC, ABCG8LDL,CAD,TC, ANXA9LDL, APOA5LDL,HDL,CAD,TC-TG, 

APOC4LDL, CPS1HDL, CYP7A1LDL,TC, FOXA2glucose, GCKRTC,glucose,insulin, 

HNF1ATC,LDL, HNF1BT2DM, LPALDL,CAD,TC, NR0B2LDL,HDL, PLGCAD, and 

PCSK9LDL,CAD,TC). Again, besides PLG, the key drivers of this network were not these 

GWA genes; they were FOXA2, NR1I2, ONECUT2, and UROC1 (Figure 3B).

Three CAD-causal atherosclerosis-related RGNs (Figures 3C, 3D, and 3H) were AAW 

specific. The first, an RGN (n = 131 genes) enriched in immune system processes, contained 

the macrophage lipid and inflammatory regulators and GWA genes APOECAD and 

NR1H3HDL as its key drivers, together with CD80, E2F2, HCLS1, and PDE8B (Figure 3C). 

The second, an RGN (n = 109 genes) also linked to HDL cholesterol levels, contained RNA-

processing genes highly enriched in CAD association (2.1-fold, p < 1.0 × 10−300) with seven 

key drivers (AIP, DRAP1, MRPL28, PCBD1, POLR2I, PQBP1, and ZNF91) and one GWA 

gene (ARF5T2DM) (Figure 3D). The third AAW-specific RGN was small (n = 31 genes), 

even further enriched in CAD association (4.6-fold, p < 1.0 × 10−300), and mainly contained 

genes involved in inflammatory responses and the GWA gene ADRA2Aglucose (Figure 3H).

The remaining three CAD-causal, atherosclerosis-related RGNs contained genes from 

multiple tissues (Figures 3E–3G). The first was dominated by AAW genes (n = 53/81), but it 

had at least three genes active in all of the CAD-relevant tissues except in blood. This RGN 

contained two GWA genes (ABCA1HDL,TC and CETPLDL,HDL,TG-TC); was highly enriched 

in association with CAD (3.8-fold, p < 8.8 × 10−49), plasma triglyceride levels (5.3-fold, p < 

2.3 × 10−103), and fasting glucose levels (1.9-fold, p < 5.6 × 10−06); and had seven key 

drivers (four in AAW and three in liver) with diverse functions, including transmembrane 

signaling (Figure 3E). The second RGN was smaller (n = 44 genes) and active across all 

tissues except liver (Figure 3F). Besides the Chr9p21 risk locus GWA gene CDKN2A 
(Welter et al., 2014) in VF, it had three additional VF key drivers: CLDN4, CTNNAL1, and 

MYSM1. The third multi-tissue RGN (n = 37 genes), dominated by SF and AAW genes (n = 
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12 and 22, respectively), was linked to HbA1c levels and enriched in associations with CAD 

(4.1-fold, p < 3.4 × 10−16), HbA1c levels (3.3-fold, p < 6.8 × 10−10), and insulin levels (3.0-

fold, p < 1.8 × 10−8) (Figure 3G). This RGN had three key drivers (CLEC12A, CTSS, and 

FOLR3) implicated in cell adhesion, cell-cell signaling, glycoprotein turnover, 

inflammation, and immune responses (e.g., antigen presentation). The RGNs of the 

remaining 22 CAD-causal cholesterol, glucose, and CRP modules (Figure 2B; Table S2) are 

shown in Figures S2–S5; the characteristics and directions of gene-gene interactions of the 

remaining RGNs inferred from all 171 modules are described in Tables S5 and S6.

The CAD GWA genes (Brænne et al., 2015) were included as regulatory priors in the RGN 

inference. However, compared to eQTLs and transcription factors, their role as 

transcriptional regulators can be debated. Of 25 GWA genes in 17 of the 30 CAD-casual 

modules, 13 were identified as key driver genes. To test whether the RGN topology and the 

identification of the non-GWA key drivers were dependent on including GWA genes as 

regulatory priors, we repeated the RGN inference without these; 16 RGNs were re-identified 

and contained, on average, 89% of the same edges and 91% of the same non-GWA key 

drivers (Supplemental Experimental Procedures).

Cross-Species Validation of CAD-Causal RGNs

Examples of the successful use of mouse models to study atherosclerosis in relation to 

plasma levels of cholesterol (Björkegren et al., 2014; Skogsberg et al., 2008), glucose (Guo, 

2014), and CRP (Kovacs et al., 2007) are many, suggesting that some vascular and metabolic 

processes leading to CAD/atherosclerosis are shared with humans. This might be 

particularly true for RGNs thought to be well conserved throughout evolution (Hinman et 

al., 2003). Therefore, in the next step of the pipeline (Figures 1F and S1), we tested the 

phenotypic associations of 26 of the 30 CAD-causal RGNs (Figures 3, S2, S3, and S5) 

against the HMDP (Bennett et al., 2010); the four CRP RGNs (Figure S4) were not 

validated, as CRP was not assessed in the HMDP.

The HMDP consists of up to 105 different strains of mice with considerable phenotypic 

variation and global gene expression from relevant tissues—such as aortic atherosclerotic 

lesions, liver, heart (used for STAGE SM), and adipose tissue—as well as phenotypic 

characteristics, similar to the STAGE study (Supplemental Experimental Procedures). In 

examining mouse orthologs of the 26 CAD-causal RGN genes (Table 1), we found that the 

activity in three of seven CAD-causal, atherosclerosis-specific modules (Figures 3D–3F) 

also segregated the 105 strains of mice according to their extent of atherosclerosis. Similarly, 

three of ten cholesterol-specific modules (Figures S2C, S2D, and S2F), three of five glucose-

specific modules (Figures S3A, S3C, and S3E), and at least one phenotype in three modules 

associated with multiple phenotypes (Figure S5) also segregated the 105 mice of the HMDP 

according to the corresponding mouse phenotypes (Table 1). Thus, 46% (12/26) of the 

CAD-causal RGNs/modules were related to corresponding phenotypes in mice.

In addition, we used aortic root lesion eQTLs and SNP p values from a GWAS of the extent 

of aortic root lesions in the HMDP (Supplemental Experimental Procedures) to assess the 

extent to which the three cross-species-validated, atherosclerosis-specific modules (Figures 

3D–3F) also were causal for the mouse atherosclerosis phenotype. The mouse eQTLs of 

Talukdar et al. Page 6

Cell Syst. Author manuscript; available in PMC 2016 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



orthologs of genes in RGN 42 (Figure 3D), but not in RGN 58 (0.2-fold, p = not applicable) 

and RGN 98 (0.0-fold, p = not applicable) (Figures 3E and 3F), were highly enriched in 

association with mouse atherosclerosis (2.5-fold, p < 4.3 × 10−84) and, thus, causal for 

mouse atherosclerosis.

The Role of Cross-Species-Validated Atherosclerosis RGNs in THP-1 Foam Cells

Foam cells form continuously throughout all stages of atherosclerosis development (Lusis, 

2000) and, thus, may be affected by CAD-causal RGNs related to the extent of human and 

mouse atherosclerosis. Accordingly, in the final step of our analysis (Figures 1G and S1), we 

used differential gene expression and cholesterol-ester accumulation measures 

(Supplemental Experimental Procedures) to examine the effects of small interfering RNA 

(siRNA) silencing of key drivers in the three cross-species-validated CAD-causal 

atherosclerosis-related RGNs (Figures 3D–3F; modules 42, 58, and 98 in Table S2) in an in 

vitro model of atherosclerosis. THP-1 cells differentiated into macrophages and incubated 

with acetylated LDL to generate foam cells (Skogsberg et al., 2008). In RGN 42, which is 

enriched in RNA-processing genes (Figure 3D), individual silencing of four of seven key 

drivers (AIP, DRAP1, POLR2I, and PQBP1) specifically activated RGN 42 network genes 

in THP-1 macrophages and reduced cholesterol-ester accumulation in THP-1 foam cells 

(Table 2). In contrast, silencing of key drivers in RGNs 58 and 98 did not specifically 

activate genes in these RGNs (Supplemental Experimental Procedures; Table S7).

Re-identification of RGN 42 in Independent Gene Expression Data

Since RGN 42 was the sole RGN to emerge from the analysis pipeline (Figures 1A–1G and 

S1), we used independent gene expression datasets to examine the extent to which it could 

be re-identified in the following: (1) in-house global gene expression datasets from primary 

blood macrophage samples (n = 36) and carotid lesions (n = 25) isolated from patients 

before and during carotid surgery, respectively (Hägg et al., 2009); and (2) datasets 

generated by others from lipopolysaccharide-stimulated monocytes (n = 18) and 

macrophages (n = 18) from CAD patients (Schirmer et al., 2009). Reassuringly, the 109 

genes in RGN 42 were more strongly co-expressed than sets of 109 random genes, 

especially in the carotid lesions (9.5-fold higher connectivity of RGN 42 genes than of genes 

in 10,000 random sets, p < 1.0 × 10−300) and also in macrophages (3.7-fold, p = 6.2 × 10−37) 

(Hägg et al., 2009), CAD lipopolysaccharide-stimulated monocytes (2.2-fold, p = 1.1 × 

10−13), and CAD macrophages (2.0-fold, p = 1.1 × 10−11(Schirmer et al., 2009; 

Supplemental Experimental Procedures).

CAD-Causal Arterial Wall RGNs and Gene Connectivity

Finally, we analyzed the CAD phenotype-associated modules outside the main analysis 

pipeline (Figures 1A–1G and S1). First, we utilized a unique feature of the STAGE cohort, a 

nearly atherosclerosis-free arterial wall sample (i.e., IMA), as an internal control for the 

AAW. When molecular networks reflecting physiological events are challenged with the 

effects of genetic and environmental disease perturbations, gene-gene connectivity increases 

for disease-relevant processes (Zhang et al., 2013). Accordingly, to look for changes in 

connectivity in the STAGE modules, we compared AAW (disease) and IMA (healthy).
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For the 13 AAW/IMA-specific or dominant modules associated with CAD phenotypes 

(Figure 2B), we calculated the gain/loss in module connectivity (Figure 4). Interestingly, all 

five arterial wall modules with >2-fold increases in connectivity also were CAD causal 

(Figure 4). Of the eight arterial wall modules with <2-fold increases in connectivity (seven 

AAW and one IMA), only two were CAD causal (both in AAW). In both of these, gene 

connectivity was already high in IMA (e.g., module 42, Figure 4). Thus, CAD-causal 

modules appear to be characterized by high or increased connectivity, whereas CAD-reactive 

modules either do not change or lose connectivity in the arterial wall as CAD develops.

To identify potential causes of the connectivity differences, we analyzed cell type 

enrichment and transcription factor-binding site enrichment (Roider et al., 2009) for the 

seven CAD-causal modules with >2-fold increases in connectivity (modules 20, 37, 42, 58, 

69, 133, and 138) (Figure 4). For the cell type enrichment, we examined 321 of 409 genes 

with matches in CTen (Shoemaker et al., 2012) that were responsible for the increased 

connectivity in these top five modules. CD14-positive monocytes stood out with an 

enrichment score of 65 (CD33-positive myeloid cells had the second highest enrichment 

score, 49), suggesting that connectivity is increased by the infiltration and possibly 

differentiation of circulating monocytes into/in the atherosclerotic plaque.

For the transcription factor-binding site enrichment, genes in module 58 were enriched for 

binding sites of MEF2A, a transcriptional activator implicated in CAD (Bhagavatula et al., 

2004; Wang et al., 2013). Interestingly, among MEF2A’s target genes were the first 

(CLEC2D) and fifth (CCRN4L) order key drivers in module 58; CCRN4L has been linked 

to cardiovascular diseases (Binns et al., 2009).

A Super-Network of 30 CAD-Causal RGNs

The second analysis we performed outside the main pipeline (Figures 1A–1G and S1) was to 

identify a super-network of the 30 CAD-causal RGNs/modules by calculating the correlation 

values between the module eigengenes (Supplemental Experimental Procedures; Langfelder 

and Horvath, 2007). We found that all 30 CAD-causal RGNs/modules were interconnected 

and together formed a super-network connected across all seven tissues (r > 0.4, p < 0.05, 

Figure 5). Within this super network, SF dominated with 13 modules, AAW with seven, and 

SM and VF with four modules each; notably, blood and liver had only one CAD-causal 

module each. Nine modules were connected only within a given tissue as follows: modules 

14, 23, 148, and 152 in SF; module 8 in VF; modules 89 and 99 in SM; and modules 69 and 

133 in AAW (Figure 5). In contrast, the cross-tissue modules 98 (dominated by VF genes 

including its key drivers) and 113 (dominated by SF genes including its key drivers) 

appeared to act as hub modules, mediating all but one (module 27 in SF) connection from 

SM and liver (module 98) and from SF (module 113) to the AAW (none of the CAD-causal 

modules were identified in the IMA).

The notion that cross-tissue modules can serve as hubs in this super-network of CAD-causal 

modules was reinforced by the greater and stronger connectivity in the super-network of 

cross-tissue modules than of tissue-specific modules (mean number of connections: 5.33 

± 1.73 versus 3.43 ± 2.04, p < 0.02; mean connectivity strength: 2.96 ± 0.98 versus 1.98 

± 1.20, p < 0.03). Notably, module 98 contained genes involved in endopeptidase activity 
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(Table S3) previously implicated in atherosclerosis (Kugiyama et al., 1996), and one of its 

four key drivers, CDKN2A, is a CAD candidate gene for the Chr9p21 risk locus (Welter et 

al., 2014; Table S2). Interestingly, the allelic variation of the Chr9p21 risk SNP (rs4977574) 

was associated with increased connectivity of the VF genes in module 98 (risk genotype 

G/G, n = 20 STAGE patients; mean connectivity ± SD, 2.34 ± 1.01), the non-risk 

heterozygotes (A/G, n = 47 STAGE patients, mean connectivity 1.37 ± 0.33); and the non-

risk homozygotes (A/A, n = 21 STAGE patients, mean connectivity 1.43 ± 0.34) (p = 0.002, 

Kruskal-Wallis test).

DISCUSSION

In this study, we used systems genetics integrating the analysis of (1) DNA genotypes and 

gene expression profiles in seven CAD-relevant tissues from CAD patients (STAGE cohort) 

and (2) CAD GWA datasets (primarily Coronary Artery Disease Genome-wide Replication 

and Meta-analysis [CARDIoGRAM]). Our findings provide a preliminary view of the 

regulatory landscape of causal molecular processes active within and across a majority of 

tissues believed to be central to advanced CAD. The identified RGNs included both 

established (Brænne et al., 2015) and previously unreported CAD candidate genes in the 

form of key drivers. These candidate genes participate in diverse molecular processes and 

established pathways of atherosclerosis, cholesterol and glucose metabolism, and acute 

inflammation, and they were regulated in both tissue-specific and cross-tissue networks. 

Importantly, we found that nearly half of the RGNs (where similar mouse phenotypes were 

available, 12/26, 46%) were evolutionarily conserved, as judged from validation against the 

HMDP (Bennett et al., 2010). As proof of concept, in one cross-species-validated, mouse 

atherosclerosis- and CAD-causal network active in AAW and involving RNA-processing 

genes, four key drivers (AIP, DRAP1, POLR2I, and PQBP1) specifically activated the same 

network genes and affected THP-1 foam cell formation, and the entire network also was re-

identified in independent gene expression data from both CAD macrophages and carotid 

lesions.

It is increasingly recognized that to defeat complex diseases like CAD it is not sufficient to 

focus on individual DNA variants or CAD candidate genes. In parallel, we need to use 

systems genetics to understand how these disease genes operate in complex regulatory 

networks (Schadt, 2009). In examining the 171 RGNs inferred from all STAGE modules 

(Figures 3 and S2–S5; Tables S5 and S6) in greater detail, we found a good representation of 

established genes, pathways, and molecular functions in CAD. For instance, these modules 

contained 147 of the 309 GWA genes thus far proposed for CAD and CAD risk factors, such 

as lipid and glucose metabolism, including type 2 diabetes (Table S4). Thus, our results 

should be useful in gaining a better understanding of the tissue-specific or cross-tissue 

molecular contexts of established CAD candidate genes identified by GWASs. Our results 

will be particularly useful in providing clues about their upstream regulations by key disease 

drivers, which frequently were not the GWA genes themselves.

Although it is vital to identify individual CAD candidate genes in the context of regulatory 

networks, RGNs do not act in isolation but interact. Indeed, we identified a super-network 

containing all 30 CAD-causal RGNs across all the main CAD tissues. The tissue distribution 
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of RGN interactions is significant, as it links a good portion of disease-driving molecular 

processes in CAD, including their relation to key metabolic risk factors (e.g., cholesterol and 

glucose metabolism), and it provides a preliminary overview of the gene regulatory 

landscape in CAD. Mapping the regulatory framework of complex diseases in this fashion 

provides a starting point to assess the overall molecular status of individual patients 

(Björkegren et al., 2015). In fact, more detailed versions of regulatory maps like the one 

presented here (Figure 5) are required to achieve the goals of precision medicine.

Notably, most of the CAD-causal RGNs in this super-network were active in nonhepatic 

peripheral organs, particularly SF (Figure 5); only one was in the liver. The paucity of 

hepatic modules/RGNs and the unexpectedly high number of fat modules/RGNs may be 

consistent with the emerging notion that key hepatic processes in cardiometabolic diseases 

are governed by metabolic processes and gene expression activity in nonhepatic peripheral 

tissues (Lomonaco et al., 2012). In fact, the connectivity map of the super-network of CAD-

causal modules suggests that causal effects of metabolic processes in the SM and liver on the 

CAD-causal modules of the AAW are largely mediated by a single cross-tissue RGN 

primarily active in VF. This RGN also was found to contain CDKN2A, a candidate gene for 

the well-established Chr9p21 CAD risk locus, as one of its four key drivers (Figure 5). 

Moreover, the connectivity of this RGN was found to be associated with the allele frequency 

of the Chr9p21 CAD risk locus. Similarly, effects on the CAD-causal modules of the AAW 

of the many RGNs identified in SF also were predominantly mediated by one cross-tissue 

module (Figure 5).

Although a systems genetics approach has the significant advantage of simultaneously 

considering many genes (i.e., RGNs) in relation to disease, there are also challenges 

(Civelek and Lusis, 2014). In brief, cell diversity in the tissue biopsies can be a problem, as 

changes in gene activity also will reflect changes in cell type content. Furthermore, the 

inference of causal (i.e., directed) RGNs from omics data can be hampered by data noise, 

limited sample size, and the inherent limitations of representing complex biological 

processes by statistical models, which inevitably leads to false positives even among the 

most significant predictions (Marbach et al., 2010). Thus, as with gene-by-gene approaches, 

RGNs inferred from genetics of gene expression studies must be examined and validated 

extensively.

To this point, we validated three atherosclerosis-related RGNs using an in vitro model of 

atherosclerosis (Skogsberg et al., 2008; Figures 1 and S1, Step G). Silencing of the key 

drivers of RGN 42, AIP, DRAP1, POLR2I, and PQBP1, which involve RNA processing, 

specifically reactivated RGN 42 genes in THP-1 macrophages and affected cholesterol-ester 

accumulation (i.e., foam cell formation) (Table 2). Although none of these four key drivers 

have been directly linked to CAD, atherosclerosis, or foam cell formation, AIP affects the 

expression of peroxisome proliferator-activated receptors α and β (Sumanasekera et al., 

2003a, 2003b) and, thus, may prevent foam cell formation via the HDL/ABCA1 pathway 

(Chinetti et al., 2001) or the CD36 scavenger receptor pathway (Li et al., 2004). Similarly, 

DRAP1 represses TGF-β signaling by interfering with the binding of FoxH1-Smad2/3/4 to 

its DNA targets during transcription (Iratni et al., 2002). TGF-b signaling prevents foam cell 

formation by activating ABC1 and reverse cholesterol transport (Kozaki et al., 1997). 
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POLR2I and PQBP1, however, have not even been indirectly associated with atherosclerosis 

or foam cell formation, returning only 93 and 69 hits, respectively, in PubMed. POLR2I 
encodes a subunit of RNA polymerase II, the polymerase responsible for synthesizing 

mRNA in eukaryotes and also targeted by HIV-1 during lytic and latent viral stages (Nilson 

and Price, 2011). PQBP1 is a key regulator of mRNA processing and gene transcription. In 

fact, mutations in PQBP1 have been reported in several X chromosome-linked intellectual 

disability disorders, including Golabi-Ito-Hall syndrome (Sudol et al., 2012). PQBP1 also 

may be linked to fat metabolism (Takahashi et al., 2009), and, as a splicing factor, it alters 

fibroblast growth factor signaling (Wang et al., 2013). The fact that RGN 42 is related to 

RNA processing may be significant in view of the gene-regulatory roles of noncoding RNAs 

in general (Mihailescu, 2015) and in CAD (Bronze-da-Rocha, 2014).

In summary, our identification of several high-hierarchy, evolutionarily conserved, strongly 

inherited risk-enriched, and reproducible RGNs is a breakthrough in our understanding of 

the molecular landscape causing CAD across tissues. Specifically, we have shown for the 

first time that RNA-processing genes appear central in causing CAD. Key regulatory genes 

in this and other RGNs may be proven useful as targets for novel CAD therapies.

EXPERIMENTAL PROCEDURES

The STAGE Genetics of Gene Expression Study

In the STAGE study, 612 tissue samples were obtained during coronary artery bypass 

grafting surgery from AAW (n = 73), IMA (n = 88), liver (n = 87), SM (n = 89), SF (n = 72), 

and VF (n = 98) of well-characterized CAD patients (Hägg et al., 2009). Fasting whole 

blood was obtained for isolation of DNA (n = 109) and RNA (n = 105) and biochemical 

analyses. RNA samples were used for gene expression profiling with a custom Affymetrix 

array (HuRSTA-2a520709). Blood DNA was genotyped for 909,622 SNPs with the 

Affymetrix GenomewideSNP_6 array. The carotid lesion and CAD macrophage gene 

expression data were generated with the same custom Affymetrix arrays mentioned above 

(Shang et al., 2014).

Multi-tissue Weighted Gene Co-expression Network Reconstruction

WGCNA (Zhang and Horvath, 2005) was used to identify co-expression network modules 

that simultaneously captured gene-gene relations within and across tissues (Table S8), using 

the following most variably expressed genes (SD > 0.5 across samples): 3,369 in AAW; 

2,761 in IMA; 1,588 in liver; 2,492 in SM; 3,596 in SF; 5,215 in VF; and 1,891 in blood. In 

WGCNA, values of β = 6 and β = 3 were used to weigh within-tissue and across-tissue 

correlations, respectively, to ensure that both tissue-specific and cross-tissue sub-networks, 

as well as whole networks, were scale free.

Associations of Modules and CAD Phenotypes

Module associations with four main CAD phenotypes (Results) were tested as follows: (1) 

by a rank-sum test of the mean phenotype values of the two most distinct patient subsets, 

defined by clustering the gene activity within each module; and (2) by calculating Pearson 

correlations between phenotype and module eigengene values (Langfelder and Horvath, 
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2007). Integrated p values from both tests and from multiple measurements for each main 

phenotype (e.g., TC, LDL, VLDL, and HDL for plasma cholesterol levels) were computed 

with a weighted data integration method (Hwang et al., 2005) and corrected for multiple 

testing by estimating a false discovery rate (FDR < 0.2) (Storey, 2002).

eQTL Enrichment for Risk Associations and CAD Candidate Genes According to GWASs

To examine the extent to which modules were CAD causal, we used enrichment in inherited 

CAD association or GWAS candidate genes (Deloukas et al., 2013). In brief, disease 

assocations of cis-eQTLs detected in the STAGE patients (or, if the number of cis-eQTLs 

was less than ten, SNPs located within ±500 kb of the transcription start or end site of each 

module gene) were used to calculate fold enrichment and statistical significance compared to 

10,000 random SNP groups corrected for chromosome, gene density, and major allele 

frequency (Foroughi Asl et al., 2015). CAD candidate genes (n = 53) were obtained from 

CARDIoGRAM. Similarly eQTL disease associations and additional GWA candidate genes 

for CAD risk factors were computed using additional GWASs (Supplemental Experimental 

Procedures) and data from the HMDP.

RGN Reconstruction

Gaussian Bayesian networks were reconstructed for each module by imposing a prior that 

only genes with eQTLs, transcription factors, or CAD GWA genes could be parents of other 

genes. The Bayesian Information Criterion (BIC) was used to score models; a multiple-

restart greedy hill-climbing algorithm, with edge additions, deletions, and reversals, was 

used to search locally optimal models (Schmidt et al., 2007).

Key Driver Analysis and Validation

Key drivers were identified from the Bayesian networks as described previously (Zhang and 

Zhu, 2013), and they were validated by siRNA silencing in THP-1 macrophages incubated 

with Ac-LDL to induce foam cell formation (Table S9), as described previously (Skogsberg 

et al., 2008). Gene expression data from siRNA-treated and control THP-1 cells were 

generated by Agilent Human Custom Gene Expression Microarray 8×15 and compared to 

assess the effect of a key driver on its RGN, as described previously (Björkegren et al., 

2014).

Mouse Phenotype Associations

To validate the phenotype associations of CAD-causal modules, we assessed the association 

of ortholog genes in corresponding mouse tissues and phenotypes in the HMDP (Bennett et 

al., 2010), using the same methods described.

Module Connectivity and Differential Connectivity

Total module connectivity was calculated as the sum of adjacency values (i.e., weighted 

correlation coefficients) between all pairs of genes in a module. Module differential 

connectivity between AAW and IMA was calculated as the ratio of total module 

connectivity in AAW to total module connectivity in IMA.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We reconstruct regulatory gene networks across seven vascular and metabolic 

tissues

• Integrative analysis using GWASs reveals 30 networks causally related to CAD

• 12 CAD-causal networks are indicated to be evolutionarily conserved from 

mouse

• An atherosclerotic arterial wall RNA-processing network affects foam cell 

formation
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Figure 1. Schematic Flow of Analytic Steps
(A) STAGE tissue sampling. The STAGE study was undertaken at the Karolinska University 

Hospital, Stockholm, Sweden. Patients eligible for coronary artery bypass grafting were 

included, and seven metabolic and vascular tissues were biopsied during surgery. RNA 

samples were screened with Affymetrix Gene Chips rendering expression values for 19,610 

genes. DNA was screened for 909,622 SNPs (Experimental Procedures).

(B) Weighted gene co-expression network analysis (WGCNA) to generate tissue-specific 

and cross-tissue co-expression modules. Gene expression values across all seven tissues 

were considered together to identify tissue-specific and cross-tissue co-expression modules. 

In the illustrated topological overlap matrix (TOM, also in Figure 2A), rows and columns are 

genes expressed in specific tissues (i.e., the same gene may occur up to seven times), and the 

seven tissues are intermixed. The diagonal indicates modules of highly co-expressed genes 

(Experimental Procedures).

(C) Module association with CAD phenotypes. To define modules of possible relevance for 

CAD, we sought both linear and nonlinear relationships between the activity of the 
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identified co-expression modules and four main CAD phenotypes as follows: (1) the extent 

of coronary atherosclerosis as assessed in preoperative angiograms (atherosclerosis 

modules), (2) plasma measures of cholesterol (i.e., total, VLDL, LDL, or HDL cholesterol 

levels; cholesterol modules), (3) glucose metabolism (i.e., fasting glucose, HbA1c, insulin, 

or pro-insulin; glucose modules), and (4) high-sensitivity C-reactive protein (CRP modules). 

Heatmap (left) shows an example of how genes in a second-step clustering segregate the 

patients into two groups that differ phenotypically. Shown are examples of regression plots 

(right) between individual eigengene values (x axis) and individual phenotypic values (y 

axis).

(D) Assessment of module causality with STAGE eQTLs and GWASs. Causal co-expression 

modules were sought by (1) assessing the associations of module eQTLs (or of SNPs within 

±500 kb of transcription start or end site if less than ten eQTLs) with CAD using 

CARDIoGRAM data and (2) the module contents for CAD candidate genes identified by 

GWASs. The eQTLs were sought to match the tissue-specific gene expression (left); GWA 

genes are those mapped to regions of genome-wide significant loci as exemplified in the 

Manhattan plot (right).

(E) Bayesian network reconstruction of RGNs and key driver analysis. Co-expression 

modules indicate correlations between genes without directions. In contrast, inference of 

RGNs considers the causal roles of eQTLs, transcription factors, and CAD GWA candidate 

genes to construct directed gene-gene connections. As a consequence, the hierarchical order 

among network genes can be determined, and the genes most essential for network 

regulation can be identified in the form of key drivers.

(F) Cross-species validation with the HMDP. Many metabolic and vascular processes are 

believed to be conserved between mice and humans. To validate the human RGN modules, 

we related gene expression in corresponding mouse tissues to corresponding mouse 

phenotypes (Experimental Procedures).

(G) The siRNA targeting of key drivers in THP-1 macrophages and foam cells. As proof of 

concept, we tested key drivers of the cross-species-validated atherosclerosis RGN modules 

in human THP-1 monocytes differentiated into THP-1 macrophages and foam cells. First, to 

test key driver specificity in activating the network module, we used custom microarrays to 

assess the response in network gene activity in THP-1 macrophages (left). Then we 

determined whether siRNA targeting of the key drivers also affected THP-1 foam cell 

formation (right). (Bottom right) The same analytical flow is presented in a triangle, ranging 

from WGCNA to THP-1 foam cells.
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Figure 2. Co-expression Modules Associated with CAD Phenotypes
(A) TOM of gene activity sorted according to co-expression within and across tissues 

forming co-expression modules. The TOM shows the 20% most strongly co-expressed genes 

within and across tissues in 61 CAD-associated modules. Color-coded bars on the y axis and 

x axis indicate individual modules. The red rectangle encompasses modules related to 

coronary atherosclerosis; the two green rectangles encompass the modules related to 

measures of plasma cholesterol; the two blue rectangles encompass the modules related to 

measures of plasma glucose metabolism; and the two purple rectangles encompass the 

modules related to plasma CRP. Overlapping rectangles reflect modules associated with 

more than one of the four main phenotypes. The yellow-red color code (bottom right) 

indicates the strength of TOM associations (i.e., a weighted combination of direct co-

expression and shared co-expression to other genes in the network).

(B) The sixty-one modules (module ID/row) were associated with the extent of coronary 

atherosclerosis assessed in preoperative angiograms (first column, ATH); plasma levels of 

total, VLDL, LDL, and HDL cholesterol and triglycerides (second column, CHOL); fasting 

glucose, HbA1c, insulin, or pro-insulin levels (third column, GLUC); and CRP level (fourth 

column, CRP). The module-phenotype association was assessed by second-step clustering of 

the STAGE patients, based on expression of module genes, and by correlating eigengene 

module values for each STAGE patient with phenotypic values; red colors indicate strength 

of associations (−log10(P)) (Experimental Procedures). The second and third columns 

indicate enrichment in disease association (risk) determined from the CARDIoGRAM 

dataset of module eQTLs (RISK, from 1- to 9-fold, green) and the presence of established 

GWA genes for CAD (GWAS, from 1–6 GWA genes, blue), respectively. (Right) The 
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lengths of the horizontal bars indicate module size (i.e., gene numbers); the colors indicate 

the tissues where the module is active.
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Figure 3. CAD-Causal RGNs Associated with Coronary Atherosclerosis
(A–H) Bayesian RGNs with key drivers inferred (Experimental Procedures) from CAD-

causal modules (i.e., module eQTLs are risk enriched or contain CAD GWA candidate 

genes) linked to extent of coronary atherosclerosis. Fold enrichment for CAD association 

was assessed for network eQTLs/SNPs using the CARDIoGRAM dataset. The molecular 

process with the strongest functional enrichment assessed by gene ontology is indicated. 

KD, key driver; GWA genes, total and CAD candidate genes identified in GWASs of CAD, 

plasma lipid/glucose levels, and type 2 diabetes.
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Figure 4. Differential Connectivity in Arterial Wall Modules with and without Atherosclerosis
Differential connectivity plots for AAW- and IMA-dominant, phenotype-associated 

modules. Each plot shows the adjacency values (weighted correlations) between all pairs of 

module genes in IMA (lower triangle) and AAW (upper triangle). Modules are sorted from 

high to low according to module differential connectivity (MDC) (ratios of sum of 

connectivity values in AAW to IMA). Red bars indicate CAD-causal modules. Green bars 

indicate non-causal modules. MDC values >1 correspond to modules with a gain of 

connectivity in AAW versus IMA.
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Figure 5. A Super-Network of CAD-Causal Modules
Eigengene associations (r > 0.4, p < 0.05) were used to link the 30 CAD-causal modules 

(Experimental Procedures). RGNs/modules (circles) are oriented according to dominating 

tissue-belonging of genes and are color coded accordingly. Numbers in circles are the 

module IDs. Circle size corresponds to the number of RGN/module genes. Next to each box, 

the names of GWA genes in the RGNs/modules and related trait (in superscript) are 

indicated. TS, tissue-specific RGN/module; CT, cross-tissue RGN/module; colored circle 

circumferences, phenotype associations; dotted lines, RGNs/modules that are reactive to 

indicated phenotype; solid line, RGNs/modules that are causal for indicated phenotype (i.e., 

GWA gene[s] for the phenotype or eQTLs enriched with association for the phenotype); 

orange, plasma cholesterol measures; blue, plasma glucose metabolism measures; purple, 

plasma CRP levels.
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