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Abstract

Objectives To investigate the diagnostic performance of deep transfer learning (DTL) to detect liver cirrhosis from clinical MRI.

Methods The dataset for this retrospective analysis consisted of 713 (343 female) patients who underwent liver MRI between

2017 and 2019. In total, 553 of these subjects had a confirmed diagnosis of liver cirrhosis, while the remainder had no history of

liver disease. T2-weighted MRI slices at the level of the caudate lobe were manually exported for DTL analysis. Data were

randomly split into training, validation, and test sets (70%/15%/15%). A ResNet50 convolutional neural network (CNN) pre-

trained on the ImageNet archive was used for cirrhosis detection with and without upstream liver segmentation. Classification

performance for detection of liver cirrhosis was compared to two radiologists with different levels of experience (4™-year

resident, board-certified radiologist). Segmentation was performed using a U-Net architecture built on a pre-trained ResNet34

encoder. Differences in classification accuracy were assessed by the x-test.

Results Dice coefficients for automatic segmentation were above 0.98 for both validation and test data. The classification

accuracy of liver cirrhosis on validation (vVACC) and test (tACC) data for the DTL pipeline with upstream liver segmentation

(VACC = 0.99, tACC = 0.96) was significantly higher compared to the resident (VACC = 0.88, p < 0.01; tACC =091, p =0.01)

and to the board-certified radiologist (VACC = 0.96, p < 0.01; tACC = 0.90, p < 0.01).

Conclusion This proof-of-principle study demonstrates the potential of DTL for detecting cirrhosis based on standard T2-weighted

MRI. The presented method for image-based diagnosis of liver cirrhosis demonstrated expert-level classification accuracy.

Key Points

* A pipeline consisting of two convolutional neural networks (CNNs) pre-trained on an extensive natural image database
(ImageNet archive) enables detection of liver cirrhosis on standard T2-weighted MRI.

* High classification accuracy can be achieved even without altering the pre-trained parameters of the convolutional neural
networks.

* Other abdominal structures apart from the liver were relevant for detection when the network was trained on unsegmented
images.
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Introduction

Liver cirrhosis is the end stage of chronic liver disease and a
major global health condition, especially due to its variety of
severe complications caused by portal hypertension such as
variceal bleeding, ascites, and hepatic encephalopathy [1].
Although liver biopsy is the gold standard for the detection
of cirrhosis, imaging has a particularly important role in the
evaluation of the disease [2]. Imaging is primarily used to
characterize the morphologic manifestations of cirrhosis,
evaluate the presence and the effects of portal hypertension,
and screen for hepatocellular carcinoma. However, morpho-
logic characteristics of cirrhosis are often detected inciden-
tally in patients with unsuspected cirrhosis. It is therefore
not unusual that radiologists presume an initial diagnosis
of cirrhosis [3].

To assume a diagnosis of liver cirrhosis, different morpho-
logical criteria have been described for standard imaging mo-
dalities [2]. However, most of these findings are subjective,
susceptible to inter-observer variability, and often lack high
overall accuracy for the detection of cirrhosis [4]. Therefore,
quantitative analyses, which could improve the objectivity
and reading performance in the identification of liver cirrho-
sis, are of great interest [5].

A method that could objectively assess relevant features
automatically within radiological images could support the
radiologist in diagnosing liver cirrhosis, leading to greater
accuracy and less variation in reading performance. Since
2012, when a deep learning technique has shown superior
performance in the prominent ImageNet challenge for the first
time, especially CNNs have become the gold standard for
image classification and segmentation [6]. Deep learning
methods have been continuously improved and successfully
applied in various disciplines, including medical imaging
[7-12].

However, a disadvantage of CNNs is the requirement of
a large number of pre-classified images, which serve as
training data. Instead of training a neural network from
scratch with a small data set, it has proven advantageous
to use a technique called transfer learning [13]. The basic
idea is to use a CNN pre-trained e.g. on a large natural
image dataset, which has already been trained to recognize
complex patterns and then adapt it to a different task. This
technique has recently been successfully applied to a vari-
ety of segmentations and classification problems of medical
image data [14-16].

The aim of this study was to investigate the capabilities
of deep transfer learning (DTL) to identify liver cirrhosis
in standard T2-weighted MRI and to evaluate the diagnos-
tic performance against radiologists with different levels of
experience.
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Materials and methods

This retrospective study was approved by the institutional
review board with a waiver of written informed consent.
Patients who underwent liver MRI at our institution for stan-
dard diagnostic purposes between 2017 and 2019 were includ-
ed. Two groups of patients were identified and included in the
final study cohort:

i. Patients with known liver cirrhosis of any stage: Inclusion
criterion was the presence of histologically or clinically
defined liver cirrhosis of any clinical disease severity.
Exclusion criteria were the presence of focal liver lesions
at the level of portal vein bifurcation or a past medical
history of hepatic surgery (Fig. 1).

ii. Patients without known liver disease: From the same pe-
riod, a randomly selected control group was recruited,
which consisted of patients without known liver disease.
Exclusion criteria for the control group were the same as
those applied for the cirrhosis group.

Patient characteristics were retrieved from the clinical infor-
mation management system of the referring institution. An
overview of the MRI indications for the two groups is provided
in Supplement S1.

As this study aimed to determine the diagnostic utility of
DTL to detect liver cirrhosis based on morphological hall-
marks of liver cirrhosis, T2-weighted imaging was used for
analysis. In detail, images of a standard T2-weighted respi-
ratory triggered multi-slice turbo spin echo sequence with
non-Cartesian k-space filling with radial rectangular blades
(Multi Vane XD) were used. For each patient, a single-slice
image at the level of the caudate lobe was exported for DTL
analysis (N.M. with 1 year of experience in the field of
clinical abdominal imaging). All examinations were per-
formed on clinical whole-body MRI systems (Philips,
Ingenia 1.5 T and 3 T). Detailed imaging parameters are
listed in Supplement S2.

Image data were randomly divided into training data (70%),
validation data (15%), and test data (15%) using a custom
Matlab script (MathWorks). Details of the preprocessing prior
to training are listed in Supplement S3.

Images were analyzed using two different processing pipe-
lines. In the first pipeline, an image segmentation network was
applied prior to the classification task. In the second pipeline,
the classification was performed directly on the unsegmented
images.

For segmentation, a CNN following the principle architec-
ture of a U-net model was implemented [17]. Its descending
encoder part is identical to a CNN with residual connections
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Liver examinations
between 2017-2019 (n = 3455)

Inclusion criteria

- Patients with clinically or
histologically defined liver

Patients with liver cirrhosis
(n=1117)

cirrhosis

Exclusion criteria

- Missing sequences for analysis (n = 163)
- - - Insufficient imaging quality (n = 59)

Patients with liver cirrhosis
eligible for analysis (n = 553)

- Focal liver lesions at the level of portal
vein bifurcation (n = 198)
- Past medical history of hepatic surgery

(n=144)

Fig. 1 Flowchart illustrating the inclusion and exclusion criteria for the group of patients with liver cirrhosis for this study
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Fig. 2 Details of the presented deep transfer learning (DTL) pipeline for task (right), a pre-trained ResNet50 CNN was employed. The
detection of liver cirrhosis. The segmentation network (left) is based on a classification performance of the DTL pipeline including liver
U-net architecture, with a ResNet34 convolutional neural network (CNN) segmentation (A) was compared to a classification based on the
as encoder, pre-trained on the ImageNet archive. For the classification original, unsegmented images (B)
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task in both pipelines. The model was pre-trained on the
ImageNet archive and implemented in pytorch’s torchvision
package [19]. Detailed descriptions of the segmentation and
classification CNN architectures can be found in Fig. 2 and
Supplement S4.

The DTL methods developed in this work were trained in
two phases. First, only non-pretrained layers were trained and
all pre-trained parameters of the convolutional layers were
kept constant. To further investigate whether varying the
pre-trained parameters may improve the reading performance
of the CNN, the parameters of the pre-trained convolutional
layers were made variable in a second phase. The one cycle
learning rate policy was applied for fine-tuning of the pre-
trained models for liver segmentation and classification of
liver cirrhosis [20]. All experiments and evaluations were per-
formed with python and fastai, a deep learning application
programming interface for pytorch [21]. Further details of
the experimental design and the hyper-parameters used for
training are given in Supplement S5.

To compare the performance of the DTL analyses to the
performance of healthcare professionals at different experience
levels, validation and test data were also classified independent-
ly by a radiology resident (A.F.) with 4 years of experience in
abdominal imaging and a board-certified radiologist (J.A.L.)
with 8 years of experience in abdominal imaging.

The 95% confidence interval of the DTL-based classifica-
tion accuracy was determined by the Clopper-Pearson method
and a x-test was performed to test for significant differences
in accuracy between the DTL-based classification and the
readers in SPSS Statistics 24 (IBM). For the test set, calcula-
tions of balanced accuracy, receiver operating characteristic,
and precision-recall analyses were performed with scikit-learn
0.23.2 [22-24].

In order to assess the classification performance of the en-
tire first pipeline (including prior segmentation), the segmen-
tations of the CNN (instead of manual segmentations) were
used for the validation and test set of the classification net-
work. In addition to evaluating the method by its performance
on the validation and test data set, gradient-weighted class
activation maps (Grad-CAMs) were generated [25]. This tech-
nique is proposed to add visual information to radiological
images, describing areas of the image that affect the prediction
of'the CNN [26]. These colored prediction maps were visually
inspected and the image areas contributing to the CNN’s pre-
diction of cirrhosis were quantified separately for both patient
groups.

Results
A total of 713 patients (342 female, mean age: 58 = 14 years)

were included. Of those, examinations of 572 patients were
acquired at a field strength of 1.5 T. The remainder were
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examined on 3.0 T. A total of 553 patients (248 female, mean
age: 60 £ 12 years) with a confirmed diagnosis of liver cirrho-
sis based on clinical or histopathological criteria were includ-
ed (Fig. 1). The control group consisted of 160 subjects (94
female, mean age: 49 + 18 years) without history of liver
disease. A training set with 505 subjects (244 female, mean
age: 58 + 14 years), a validation set with 104 subjects (49
female, mean age: 57 + 14 years), and a test set with 104
subjects (49 female, mean age: 58 + 15 years) were compiled
by random selection, while maintaining the proportion of con-
trol patients to patients with cirrhosis. The DTL method for
segmentation of the liver in the transverse T2-weighted MRI
images developed on the training set showed Dice values of
0.984 for the validation set and 0.983 for the test set.

In the subsequent training of the classification network
ResNet50 for the identification of cirrhosis based on segmented
images, an accuracy (ACC) of 0.99 (95% confidence interval:
0.95-1.00) for validation data (vACC) and 0.96 (0.90-0.99) for
test data (tACC) was achieved. For the classification on unseg-
mented images, vVACC was 0.97 (0.92-0.99) and tACC was
0.95 (0.89-0.98). The accuracy of the DTL pipeline for classi-
fication of cirrhosis with prior segmentation of the organ was
significantly higher compared to the resident (VACC = 0.88,
p<0.01; tACC =0.91, p = 0.01) as well as the board-certified
radiologist (vACC = 0.96, p < 0.01; tACC = 0.90, p < 0.01)
(Table 1). Modifications of pre-trained parameters did not im-
prove segmentation and classification accuracy significantly
(Table 2). On the test set, a balanced accuracy value of 0.90
was observed for the DTL method based on unsegmented im-
ages. Balanced accuracy values of 0.92 were observed for the
DTL method based on segmented images, as well as for the
radiology resident and board-certified radiologist. For the DTL
method, the balanced accuracy of 0.92 is derived from a sensi-
tivity of 1, which was higher than that of the radiology resident
and board-certified radiologist (0.91, 0.89) and a specificity of
0.83, which was lower than that of the radiology resident and
board-certified radiologist (0.92, 0.96).

Receiver operating characteristic and precision-recall
curves for the test data set are shown in Fig. 3. For the DTL
method trained on segmented images, an area under the curve
(AUC) 0f 0.99 and an average precision (AP) of 0.97 and for
the DTL method trained on the unsegmented images, an AUC
0f 0.95, and an AP of 0.93 were determined.

Figure 4 shows exemplary images from the test set with
colored maps indicating areas which were particularly rele-
vant for the decision of the classifier. The results of the visual
inspection are presented in Table 3. In the first pipeline with
upstream segmentation, the caudate lobe was highlighted in
47.5% of the images classified as cirrhosis and in 25% of the
images classified as no cirrhosis. In every fifth (20.8%) of the
segmented images classified as no cirrhosis, the transition
zone of the caudate lobe to the image background was
highlighted.
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Table 1 Accuracy (ACC), balanced accuracy (BACC), sensitivity
(Sens), and specificity (Spec) for identification of liver cirrhosis for
validation (VACC, vBACC, vSens, vSpec) and test (tACC, tBACC,
tSens, tSpec) of the deep transfer learning (DTL) method based on

unsegmented images and based on images with prior segmentation of
the liver. The accuracy of the DTL approaches was also compared to a
radiological resident and a board-certified radiologist. Statistical
difference was assessed by y*-test

Reader/method vACC  pvalue (vVAcc) tACC  pvalue (tAcc) VBACC tBACC  vSens tSens  vSpec  tSpec
ResNet50 (segmented liver) 0.99 - 0.96 - 0.99 0.92 0.99 1 1 0.83
ResNet50 (full image) 0.97 p=0.04 0.95 p=0.61 0.97 0.90 0.98 1 0.96 0.79
Board-certified radiologist 0.96 p<0.01 0.90 p<0.01 0.98 0.92 0.95 0.89 1 0.96
Radiology resident (4th year)  0.88 p<0.01 091 p=0.01 0.93 0.92 0.85 0.91 1 0.92

In the second pipeline, based on unsegmented images, addi-
tional highlighted areas outside of the liver were identified. In
images classified as cirrhosis, the spleen area was highlighted in
6%, the stomach area in 22.5%, and the gastroesophageal junc-
tion in 12.5%. In 29.2% of the CNN’s negative predictions,
spinal musculature was highlighted.

Discussion

This proof-of-principle study demonstrates the feasibility of
automatic detection of liver cirrhosis by DTL based on a stan-
dard T2-weighted MRI. The deep learning approach with

Table 2  Dice values of the segmentation convolutional neural network
(CNN) and classification accuracy of liver cirrhosis of the classification
CNN at different stages of the training experiments. In the first stage of
training the segmentation CNN, a Dice score of 0.9828 was achieved by
optimizing the convolutional layers of the random-initialized decoder and
remaining the parameters of the pre-trained ResNet34 encoder
unchanged. In the following three stages that started from the model
state of the previous stage, only minor improvements of 0.001 of the
Dice score were achieved. In these stages, the convolutional layers of
the pre-trained ResNet34 encoder were made variable, whereby the
learning rate (LR) increased linearly from the first to the last layer of

prior segmentation of the liver provides classification accura-
cy at expert level.

To date, no other work has investigated the use of a
DTL approach for the detection of liver cirrhosis in
standard T2-weighted MRI sequences. There are recent
studies based on gadoxetic acid—enhanced MRI imaging
that classifies fibrotic pathologies of the liver by
methods of deep learning and radiomics [27, 28].
However, these methods are trained from scratch and
they require a manual definition of region of interests.
In contrast to that, the method proposed in the current
study does not require manual segmentation since the
liver is segmented automatically with high precision.

the CNN. In the first stage of training the classification CNN, an
accuracy of 0.99 for the segmented images and 0.97 for the
unsegmented images were achieved by optimizing the output layer of
the ResNet50 CNN only. The following stages that started from the
best previous model state did not lead to an improvement in accuracy
and showed only minor improvements of the cross-entropy loss. Also in
the last three stages, where the convolutional layers of the pre-trained
ResNet50 were made variable with learning rates increased linearly
from the first to the last layer of the CNN, no improvement in accuracy
could be observed. Detailed descriptions of the training experiments can
be found in Supplement S5

Training Epochs Max LR last layer
stage decoder
Segmentation network 1 80 0.001
(U-net like 2 40 0.0005
with ResNet34 encoder) 3 40 0.0005
4 40 0.0005
Training Epochs Max LR output
stage layer
Classification network 1 80 0.1
(ResNet50) 2 40 0.01
3 40 0.001
4 40 0.0001
5 40 0.0001
6 40 0.0001

Max LR first layer Dice on validation set
encoder
Frozen 0.9828
0.000005 No improvement
0.00005 0.9837
0.0005 0.9838
Max LR first Accuracy and Accuracy and
layer cross-entropy cross-entropy
loss (segmented loss (full image)
image)
Frozen 0.99, 0.1452 0.97, 0.325
Frozen No improvement 0.97,0.2151
Frozen No improvement No improvement
0.000001 No improvement 0.97, 0.2025
0.00001 0.99, 0.1450 No improvement
0.0001 0.99, 0.1339 No improvement
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Fig. 3 Liver cirrhosis classification performance of the deep transfer
learning (DTL) methods trained on the segmented images (DTL A) or
unsegmented images (DTL B) and of the radiology resident (rater A) and

Recent studies based on ultrasound imaging also used DTL
methods pre-trained on the ImageNet archive [29, 30]. Of
note, in both mentioned studies, the pre-trained parameters
were not kept constant during training. Particularly the first
few layers of the pre-trained CNNs have learned to recognize
very general image features such as edges and shapes during
the training with the ImageNet data set [31]. The ability to
extract these features is a benefit of transfer learning, and
therefore, other groups proposed to first optimize only the
output layer of the network prior to changing the pre-trained
parameters of the CNN [15, 32].

In order to examine whether altering the pre-trained param-
eters of the DTL methods is beneficial for the identification of
cirrhosis, the CNNs were trained in two phases in this work,
with frozen and unfrozen pre-trained parameters.
Interestingly, the accuracy on the validation data set of both
methods did not further increase by unfreezing the pre-trained
parameters. Hence, the learned feature extraction capability
from the training on the natural image data set of e.g. cars,

Table 3  Evaluation of the gradient-weighted class activation maps of
the test set. The maps of the predictions of the deep transfer learning
method, trained on segmented images and images without liver
segmentation, were visually inspected and it was recorded which image
areas were highlighted, separately for both patient groups. Note that
several areas of the image were highlighted, so the percentages of the

the board-certified radiologist (rater B) on the test set, illustrated by
receiver operating characteristic and precision-recall curves and area
under the curve (AUC) and average precision (AP) values

animals, and buildings was generalized to identify liver cir-
rhosis on an expert level in standard T2-weighted MRI.

A further aim of our study was to investigate, whether prior
segmentation of the liver is beneficial for this classification
task. Interestingly, both variants (with and without prior
segmentation) achieved high accuracy. However, the accura-
cy for the detection of liver cirrhosis was slightly higher
for the DTL pipeline with prior segmentation. This result
may be attributed to the following advantages of upstream
segmentation:

i.  The network is forced to focus on the area, where patho-
logical alterations are primarily expected.

ii. Image areas that are not in focus of the analysis are
prevented to have an impact on the normalization step [33].
Using only the image areas of the organ allows to train
the classification model with smaller image matrices and
thus larger batch size, which is considered beneficial for
the applied learning rate policy [20].

iii.

different image areas do not add up to 100% within a patient group. The
liver areas were divided into left, right hepatic, and caudate lobe. For the
segmented images, it was also noted whether image areas at the transition
zone of the caudate lobe to the image background were highlighted. For
the full images, highlighted areas near the stomach, spleen,
gastroesophageal junction, and spinal muscles were observed

Unsegmented images Patient group Right hepatic Left hepatic Caudate lobe Spleen Stomach Gastroesophageal junction Spinal musculature

Cirrhosis
No cirrhosis

Segmented images

53.8%
83.3%

35%
16.7%

Patient group Right hepatic Left hepatic

22.5%
0

63%  22.5% 12.5%
0 8.3% 0

2.5%
29.2%

Caudate lobe Border caudate - -

lobe/-
background
Cirrhosis 53.8% 28.8% 47.5% 2.5% - -
No cirrhosis 58.3% 20.8% 25% 20.8% - -
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Fig. 4 Gradient-weighted class
activation maps for unsegmented
and segmented images from the
test set. The overlays highlight
regions that had high impact on
classification in patients without
cirrhosis (a) and patients with
cirrhosis (b). Patients with and
without cirrhosis that were
correctly classified by the DTL
methods but incorrectly classified
by the certified radiologist are

shown in ¢. Examples of images
with a disagreeing classification
of the two DTL methods, where
the image was only correctly
classified with prior liver
segmentation are shown in d.
Images that were misclassified by
both DTL methods, but correctly
classified by the certified
radiologist are shown in e

For both methods, image areas relevant for the CNN’s
decision were investigated applying the Grad-CAM method
[25]. The results indicate that the caudate lobe area is impor-
tant for the DTL methods for the detection of liver cirrhosis
trained on either segmented or unsegmented images.
Interestingly, the Grad-CAM evaluations of the DTL method
based on the unsegmented images showed that in some cases,
image areas outside of the liver were relevant. This indicates
that the CNN might also base the prediction of cirrhosis on
accompanying signs of cirrhosis, such as spleen hypertrophy,
venous alterations like fundus varices, or the general vital
status of the patient according to muscle structure. This

observation motivates further studies to investigate if deep
learning methods may also reliably detect accompanying ef-
fects of cirrhosis.

Future work should also address whether a multi-task-
learning architecture, which would simultaneously optimize
segmentation and classification performance, has advantages
over the presented pipeline. In addition, the method could be
extended by an automated selection of the 2D slice at the level
of the caudate lobe to allow fully automated prediction of
cirrhosis based on T2-weighted imaging.

Our study has several limitations. First, the DTL model has
been trained for the identification of liver cirrhosis only and
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does not support the detection of very early signs of tissue
fibrosis, which might be present in early hepatopathy.
However, this was not the aim of this proof-of-principle study,
but to investigate the hypothesis that ImageNet pre-trained
models are generalizable to T2-weighted MRI imaging and
allow the assessment of imaging features of liver cirrhosis.
The investigation of an automated classification of early signs
of tissue fibrosis and different stages of fibrosis will be the
next step in the evaluation of deep transfer learning—based
approaches based on standard T2-weighted MRI imaging.

Our study collective included a broad range of cirrhosis
severities (according to the Child-Pugh score) and different
etiologies of cirrhosis. To account for the difference in the
number of patients with liver cirrhosis and patients without
liver disease, additional performance measures were assessed.
According to the balanced accuracy, the method trained on
segmented images performs at expert level. However, the
DTL method shows a higher sensitivity and a lower specificity
compared to the board-certified radiologist, which may be a
result of the class imbalance of the dataset. An expert level
classification performance of the DTL method trained on seg-
mented images is furthermore underlined by the precision-
recall analysis.

Another limitation is that the classification was based
solely on T2-weighted images. In contrast to that, addition-
al pieces of information such as different MRI sequences as
well as clinical and laboratory parameters are typically
available for diagnosis in clinical routine. However, in our
study, high diagnostic accuracy was shown for both the
classifier and clinical experts, even if the diagnosis was
based on only one anatomical sequence. Future studies
may evaluate whether a multi-parametric approach or the
inclusion of clinical parameters can further improve diag-
nostic performance.

Conclusion

This proof-of-principle study demonstrates the potential of
DTL for the detection of cirrhosis based on standard T2-
weighted MRI. The DTL pipeline for the image-based diag-
nosis of liver cirrhosis demonstrated classification accuracy at
expert level. An application of the pipeline could support ra-
diologists in the diagnosis of liver cirrhosis and has the poten-
tial to improve consistency of reading performance.
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