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Abstract: The primary physiological function of mitochondria is to generate adenosine 

triphosphate through oxidative phosphorylation via the electron transport chain. 

Overproduction of reactive oxygen species (ROS) as byproducts generated from mitochondria 

have been implicated in acute brain injuries such as stroke from cerebral ischemia. It was 

well-documented that mitochondria-dependent apoptotic pathway involves pro- and 

anti-apoptotic protein binding, release of cytochrome c, leading ultimately to neuronal 

death. On the other hand, mitochondria also play a role to counteract the detrimental effects 

elicited by excessive oxidative stress. Recent studies have revealed that oxidative stress 

and the redox state of ischemic neurons are also implicated in the signaling pathway that 

involves peroxisome proliferative activated receptor-γ (PPARγ) co-activator 1α (PGC1-α). 

PGC1-α is a master regulator of ROS scavenging enzymes including manganese superoxide 

dismutase 2 and the uncoupling protein 2, both are mitochondrial proteins, and may 
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contribute to neuronal survival. PGC1-α is also involved in mitochondrial biogenesis that 

is vital for cell survival. Experimental evidence supports the roles of mitochondrial 

dysfunction and oxidative stress as determinants of neuronal death as well as endogenous 

protective mechanisms after stroke. This review aims to summarize the current knowledge 

focusing on the molecular mechanisms underlying cerebral ischemia involving ROS, 

mitochondrial dysfunction, apoptosis, mitochondrial proteins capable of ROS scavenging, 

and mitochondrial biogenesis.  

Keywords: ischemia; oxidative stress; apoptosis; peroxisome proliferative activated 

receptor-γ co-activator 1α; antioxidant enzyme; mitochondrial biogenesis 

 

1. Introduction 

Mitochondria are ubiquitous intracellular organelles enclosed by a double membrane structure.  

The primary function of mitochondria is the production of cellular energy in the form of adenosine 

triphosphate (ATP) by the mitochondrial respiratory chain through oxidative phosphorylation. 

Mitochondrial oxidative phosphorylation consists of five multienzyme complexes (Complexes I–V) 

located in the mitochondrial inner membrane [1]. Biochemical evidence suggested that the majority of 

cerebral ATP consumption is used for operation of the electrogenic activity of neurons [2]. Adequate 

energy supply by mitochondria is therefore essential for neuronal excitability and survival. In addition 

to energy production, mitochondria also play a crucial role in the generation of reactive oxygen species 

(ROS) and regulation of apoptosis [3,4], both have been implicated as important factors in the 

pathogenesis of neurodegenerative diseases and cerebral ischemia [3,5]. 

Stroke is the leading cause of adult disability and the second or third leading cause of death in most 

of the developed countries. Data from the World Health Organization suggest that annually 15 million 

people worldwide suffer a stroke. Of these, 5 million die and another 5 million are left permanently 

disabled, placing an enormously heavy burden on family and society (The Atlas of Heart Disease and 

Stroke 2011 from http://www.who.int/cardiovascular_diseases/resources/atlas/en/). The majority of 

patients with stroke experience thrombotic or embolic events that result in ischemic brain injury. Thus, 

the major aim of stroke research is to develop therapeutic interventions to reduce brain damage 

through the understanding of pathogenic molecular mechanisms underlying ischemic insults.  

Recent evidence has suggested an intimate link between an excessive generation of ROS and the 

development of neuronal death in diverse neurological disorders. These include chronic neurodegenerative 

diseases such as amyotrophic lateral sclerosis and epilepsy as well as acute brain injury like brain 

trauma and cerebral ischemia [6,7]. It was also reported that oxidative stress from cerebral ischemia 

may promote amyloid β production which links the potential connection between stroke and 

Alzheimer's disease [8,9]. Excessive ROS generation can induce the functional and structural damage 

of neuronal cells and may play an important role in the pathophysiology of cerebral ischemia [10–12]. 

As mitochondrial dysfunction with excessive oxidative stress may play a crucial role in ischemic 
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cascades, counteracting this detrimental effect through better understanding the neuronal damage 

resulting from apoptotic or necrotic cell death should have the perspective in treating ROS-related 

disorders such as ischemic stroke.  

Emerging evidence showed that ROS-detoxifying system and mitochondrial biogenesis may play a 

pivotal role as endogenous protective mechanisms in neurodegenerative diseases and cerebral  

ischemia [12–15]. This review will focus on mitochondrial dysfunction in cerebral ischemia-associated 

neuronal death and the potential role of peroxisome proliferator-activated receptor-γ (PPARγ) 

co-activator 1α (PGC1-α) on ROS and mitochondrial biogenesis.  

2. Ischemic Cascade Involving Mitochondria and ROS 

The pathophysiological cascades following cerebral ischemia have been characterized in animal 

models of stroke [16–18]. The ischemic event begins with reduced blood flow to the areas supplied by 

the occluded arteries. The lack of oxygen, glucose, and other nutrients leads to a state of disturbed 

cellular homeostasis, culminating in cell death. The cellular events leading to ischemic neuronal death 

have been extensively studied and the probable sequence of events involved in ischemic neuronal 

death is depicted in Figure 1. In this section, we focus on the detrimental effects of oxidative and 

nitrosative stress generated from mitochondria over neuronal injury under cerebral ischemia.  

Figure 1. Schematic overview of selected cellular events in the ischemic brain. The 

ischemic event begins with reduced blood flow to the area supplied by the occluded 

arteries. The lack of oxygen, glucose, and other nutrients leads to an ischemic cascade 

culminating in cell death. EAA = excitatory amino acid; ATP = adenosine triphosphate; 

CBF = cerebral blood flow; nNOS = neuronal nitric oxide synthase; NO = nitric oxide;  

↑ and ↓ denote increase and decrease, respectively. 
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2.1. Mitochondria and Oxidative Stress in Cerebral Ischemia 

Oxidative stress is defined as an imbalance between the production of ROS and the ability to 

readily detoxify the reactive intermediates in a biological system. The effects of oxidative stress 

depend upon the severity of these changes. A small perturbation may be overcome by the endogenous 

anti-oxidant system. However, severe oxidative stress can cause cell death either via an apoptotic or a 

necrotic pathway [19]. In living cells including neurons, ROS can be generated under stimuli such as 

hypoxia, serum deprivation or cytokine stimulation by several sources mainly including NADPH 

oxidase, 5-lipoxygenase and mitochondria [20]. Among them, mitochondria are the major organelles 

that produce ROS within cells [3,21,22]. Under successive oxidative stress the free electrons on the 

mitochondrial electron transport chain may leak out and react with molecular oxygen, thereby 

generating superoxide anion as metabolic byproducts during respiration. Nitric oxide (NO) may react 

with superoxide anion to produces the highly reactive peroxynitrite anion (ONOO
-
) that reacts with 

DNA, proteins, and lipids. Together, modification of these macromolecules by ROS and/or reactive 

nitrosative species (RNS) plays an important role in many physiological and pathological conditions, 

notably ischemia-reperfusion injury, neurodegenerative diseases, aging, and cancer [12,23–25]. Thus, 

it is crucial to maintain low levels of ROS for normal cell functions, whereas prolonged increases in 

mitochondrial activity may carry an inherent risk of increasing ROS levels. After cerebral ischemia, 

the balance between ROS production and clearance are compromised, which may result in oxidative 

stress-induced signaling and cell injury. The pathogenic role of oxygen free radicals in ischemic brain 

injury has been reviewed elsewhere [3].  

2.2. Mitochondria and Nitrosative Stress in Cerebral Ischemia 

Brain ischemia also triggers the activation of various isoforms of nitric oxide synthases (NOSs). 

These include the constitutively expressed neuronal (nNOS) and endothelial (eNOS) and the inducible 

(iNOS) isoforms. The role of NO in ischemic brain injury is complex. Excessive NO formation may be 

cytotoxic by directly inhibiting enzymes that catalyze vital cellular functions involved in energy 

metabolism and DNA synthesis. The deleterious effects of NO might be attributed to its well-known 

affinity for iron and thiol groups [26,27]. NO may also contribute to free radical generation by forming 

peroxynitrite anions, which then forms the cytotoxic hydroxyl radical and superoxide anion [28].  

It has been shown that mitochondria contain their own isoform of NOS, mitochondrial NOS 

(mtNOS), at the inner membrane [29,30]. The existence of mtNOS is still under debate because of the 

concerns for contamination during mitochondrial preparations and the lack of antibody specificity for 

mtNOS as these antibodies also cross-react with other NOS isoform, including eNOS and nNOS [31]. 

Nevertheless, more recent data support mtNOS as an independent form of NOS and mtNOS activities 

were reported in multiple organs from from mouse and rat, including brain, heart, kidney, thymus, and 

skeletal muscle [32]. mtNOS is thought to be synthesized in the cytosol and then translocated into 

mitochondria [33] but the mechanism of this translocation remains unknown at present. As mtNOS 

continuously controls mitochondrial respiration [29,30], it is considered a key enzyme of reperfusion 

injury [34] and may be related to apoptosis after stroke. To date, only a limited number of studies has 
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reported correlation between mtNOS and ischemia [35]. Uncovering the roles of mtNOS after cerebral 

ischemia may thus provide novel therapeutic strategies for stroke patients. 

Recent studies [36] also suggested that nitrosative stress due to generation of excessive NO could 

mediate excitotoxicity in part by triggering protein misfolding, aggregation, and mitochondrial 

fragmentation. S-Nitrosylation, the covalent reaction of NO with specific protein thiol groups, represents 

a convergent signal pathway contributing to NO-induced protein misfolding and aggregation that 

compromised dynamics of mitochondrial fission-fusion process, thus leading to neurotoxicity [36]. Role 

of nitrosative stress and mitochondrial dysfunction in cerebral ischemia is less well explored and 

warrants further studies. 

3. Pro- and Anti-Apoptotic Proteins Associated with Mitochondria-Dependent Apoptosis in 

Cerebral Ischemia 

Mitochondria and neuronal death in ischemia-induced cell death is no exception to the emerging 

complexities of the molecular control of other neurological disorders such as neurodegeneration or 

seizure [13,37]. Cell death in the ischemic brain reflects a transition between activated pro-death 

factors and cellular pro-survival responses over hours or even days. Neurons in the final stages of their 

demise often present a mixed picture with cell death in a programmed/controlled (apoptotic) or 

uncontrolled/passive (necrotic) manner. 

Programmed cell death mechanisms associated with cellular apoptosis have been shown in human 

and animal studies that support apoptotic cell death playing an important role in ischemia-induced 

brain damages [38–41]. Factors such as variation in duration and severity of ischemia, metabolic 

disturbance, bioenergetics failure during or after ischemia and age- or genetic-specific factors may all 

contribute to determining the eventual pathway of cell death [42,43]. A critical determinant of the 

eventual cell death fate resides in intracellular ATP concentration, the production of which depends on 

the structural and functional integrity of the mitochondria. Whereas ATP depletion is associated with 

necrosis, ATP is required for the progression of apoptosis [44]. 

In ischemic stroke, a necrotic core is surrounded by a zone known as the “ischemic penumbra” that 

is less affected and functionally silent tissue. Penumbral area, resulted from partial reduction of 

cerebral blood flow, remains metabolically active and represents the region where opportunities exist 

for salvage of neurons via post-stroke therapy [45]. Recent research has revealed that many neurons in 

the ischemic penumbra or peri-infarct zone may undergo apoptosis after several hours or days [46–48] 

that can potentially be rescued after stroke. Intervention of this apoptotic process in the penumbra 

would seem to be an achievable therapeutic target for limiting cerebral infarct volume after clinical 

stroke. To update our knowledge about apoptosis in this ischemic paradigm would provide a basis for 

the novel anti-apoptotic intervention. 

Given its role as the cellular powerhouse, the mitochondrion is emerging as a key participant in cell 

death because of its association with an ever-growing list of apoptosis-related proteins [49,50]. The evidence 

of Bcl-2 family involved in ischemia-induced neuronal cell death has also been demonstrated [51–55]. 

The Bcl-2 protein family is a principal regulator of mitochondrial membrane integrity and function. 
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According to the structural homology they are classified as the anti-apoptotic proteins including Bcl-2, 

Bcl-xL, and Bcl-w, the pro-apoptotic proteins including Bax and Bak, as well as the BH3-only proteins 

including Bad, Bid, Bim, Noxa, and p53-upregulated modulator of apoptosis (PUMA) [3].  

A variety of key events in apoptosis focus on mitochondria, including the release of several 

apoptogenic factors (such as cytochrome c, apoptosis-inducing factor or AIF, endonuclease G, 

Smac/DIABLO, and HtrA2/OMI), changes in electron transport, loss of mitochondrial transmembrane 

potential, altered cellular redox states, and participation of pro- and anti-apoptotic Bcl-2 family 

proteins [49,56]. Studies have shown that after cerebral ischemia, BH3-only proteins were upregulated, 

denoting that this ischemic process triggers various apoptotic pathways [57–60]. One of the decisive 

steps of the apoptotic cascade is related to the mitochondrial permeability transition pores (mPTPs) [61]. 

Transient opening of mPTPs in the mitochondrial inner membrane under conditions of cellular stress 

causes the mitochondrial transmembrane potential to collapse and elicits the release of cytochrome c as 

well as other pro-apoptotic molecules that together initiate the apoptotic cascade. Cytochrome c interacts 

with apoptosis activating factor-1 (Apaf-1), deoxyadenosine triphosphate (dATP), and procaspase-9 to 

form the apoptosome, which activates procaspase-9 and following with caspase-9 to cleave and 

activate caspase-3 [62–64]. Smac released from mitochondria binds to, and hence neutralizes, the 

anti-apoptotic effects of the X chromosome-linked inhibitor-of-apoptosis protein (XIAP), which can 

prevent procaspase activation and inhibits activities of activated caspases after cerebral ischemia [65,66]. 

AIF also translocates from mitochondria to the nucleus and induces apoptosis after focal cerebral 

ischemia and inhibition of poly(ADP-ribose) polymerase and Bid reduces nuclear AIF translocation [67]. 

4. PGC-1α–an Endogenous Protective Mechanism Involving ROS and Mitochondria Biogenesis 

in Cerebral Ischemia 

Under cerebral ischemia, a detrimental pathway begins with decreased CBF, increased ROS, 

triggering apoptotic pathway, and finally leads to neuronal death [10,16]. On the other hand, there are 

molecules that can prevent caspase activation in the cytosol. Inhibitor of apoptosis protein (IAP) family 

is known to suppress apoptosis by preventing activation of procaspases and inhibiting enzymatic activity 

of active caspases [68] or interacting with Smac [69]. The PI3-K/Akt survival signaling pathway is 

upregulated by superoxide dismutase 1 overexpression and suppress ischemic neuronal death during 

stroke [70]. 

Previous studies have shown that the PGC-1α is a potent stimulators of mitochondrial respiration 

and gene transcription in liver, heart, and skeletal muscle [71]. Several neurodegenerative diseases 

such as Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease have been associated with 

impaired mitochondrial function and decreased expression of genes involved in mitochondrial 

oxidative phosphorylation [72]. It was reported that PGC-1α knockout mice have a striking spongiform 

lesion in the striatum, the brain region primarily affected in Huntington’s disease patients or lesions 

observed in substantia nigra and hippocampus, two regions severely affected in patients suffering from 

Parkinson’s disease and Alzheimer’s disease, respectively [73]. Activation or overexpression of the 

PGC-1α could be used to compensate for neuronal mitochondrial loss and suggest that therapeutic 
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agents activating PGC-1α would be valuable for treating neurodegenerative diseases in which 

mitochondrial dysfunction and oxidative damage play an important pathogenic role [74]. Recent 

studies have revealed that oxidative stress and the redox state of ischemic neurons are also implicated 

in the signaling pathway that involves PGC1-α. Two mitochondrial proteins-uncoupling protein 2 

(UCP2) and superoxide dismutase 2 (SOD2) that are both regulated by PGC1-α play a pivotal role to 

counteract the damaging effect elicited by excessive oxidative stress [13]. In this section, we review 

the importance of PGC-1α-mediated ROS metabolism and mitochondrial biogenesis in relation to 

cerebral ischemia. 

4.1. PGC-1α in Mitochondria-Related ROS Metabolism under Cerebral Ischemia 

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that 

may regulate lipid and lipoprotein metabolism, glucose homeostasis, cell proliferation and differentiation, 

as well as apoptosis. 

Importantly, PPARs also modulate the inflammatory and oxidative responses [75]. Evidence 

revealed that PPARs have beneficial effects in inflammatory diseases through regulation of cytokine 

production and adhesion molecule expression by interfering with the transactivation capacity for 

nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and signal transducers and activators of 

transcription (STAT) [75–77]. It is well documented that activation of PPARγ can attenuate 

post-ischemic inflammation and damage [21,78,79]. In recent studies, PPAR delta also revealed its 

pivotal role in ischemic injury and warrants further investigation for the development of therapeutic 

strategy for stroke [80,81]. Since the identification of PPARγ as a PGC-1α transcription factor target, a 

variety of additional PGC-1 target nuclear receptors have been identified which include PPARα, 

PPARβ/delta, thyroid hormone receptor, retinoid receptors, glucocorticoid receptor, estrogen receptor, 

liver X receptor , and the estrogen-related receptors [82]. PGC-1α is a transcriptional coactivator that 

transduces many physiological stimuli into specific metabolic programs such as gluconeogenesis, 

thermogenesis, fatty acid oxidation and mitochondrial biogenesis [82–84]. Consistent with its emerging 

role as a central regulator of energy metabolism, PGC-1α is abundantly expressed in tissues with high 

metabolic rates such as in striated muscle, brown adipose tissue, liver, and brains [13,82]. 

PGC-1α is activated under oxidative stress. It has been reported that, in cultured skeletal myotubes 

with ischemia-like conditions, PGC-1α gene expression is induced [85]. PGC-1α is also expressed in 

the mouse cerebral subcortex under hypobaric hypoxia [86] and in skeletal muscle with hibernation,  

a known hypoxic state [87]. These studies denote the pivotal roles of PGC-1α in tissues under 

ischemia-hypoxia condition. In neuronal cells, it was reported that PGC-1α is required for the 

induction of many ROS-detoxifying proteins, including glutathione peroxidase, catalase, UCP2 and 

SOD2 [13]. Down-regulation of PGC-1α expression in mice exacerbates the detrimental effects  

of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to substantia nigra or kainic acid to 

hippocampus [13]. In contrast, an increased PGC-1α expression may protect cultured neural cells from 

oxidative stress-mediated cell death [13]. Nevertheless, the exact roles of PGC-1α in ROS metabolism 

under cerebral ischemia remain largely unexplored. In view of the crucial relationship between 
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ischemia-induced neuronal damage and overproduction of ROS, it is reasonable to speculate the 

importance of PGC-1α in this paradigm.  

Two important ROS-detoxifying proteins have been identified in mitochondria, namely UCP2 and 

SOD2 [88,89]. They play a crucial role in the fate of neurons and damage progression after ischemic 

stroke by regulation of ROS production [90,91]. Upregulation of UCP2 after cerebral ischemia 

decreased the release of ROS and reduced neuronal loss in the brain tissue that offers a novel 

neuroprotection against ischemic brain injury [21,91,92]. Furthermore, animals overexpressing SOD2 

showed a protective effect against oxidative stress-induced neuronal damage after transient focal 

cerebral ischemia [93,94]. Importantly, UCP2 and SOD2 have been proposed to be direct targets 

downstream of PGC-1α [13,95]. We have demonstrated recently that under transient ischemic condition, 

ROS overproduction may stimulate the activation of PGC-1α signaling pathway, further triggering 

upregulation of UCP2 and SOD2 in hippocampal CA1 neurons [12]. Knock-down of PGC-1α 

expression by pretreatment with PGC-1α antisense oligodeoxynucleotide (ODN) diminished the 

expression of UCP2 and SOD2 that led to exacerbation of oxidative damage and augmentation of 

delayed neuronal death in the hippocampus after transient global ischemia. Therefore, PGC-1α 

signaling pathway may emerge as a new potential target for future development of more effective 

neuroprotective strategies against ischemic brain injury. 

4.2. PGC-1α Signaling Pathway and Mitochondrial Biogenesis under Cerebral Ischemia 

Mitochondria are important for cellular homeostasis. Recent studies have shown that mitochondrially 

formed oxidants are mediators of molecular signaling and have been implicated in mitochondria-dependent 

apoptosis. However, oxidative stress and the redox state are also involved in the survival signaling 

pathway of the stressed cells. Nevertheless, mitochondria are not static organelles. Fluctuating 

homeostatic demands and inherent production of ROS cause progressive damage of mitochondria and 

require dynamic regulation of their turnover, cellular contents, biological functions, as well as total 

numbers of this vital intracellular organelle [96]. This is in particular crucial for proper function of 

post-mitotic neurons; however, the information is limited regarding the role of mitochondrial biogenesis 

in neural cells. Mitochondrial abundance as well as the copy number and integrity of mtDNA in 

mammalian cells may alter under pathological conditions with increased oxidative stress and during 

aging process [97,98]. Within a certain level, ROS may activate stress responses by altering expression 

of specific nuclear genes to maintain the normal energy metabolism and cope with hazardous 

environments for cell survival. Once beyond a certain threshold, ROS may cause oxidative damage to 

mtDNA and other biomolecules of the affected cells to elicit apoptosis. It has been demonstrated that a 

number of protein factors encoded by nuclear genes are involved in the biogenesis of mitochondria and 

respiratory functions [98]. Nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) are transcriptional 

regulators that act on the nuclear genes coding for constituent subunits of the oxidative phosphorylation 

system. In addition, they also regulate the expression of many other genes involved in mtDNA 

replication via binding to the consensus sequences in the promoters of the oxidative phosphorylation 

genes in the nucleus [97–99]. Mitochondrial transcription factor A (Tfam) is a transcription factor that 
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acts on the promoters within the D-loop region of mtDNA and regulates the replication and transcription 

of the mitochondrial genome [98]. It has been established that the Tfam gene contains consensus-binding 

sites for both NRF-1 and NRF-2, which provide a unique mechanism for the cells to integrate the 

expression of nuclear DNA-encoded proteins with the transcription of genes encoded by mtDNA [97,98]. 

It has been shown that PGC-1α may be a major regulator of mitochondrial biogenesis [84]. A recent 

study demonstrates that hypoxia-ischemia induces mitochondrial biogenesis. After hypoxia, increases in 

mitochondrial DNA, total mitochondrial number, expression of the mitochondrial transcription factors 

downstream of PGC-1α (NRF1 and Tfam), and the mitochondrial protein HSP60 are detected [15]. In 

view of mitochondria as an energy center and important for cellular homeostasis, exploring the roles of 

mitochondrial biogenesis as an endogenous protective response to cope with ischemic insult may help us 

to develop a strategy to enhance this beneficial effect and counteract the ischemia-related detrimental 

effects. In our recent study, we showed that, under transient global ischemia, the PGC-1α signaling 

pathway is activated, which may trigger the UCP2 and SOD2 expression and promote mitochondrial 

biogenesis in the hippocampal CA1 subfield. In keeping with the role of mitochondrial biogenesis as a 

potential endogenous protective mechanism [15,100], boosting the signal transduction pathways 

upstream of mitochondrial biogenesis, such as the PGC-1α signaling cascade, may therefore become a 

novel target for a therapeutic strategy against ischemic brain damage [14]. The probable roles of 

PGC-1α with mitochondria proteins-UCP2 and SOD2-as well as mitochondrial biogenesis in ischemic 

condition is depicted in Figure 2. 

Figure 2. Proposed role of PGC-1α in ischemic condition. ROS overproduction may 

stimulate the activation of PGC-1α signaling pathway, further triggering upregulation of 

mitochondrial proteins, including UCP2 and SOD2, in ischemic neurons. PGC-1α also 

regulates NRF-1, NRF-2 and Tfam expression as well as mitochondrial biogenesis that may 

have protective effects in ischemic condition. PGC-1α = peroxisome proliferative activated 

receptor-γ co-activator 1α; UCP2 = uncoupling protein 2; SOD2 = superoxide dismutase 2; 

NRFs = Nuclear respiratory factors; Tfam = Mitochondrial transcription factor A;  

↑ and ↓ denote increase and decrease, respectively. 
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5. Conclusions 

Numerous studies report the involvement of ROS in cell death after cerebral ischemia. ROS 

contribute not only to injury of macromolecules such as lipids, proteins, and DNA, but also to 

transduction of apoptotic signals. Mitochondrial dysfunctions occur as a consequence of cerebral 

ischemia and promote ischemia-induced neuronal cell death, especially the intrinsic pathway of 

apoptotic cell death. Conversely, endogenous protective pathways exist to counteract these detrimental 

effects induced by ischemia including mitochondria proteins UCP2 and SOD2, which are all regulated 

by PGC-1α. Therefore, mitochondria can be considered as a target for potential neuroprotective 

strategies in cerebral ischemia. Future studies of these cell death/survival mechanisms subsequent to 

ischemic attack may provide unique information regarding molecular targets for therapeutic strategies 

in clinical stroke. Protection of the mitochondria from bioenergetics failure and oxidative/nitrosative 

stress resulting in apoptosis in the ischemic tissue may open a new vista to the development of more 

effective neuroprotective strategies against ischemia-induced brain damage.  
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