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Abstract: Background: Current in vitro vascular models are too simple compared with the real
vascular environment. In this research, a novel in vitro 3D vascular disease model that simulated
the vascular microenvironment was introduced. Methods: This model was mainly established
by low shear stress and co-culture of endothelial cells and smooth muscle cells. Characterization
and reproduction of the pathological state of the 3D model were determined. The effect of two
clinical drugs was verified in this model. The difference of drug screening between a traditional
oxidative-damaged cell model and this 3D model was determined by HPLC. Results: This model
presented many disease markers of vascular diseases: abnormal cellular shape, higher endothelial
cell apoptotic rate and smooth muscle cell migration rate, decreased superoxide dismutase level,
and increased malondialdehyde and platelet-derived growth factor level. The drugs effectively
reduced the disease indices and relieved the damage caused by low shear stress. Compared to the
traditional oxidative-damaged cell model, this 3D model screened different active components of
Salviae Miltiorrhizae extract, and it is closer to clinical studies. Conclusions: These results suggest that
the 3D vascular disease model is a more efficient and selective in vitro study and drug screening
platform for vascular diseases than previously reported in vitro vascular disease models.

Keywords: vascular disease; drug screening; shear stress; in vitro model; cell co-culture

1. Introduction

Vascular diseases, mainly including atherosclerosis, inflammatory vascular disease,
and functional vascular diseases, are the main causes of death in many countries, and the
incidence rate and mortality of vascular diseases are increasing rapidly [1]. Therapeutic
interventions and drug development of vascular diseases have gained major advancements;
however, the pathophysiology study of many vascular diseases is still largely unclear,
and new drug discovery and screening is limited due to the complexity of the vascular
environment and difficulty of building vascular models. In vitro cell models can narrow
the gap between in vitro and in vivo study of vascular diseases [2]. These models have
a major role in studying the influence of various factors on vascular diseases [3]. In
addition, they are useful for studying drug–drug interaction, drug absorption, distribution,
metabolism, excretion, and toxicity testing, or drug screening [4]. Endothelial cells (ECs)
are important cells that constitute the internal structure of blood vessels and are crucial
for vascular function, so the majority of in vitro vascular models are composed of EC
monolayers [5]. However, vascular vessels are multicellular organs [6]. Pathological study
or drug screening of vascular diseases based on EC monolayers are sometimes different
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from in vivo or clinical trials, mainly due to the differences between the in vitro and in vivo
environment [7].

The discovery of new and efficacious lead compounds is critical to the continued
development of drugs to treat vascular diseases. However, research and development
of drugs are time-consuming, cumbersome, and expensive, and identified promising
lead compounds often fail at later stages of clinical testing [8]. As a result, the rate of
introduction of new and approved drugs into the marketplace has decreased in recent
years [9]. These failures represent significant inefficiencies in the drug development
process and also result in excessive manpower and material cost. New strategies are
clearly needed to screen potential drugs in a manner that mitigates the issues of long
development time, high cost, and low success rate. Most new drug candidates of vascular
diseases fail in clinical trials because promising lead candidates that possess excellent
activates in vitro exhibit low activity in animal or human trials [10]. The main reason for
this discrepancy is poorly understood and is a major focus in the field of drug research. It
is likely that differences in the biomechanical environment or cellular microenvironment
between in vitro and in vivo systems account for the poor activity of some compounds in
clinical trials [11]. Liao et al. have proposed a new discipline of biomechanopharmacol-
ogy to investigate the specific challenges posed by pharmacology and biomechanics [12].
Eukaryotic cells are extremely complex and contain various organelles, cell-surface recep-
tors, and ion channels, among numerous other cellular structures. In addition, differences
in the cellular microenvironment can result in alterations in the cellular response to
external stimuli [13]. Thus, drugs may have varying therapeutic effects on cells or tissues
in different environments and pathological conditions. Cellular receptors or enzymes are
attractive targets for pathological research or drug development of vascular diseases, re-
sulting in the development of in vitro vascular models that modulate receptor or enzyme
activities at the single-cell level [14]. However, these models, such as the single-cell model,
are often simplistic and lack the dynamic environment seen in the internal environment.
It is therefore plausible that differences in the biomechanical microenvironment between
in vitro drug screening models and in vivo animal experiments account for the failure of
some compounds in clinical trials [15]. Taking atherosclerosis as an example, atheroscle-
rosis is the dominant vascular disorder, and new drug research and development to
combat atherosclerosis this disease is a top priority [16]. In early stage of atherosclerosis,
oscillating or low shear stress (LSS) of blood flow activates the vascular endothelium
and results in the production of many pro-atherogenic factors [17,18]. Previous studies
indicate that LSS can induce apoptosis and oxidative stress response in ECs and promote
the production of pro-atherogenic factors [19,20]. These factors induce SMC migration
and proliferation, ultimately resulting in inflammation, vascular lumen thickening, and
the formation of atherosclerosis. Many compounds that possess excellent anti-atherogenic
effect have been identified in vitro, but few of these compounds translate into efficacious
in vivo therapies [21].

The blood vessel is a multicellular organ, consisting of ECs on the inner layer, epithelial
cell components, smooth muscle cells (SMCs), and fibroblasts on the outer layer. Although
the smooth muscle layer is separated from the endothelium by the internal elastic lamina,
numerous membrane pores permit direct communication between SMCs and ECs. The
other important factor of vascular microenvironment is shear stress. Shear stress modulates
endothelial structure and function and also directly or indirectly affects physiological
function of SMCs [22]. However, common in vitro vascular models are based on static
single cells, which have difficulty in elucidating some mechanisms of vascular diseases due
to microenvironmental differences. Currently several three-dimensional (3D) cell models
based on co-culture of ECs and SMCs have been developed, including direct culture of
ECs and SMCs, and co-culture on opposite sides of a membrane [23]. These static 3D cell
models can preserve physiological cell–cell interaction, but they also poorly mimic the
in vivo vascular conditions due to the absence of the physiological level of fluid flow. Some
researchers tried replicating the physiological flow of blood vessels on the basis of static 3D
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cell models, making these models closer to the real internal environment [24]. At present,
these dynamic 3D cell models force normal shear stress or strain to simulate the normal
physiological flow state of blood vessel. They were mainly used to study the mechanism of
cell interactions and signaling, but they are inappropriate for drug screening of vascular
diseases. The proposed 3D vascular disease model (VDM) in this manuscript aims to mimic
a pathological state of blood vessels by abnormal fluid stress and lay the foundation for
drug screening of vascular diseases.

Our previous research has proven that biomechanics could influence cellular function
and the ability of cells to absorb drugs [25]. This manuscript introduced an in vitro 3DVDM
based on simulating the in vivo vascular microenvironment by co-culture of ECs and SMCs
and the biomechanical forces seen in pathological state of blood vessels. In this model,
some pathological factors including cell morphology and apoptosis, SMC migration, the
production of platelet-derived growth factor (PDGF), superoxide dismutase (SOD), and
malondialdehyde (MDA) of ECs were studied to ensure that this model could provide a
similar representation of the pathological state of vascular diseases. The effects of a clinical
drug trapidil and a traditional Chinese medicine with anti-atherogenic activity, termed
Salviae Miltiorrhizae (SM), were tested in this model [26]. In addition, the active components
of SM were screened in this model, and the differences in drug screening between the
3D model and a traditional oxidative-damaged cell model were compared. This novel
in vitro 3D model should provide an effective tool to study vascular disease and screen
new compounds to combat vascular diseases.

2. Materials and Methods
2.1. Cells and Culture Conditions

Both ECs and SMCs (Beijing BioWin Scientific Development Co., Ltd., Beijing, China)
were grown in complete medium RPMI 1640 media with 10% calf serum (Thermo Fisher
Scientific China, Co., Ltd., Shanghai, China), 100 U/mL penicillin (Life Technologies, Grand
Island, NY, USA), and 100 µg/mL streptomycin (Life Technologies, Grand Island, NY, USA)
and were maintained in a humidified cell culture chamber (37 ◦C, 5% CO2). Trapidil was
commercially obtained (Shanghai Jimian Co., Ltd., Shanghai, China), and extracts of SM
were produced according to previously published methods [27].

2.2. Fabrication of the In Vitro 3D VDM

In order to study the pathology of vascular diseases and screen potentially therapeutic
compounds in a system that more closely resembled the microenvironment of the vascular
system, an in vitro 3D VDM was generated (Figure 1). This model mainly consisted of
three parts: a dynamical system (constant flow pump), a liquid reservoir, and a cell culture
system (parallel flow chamber). The constant flow pump recirculated media between the
flow chamber and reservoir, as well as provided the motive power to generate shear stress.
The reservoir consisted of an inlet and outlet port for media, a port for introduction of
drugs, and a filtered air outlet. The air outlet allowed the exchange of 5% CO2 between the
reservoir and the incubator, thus maintaining appropriate pH in the media. The parallel
flow chamber contained a porous polyester membrane on its upper plate, and SMCs and
ECs were plated on either side of this membrane. ECs directly communicate with SMCs
through the numerous membrane pores of the internal elastic lamina, which separate
SMCs from endothelium, and our model simulates this process. The 0.4 µm pores in the
membrane allowed for a material and signal interaction between ECs and SMCs [28].
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Figure 1. Experimental setup of the drug screening model. The model was inspired by the nosogenesis
of early vascular disease caused by LSS. The flow system is available for providing LSS, containing a
self-designed parallel flow chamber simulating simplified microenvironment (C), a constant flow
pump (A), and a liquid reservoir (B), connected by some silicone tubes.

ECs and SMCs were seeded into separate flasks and grown for 48 h to establish
confluent monolayers. These cells were then detached from flasks using trypsin (Thermo
Fisher Scientific, China, Co., Ltd., Shanghai, China). ECs were seeded by dropwise addition
of 1.4 × 105 cells in 0.7 mL of complete media onto the polyester filter (0.4 µm) of a hanging
cell culture insert transwell plate (Millipore, Billerica, MA, USA) and adhered for 5 h
(37 ◦C), and then the transwell filters with ECs were transferred to a 6-well plate containing
2 mL complete medium. A total of 2 × 105 SMC cells in 1 mL complete media were then
added to the inner transwell compartment, and cultures were incubated for 24 h prior to
experimental use. Shear stress were carried out in a modified parallel rectangular flow
chamber that was manufactured in our laboratory. Transwell filters containing ECs and
SMCs on opposing sides of the filter were then inserted into this flow chamber. A flow of
media lacking CS was applied to this chamber with motive power produced by peristaltic
pump. It can provide LSS for ECs but not SMCs, which likely simulates physiological
conditions found in blood vessel walls. ECs were then exposed to flow rates of 0, 1, 2, 4, 6,
8, or 10 dyn/cm2 for 6, 12, or 24 h, respectively, and the theoretical value of shear stress
was determined referring to our previous method [25]

This model also allows for testing the effect of drugs directly on ECs by addition
of drugs to the recirculating media. Unbound drugs are then washed out by flowing
media without drugs, and absorbed drugs were analyzed by modern analysis and testing
technologies (Figure 2).
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Figure 2. Establishing an anti-vascular disease drug screening model in the mimetic vessel under
LSS. SMCs and ECs are seeded on the separate sides of a semi-permeable membrane and transferred
to a flow chamber. Cell culture media containing candidate compounds are pumped into the flow
chamber and directly interact with ECs but not SMCs. Sufficient time is allowed for binding of
candidate compounds to cells. Cells are then harvested, and modern analytical technologies are used
to identify drugs that were taken up into ECs and SMCs.

2.3. Cell Viability Assays

ECs and SMCs were grown on transwell filters until cultures reached 90% confluency.
Complete media was then removed and replaced with complete media lacking CS. To
find proper magnitude and duration of LSS to build a cell model with a pathological
state, the samples were then transferred to the flow chamber and incubated at 37 ◦C for
6, 12, or 24 h under shear stresses of 1, 2, 4, 6, 8, or 10 dyn/cm2, respectively. As a con-
trol, ECs and SMCs were grown in the absence of LSS (static control cells) for 6, 12, or
24 h, respectively. EC or SMC cell suspensions were collected from either side of the
transwell filter and centrifuged (1000 rpm, 5 min, 25 ◦C), and the cells were uniformly
resuspended in the complete medium. A cell counting kit-8 (CCK8) (Beyotime, Shanghai,
China) was used to detect the cell viability. Briefly, the CCK8 reagent was added in the cell
suspensions in 96-well plates (20 µL/well), and the cells were maintained in the humidified
cell culture chamber for 1 h. Then, the optical density (OD) of the samples was determined
at 450 nm by a universal microplate spectrophotometer (Bio-Rad). Cell viability can be calcu-
lated according to the following formula: Cell Viability (%) = ODEG/ODCG × 100%, where
ODEG represents the OD value of experiment group and ODCG represents the OD value of
control group.

2.4. Morphology Analysis of ECs

To study drugs in this model, cells were treated with 250 mM trapidil or 200 µg/mL SM
extracts. Either trapidil or SM was added to complete medium lacking CS, and this medium
was added to flow chambers at 37 ◦C for 12 h under 4 dyn/cm2 of LSS. The morphology of
ECs was observed by IX71 inverted microscope and phase contrast microscopy (Olympus,
Shinjuku, Tokyo, Japan). Micrographs were obtained using a charged-coupled device
digital camera 320 (Tykor, Guangzhou, China) and software tImaPro (Tykor, Guangzhou,
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China). Morphological effects were determined using the method of our previous study [25].
A cell shape index (CSI = 4π × cell area/cells perimeter2) reflects the degree of elongation
of cells. The value of 1 represents a full circle, and 0 represents a straight line.

2.5. Cell Apoptosis Assay

After being exposed to 4 dyn/cm2 LSS, ECs were harvested by trypsinization, dilution
in phosphate buffer solution (PBS), and centrifugation (1000 rpm, 5 min, 25 ◦C). Static
control samples and drug-treated samples were collected in a similar fashion. Cell apoptosis
was tested by Annexin V/PI method analyzed by a FACSvantageSE flow cytometry (BD
Biosciences, Shanghai, China), collecting 105 cells per sample.

2.6. SMC Migration Assay

A 24-well transwell chamber (Millipore, Billerica, MA, USA) with 8 µm pores was used
for the SMC migration assay. SMCs were detached by trypsinization, counted, rinsed with
PBS, and centrifuged (1000 rpm, 5 min, 25 ◦C), and the cells were resuspended in complete
media lacking CS (1 × 106 cells/mL). The cells were planted on one side of the transwell
filter, and the chemoattractant was the media of the static control cells or cells exposed to
LSS. After 12 h of incubation, 95% ethanol was used to fix the SMCs on the filter, and 0.1%
crystal violet was used as cell dye. Cells were counted by phase contrast microscopy at
a magnification of 200× (Olympus, Shinjuku, Tokyo, Japan), and three randomly chosen
fields were evaluated per filter.

2.7. Determination of PDGF, SOD, and MDA

Supernatants from static control co-culture cells or co-culture cells exposed to shear
stress were collected for quantitative analysis of PDGF, SOD and MDA. A human PDGF
enzyme-linked immunosorbent assay kit (Shanghai Saimo Biological Science and Technol-
ogy Co., Ltd., Shanghai, China) was used to measure PDGF concentration. The OD was
measured using a series of PDGF standards of known concentration. A standard curve
and a corresponding linear regression equation were created through these values. This
equation was then used to convert the OD450 values for each experimental sample into
PDGF concentrations. The levels of SOD and MDA were measured by test kits, respectively.

2.8. Generation of EC Cellular Extracts after SM Extract Treatment

ECs were treated with SM extract (200 µg/mL, 12 h), and then 2 mL of 75% ethanol
was used to denature the ECs and extract cellular contents. Samples were then subjected to
ultrasonic vibrations by the ultrasonic cell disruption system (Scientz, Ningbo, Zhejiang,
China) and centrifuged. The supernatant was condensed by vacuum freeze drier (Thermo
Fisher Scientific, China, Co., Ltd., Shanghai, China), dissolved in 70% methanol, and filtered
by nylon membrane (0.45 µm, Xingya, Shanghai, China) before high performance liquid
chromatography (HPLC) analysis. In the static group, ECs were damaged by 300 µM
H2O2 for 0.5 h and treated with 200 µg/mL SM extracts for 12 h. The samples of the
static oxidative (H2O2)-damaged model were prepared using the same methods of the
other group.

2.9. HPLC Analysis

The samples of SM extracts, mixed standards of SM, untreated ECs, ECs treated with
oxidative stress and SM in the static model, and ECs treated with LSS and SM in the 3D
VDM were collected for HPLC. The conditions for chromatographic analysis have been
previously described [29]. Peaks were then identified in the HPLC chromatograph, using a
peak area that is at least 3% of the protocatechuic aldehyde as a cutoff for identification.

2.10. Statistical Analysis

All results were expressed as mean ± standard deviation (SD), and for all data, one-
way analysis of variance assuming equal variance followed by unpaired Student t-tests
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were used to determine statistical significance calculated by SPSS software (IBM, Armonk,
New York, NY, USA).

3. Results and Discussion
3.1. Increased Shear Stress Correlates with Decreased EC Viability

In order to determine appropriate levels of shear stress and exposure times, several
shear stress rates and exposure times on ECs and SMCs were screened in this model. Either
ECs or SMCs were forced by shear stress at the levels of 0, 1, 2, 4, 6, 8, or 10 dyn/cm2

and exposure times of 6, 12, or 24 h, respectively, prior to determining cellular viability.
Increased shear stress, as well as increased exposure time, resulted in decreased EC viability
(Figure 3a). After 6 h of shear stress treatment, the decline in EC viability was not significant
compared to the static control samples until the shear stress reached 8 dyn/cm2. After 12 h,
shear stresses greater than 2 dyn/cm2 resulted in significant decreases in cell viability. A
total of 24 h of shear stress treatment resulted in similar decreases in EC viability as that of
12 h of shear stress treatment.

Figure 3. The effect of shear stress rates and time on EC (a) and SMC (b) viability (compared with the
control group, * p < 0.05, ** p < 0.01, n = 5).
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The effect of shear stress rates and exposure times on SMC viability was also exam-
ined. After 6 h of treatment, no shear stress levels resulted in significant differences in
viability as compared to the static control samples. In contrast, shear stress of more than
4 dyn/cm2 resulted in significant increases in SMC viability when administered for 12 or
24 h (Figure 3b). Therefore, shear stress conditions of 4 dyn/cm2 and 12 h exposure were
chosen for the follow-up experiments since these conditions represented the proper shear
stress and exposure time needed to obtain significant effect on EC and SMC viability.

3.2. Characterization of the 3D VDM by Morphological Analysis of ECs

EC viability was determined accompanied by morphological changes after dealing
with LSS in the 3D VDM. EC monolayers were treated with shear stress (4 dyn/cm2, 12 h)
prior to morphological observation by phase contrast microscopy. As a comparison, ECs of
the static control group that were not treated with shear stress were closely packed and
of fusiform shape (Figure 4a). In contrast, LSS treatment of ECs in the 3D VDM caused
shrinkage and rounding of cells in the monolayer, resulting in cells that appeared loosely
arranged compared to the static control cells (Figure 4b). In order to quantitatively deter-
mine the cellular shape of the 3D VDM, micrographs of the static control cells and the EC
monolayers treated with LSS were analyzed by image analysis software. CSI was quantified
from these micrographs. The CSI value of static control ECs was approximately 0.6, while
the CSI of ECs exposed to LSS of the 3D VDM significantly increased to approximately 0.9.

Figure 4. Morphological observations of ECs. ECs were seeded on semi-permeable membranes and
exposed to (4 dyn/cm2) LSS for 12 h prior to observation by phase contrast microscopy. (a) Static
control ECs not treated with LSS. (b) ECs that were treated with LSS. Scale bars denote 200 µm.

3.3. Reproduction of the Pathological State of Vascular Disease in the 3D VDM

PDGF, SOD, and MDA are chemotactic molecules often released in response to cellular
injury. We therefore sought to investigate whether these molecules induced chemotaxis
in this model. Tissue culture supernatants from the static control co-culture cells and the
cells of the 3D VDM were examined for PDGF levels. The level of PDGF was significantly
increased in media from cells exposed to LSS in the 3D VDM as compared with the static
condition (p < 0.01). Treatment of the cells with LSS in the 3D VDM decreased SOD levels
by 50.80% (p < 0.01) and increased intracellular MDA levels by 63.27% compared with the
static control group (p < 0.01) (Table 1).

Table 1. Production of SOD and MDA.

Treatment SOD, U/mg Protein MDA, nmol/mg Protein PDGF, ng/mL

Control 43.62 ± 4.31 ** 0.54 ± 0.07 ** 3.98 ± 0.57 **
LSS 21.46 ± 2.70 1.47 ± 0.19 14.51 ± 2.90

LSS + trapidil 26.15 ± 2.92 1.28 ± 0.14 5.91 ± 0.42 **
LSS + SM extract 37.89 ± 3.65 ** 0.72 ± 0.11 ** 12.31 ± 1.45

Compared with treatment of LSS, ** p < 0.01, n = 5.
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For further study of the mechanism by which LSS results in decreased EC viability, we
examined whether LSS induced apoptosis in ECs (Figure 5). After being exposed to LSS,
ECs were collected for cell apoptosis analysis. ECs of the 3D VDM had a higher apoptosis
rate as compared to the static control cells, with 21.50 ± 3.47% and 3.47 ± 0.91% of cells
positive for Annexin V-FITC, respectively.

Figure 5. EC apoptosis detection by flow cytometry. (a) denotes the apoptosis of the static control
group; (b) denotes the cell apoptosis of LSS group; (c) denotes the cell apoptosis of LSS and trapidil
group; (d) denotes the cell apoptosis of LSS and SM group. Percentages refer to the percent of cells
that are Annexin V positive. (e) Graphical representation of (a–d) (* p < 0.05, ** p < 0.01, n = 5).

Tissue culture media from the co-culture cells of the static control group or the 3D
VDM were used as chemoattractant for SMC migration, and SMC migration was examined
using transwell assays (Figure 6). The results showed that the medium from the cells
exposed to the 3D VDM enhanced SMC migration by about 1.8-fold compared with the
static control group.
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Figure 6. SMC migration assay. (a) denotes SMC migration by the culture of static control cells;
(b) denotes SMC migration by the culture of the cells exposed to LSS; (c) denotes SMC migration by
the culture of the cells exposed to LSS and trapidil; (d) denotes SMC migration by the culture of the
cells exposed to LSS and SM extracts. Scale bars denote 200 µm. (e) Graphical representation of (a–d).
(Compared with the LSS group, * p < 0.05, ** p < 0.01, n = 5).

3.4. Drug Effect of Trapidil or SM Extract in the 3D VDM

PDGF, SOD, and MDA of tissue culture supernatants from the co-culture cells treated
with trapidil or SM extract in the 3D VDM were examined (Table 1). The media from
cells not treated with drugs or treated with trapidil in the 3D VDM exhibited significantly
lower levels of PDGF (p < 0.01), with levels similar to the static control group. In contrast,
treatment of cells with SM extract in this model did not reduce PDGF levels. Additionally,
PDGF levels in the SM treated group were much higher than that of trapidil treated sample.
Treatment of the cells with SM extract resulted in lower levels of MDA production by
60.24%, and SOD activity was restored by 43.36% (p < 0.01), relative to the cells not treated
with drugs in the model. However, cells that were treated with trapidil did not significantly
alter the activity of SOD or MDA production in the model.

The cells treated with trapidil or SM extracts in the 3D VDM had a CSI closer to that
of the static control cells, indicating more fusiform cells, demonstrating that drug treatment
restored cellular shape in the model. These data were consistent with the cellular shapes
observed by microscopy, demonstrating that trapidil and SM extracts protect ECs from the
harmful effects of LSS in the model (Figure 7).
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Figure 7. Drug effect on EC morphology. (a) denotes the morphology of the static control ECs;
(b) denotes the morphology of the ECs that were treated with LSS; (c) denotes the morphology of
the ECs that were treated with trapidil exposed to LSS; (d) denotes the morphology of the ECs that
were treated with SM exposed to LSS. Scale bars denote 200 µm. (e) Quantitative analysis of EC
shape under static condition or exposure to LSS. Image analysis was used to quantify the cellular
shape of ECs after LSS treatment. A static control sample was not subjected to LSS. Samples were
also treated with trapidil or SM extracts during LSS treatment. Each sample contains analysis on
100 cells (compared with the LSS group, * p < 0.05, ** p < 0.01, n = 5).

Treatment of ECs with trapidil reduced LSS-induced apoptosis by 1.7-fold and SM
extract treatment reduced apoptosis by 2.7-fold, with 12.35 ± 1.60% and 7.93 ± 0.6% of
cells positive for Annexin V-FITC, respectively (Figure 5c,d). SM extract proved to be more
protective against the effects of LSS, with an apoptosis rate that was ~35.79% lower than
that of the cells treated with trapidil. In addition, the ability of the medium containing
trapidil or SM extract to induce SMC migration lower than that of the medium under LSS
without drugs by 40% and 20%, respectively (Figure 6c,d).

3.5. Bioactive Components Screening of SM Extract in the 3D VDM

We next sought to determine the difference of SM extract active component screening
between the 3D VDM and a traditional static oxidative-damaged cell model. SM extract
is a complex mixture with numerous constituents, and a total of nine major peaks were
obtained by HPLC analysis of SM extracts (Figure 8a). Among the nine peaks, four
were identified using commercial standards and five were deduced following previously
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published methods (Figure 8b; Table 2). ECs of the 3D VDM or the static oxidative-
damaged cell model were treated with SM extract for 12 h. The cells were then collected
and analyzed by HPLC. Normal ECs treated with the same procedure were subjected
to HPLC analysis as the control (Figure 8c) to the experimental groups. By comparing
to the HPLC chromatograph of the normal control ECs, the ECs of the static oxidative-
damaged cell model were detected containing nine components of SM extract (Figure 8d),
and the nine components were, respectively, salvianolic acid B, danshensu, protocatechuic
acid, dihydrotanshinone I, protocatechuic aldehyde, salvianolic acid A, cryptotanshinone,
methylene tanshiqunone, and tanshinone IIA (peaks 1–9). In contrast, only five components
of SM extract were identified in the ECs of the 3D VDM, and the five components were,
respectively, danshensu, protocatechuic aldehyde, salvianolic acid B, cryptotanshinone, and
tanshinone IIA (peaks 1, 3, 4, 7, and 9) (Figure 8e), and these peaks have a smaller area than
the corresponding peaks of the chromatograph of the static oxidative-damaged cell model
(Figure 8d). The data indicated that ECs of the 3D VDM absorbed both fewer compounds
from the SM extract and a lower concentration of these compounds, as compared to ECs of
the traditional static oxidative-damaged cell model.

Figure 8. HPLC analysis. ECs were treated with the following conditions prior to harvesting and
analysis by HPLC. (a) denotes the HPLC chromatogram of the SM extracts; (b) denotes the HPLC
chromatogram of mixed standards; (c) denotes the HPLC chromatogram of untreated ECs; (d) denotes
the HPLC chromatogram of ECs treated with oxidative stress and SM in a static model; (e) denotes the
HPLC chromatogram of ECs treated with LSS and SM in the 3D VDM. mAU refers to milli-absorbance
units measured at 281 nm.
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Table 2. Identification of bioactive compounds from SM extract.

Peak Retention Time, Min Identified or Deduced Compound

1 7.912 Danshensu
2 8.768 Protocatechuic acid
3 13.923 Protocatechuic aldehyde
4 44.043 Salvianolic acid B
5 46.223 Salvianolic acid A
6 56.312 Dihydrotanshinone I
7 60.314 Cryptotanshinone
8 63.313 Methylene tanshiqunone
9 67.117 Tanshinone IIA

4. Discussion

In this research, we presented an in vitro 3D cell model to study vascular disease and
drug screening. This model was made by simulating the effect of communication between
different cell types of the blood vessel wall considering the effect of vascular shear stress.
The arterial wall mainly consists of ECs and SMCs, and the interaction between the two
cells influences the vascular physiology and pathology. LSS stimulates vascular cells, leads
to vascular injury, and may affect drug absorption. The characteristics of the 3D VDM
are that ECs are exposed to continuous LSS, ECs can communicate with SMCs through
a porous membrane, and drugs are transported to cells by continuous circulation of cell
culture media. Taken together, the advantage of this model is that it may simulate many
aspects of the microenvironment of vessel walls and may improve the ability of researchers
to predict the effects of drugs on target cells.

Shear stresses in arteries range from ~20 to ~60 dyn/cm2, and LSS refers to the
shear stress that is approximately < 10 to 12 dyn/cm2 and unidirectional at any given point
(Chatzizisis et al. 2007). Long term exposure to LSS decreases EC viability, while at the same
time inducing SMC proliferation. We found that shear stress of 4 dyn/cm2 and exposure
time of 12 h resulted in significant decrease in EC viability, demonstrating that this model
is suitable to recapitulate the microenvironment of the vessel wall of vascular diseases.

Although many in vitro vascular models have previously been built in other re-
searches, most of these models could not accurately reflect a pathological state of vascular
diseases. Additionally, it is unclear whether established drug treatments were efficacious
to reduce pathological symptoms in these models [30]. We sought to overcome these limita-
tions by inducing a pathological state in the 3D VDM and to determine the effect of drug
treatment on cell pathology. LSS induces numerous effects in vivo, including alteration
to cellular morphology, cell apoptosis, production of PDGF, SOD, and MDA, and SMC
migration. Since these effects can be quantitatively and reproducibly measured, these
markers were used to evaluate the reproduction of the pathological state of vascular disease
in the 3D VDM.

In addition, we sought to verify the pharmaceutical effect of drugs in the 3D VDM
using the drugs that have been reported to alleviate vascular diseases. Trapidil is a widely
used anti-vascular disease drug, and treatment results in highly selective inhibition of
PDGF production and SMC migration [31]. SM is a multi-purpose traditional Chinese
medicine, which has been used to treat a variety of clinical diseases including vascular
diseases [32]. Recent studies indicated that SM exhibited obvious antioxidant activities.
These properties make trapidil and SM attractive choices to validate the 3D VDM. The
study demonstrated that trapidil protected cellular shape and inhibited EC apoptosis,
SMC migration, and PDGF production; however, the drug had no significant effect on the
production of SOD and MDA under conditions of LSS in the 3D VDM. The results also
showed that the SM extract was able to maintain cellular shape, inhibit cell apoptosis and
migration, decrease MDA production, and increase SOD activity; however, it had no effect
on the production of PDGF. Thus, trapidil and SM extract treatment verified that the 3D
VDM was useful in testing compounds that reduce pathologic effects.
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Extracts of SM contain numerous active components including danshensu, protocate-
chuic aldehyde, protocatechuic acid, salvianolic acid A, salvianolic acid B, dihydrotanshi-
none I, cryptotanshinone, methylene tanshiqunone, and tanshinone IIA. These compounds
exhibit numerous pharmacological effects and act on many cellular targets [33]. The
anti-vascular disease activity of SM is well-known and includes improvement of micro-
circulation and prevention of myocardial ischemia [34]. As a result, treatment with SM
extract offers an attractive way to highlight differences of drug screening between the 3D
VDM and the traditional static oxidative-damaged vascular disease model. The HPLC
results showed that the ECs of the static oxidative-damaged cell model absorbed all the
nine components of the SM extract described above (Figure 8a,c), but only five of these
compounds were detected in the cells of the 3D VDM (Figure 8e). Our previous study
has demonstrated that shear stress could affect drug absorption of cells, and the results in
this study support this finding. Protocatechuic aldehyde, danshensu, tanshinone IIA, and
salvianolic acid B are able to inhibit many vascular diseases and are clinically effective for
the prevention of angina, coronary heart disease, stroke, or other vascular diseases [35].
However, protocatechuic acid, dihydrotanshinone I, and methylene tanshiqunone have
no obvious anti-vascular disease effect [36]. The ECs of the static oxidative-damaged cell
model absorbed most components of the SM extract including anti-vascular disease com-
ponents and others having no anti-vascular disease effect, while the ECs of the 3D VDM
mainly absorbed the anti-vascular disease active ingredients of SM extract, indicating that
the 3D VDM has a higher selectivity for anti-vascular-disease drugs than the traditional
static in vitro model.

There are several possible scenarios to explain the differences in SM extract absorption
in the 3D VDM and the static oxidative-damaged cell model. LSS and co-culture of ECs
and SMCs may result in a different disease state than the oxidative stress model, and
the 3D VDM may more accurately reflect the real physiological and disease state seen
in vascular diseases. In addition, oxidative stress results in a relatively limited cellular
response to damage, and LSS may upregulate numerous cellular receptors and cellular
damage response genes. Finally, since SM extracts were administered under flow condition,
it likely that differences in affinity and uptake kinetics of SM extract components contribute
to the differences seen.

5. Conclusions

The researches show that the 3D VDM has potential for the pathophysiology study and
efficient drug screening of vascular diseases. The cell co-culture and LSS treatment of the
3D VDM make it closer to the physiological and pathological state of vascular diseases and
simulate the microenvironment of blood vessel wall. This model is also able to eliminate
some irrelevant compounds in the early state of drug screening of vascular diseases, which
will contribute to cost-saving in the drug research process.
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