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Abstract

Introduction

Simulation modeling methods are an increasingly common tool for projecting the potential

health effects of policies to decrease sugar-sweetened beverage (SSB) intake. However, it

remains unknown which SSB policies are understudied and how simulation modeling meth-

ods could be improved. To inform next steps, we conducted a scoping review to character-

ize the (1) policies considered and (2) major characteristics of SSB simulation models.

Methods

We systematically searched 7 electronic databases in 2020, updated in 2021. Two investi-

gators independently screened articles to identify peer-reviewed research using simulation

modeling to project the impact of SSB policies on health outcomes. One investigator

extracted information about policies considered and key characteristics of models from the

full text of included articles. Data were analyzed in 2021–22.

Results

Sixty-one articles were included. Of these, 50 simulated at least one tax policy, most often

an ad valorem tax (e.g., 20% tax, n = 25) or volumetric tax (e.g., 1 cent-per-fluid-ounce tax,

n = 23). Non-tax policies examined included bans on SSB purchases (n = 5), mandatory

reformulation (n = 3), warning labels (n = 2), and portion size policies (n = 2). Policies were

typically modeled in populations accounting for age and gender or sex attributes. Most stud-

ies focused on weight-related outcomes (n = 54), used cohort, lifetable, or microsimulation

modeling methods (n = 34), conducted sensitivity or uncertainty analyses (n = 56), and

included supplementary materials (n = 54). Few studies included stakeholders at any point

in their process (n = 9) or provided replication code/data (n = 8).
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Discussion

Most simulation modeling of SSB policies has focused on tax policies and has been limited

in its exploration of heterogenous impacts across population groups. Future research would

benefit from refined policy and implementation scenario specifications, thorough assess-

ments of the equity impacts of policies using established methods, and standardized report-

ing to improve transparency and consistency.

Introduction

Overconsumption of sugar-sweetened beverages (SSBs) is a key contributor to high and rising

cases of non-communicable diseases worldwide [1, 2]. Experts agree that policy action is

needed to reduce SSB consumption and prevent diet-related disease [3]. For example, the

World Health Organization has called for countries to tax SSBs as one way to reduce SSB con-

sumption [1]. Other policy options include front-of-package warning labels, limits to portion

sizes, and marketing restrictions [3, 4].

Decision makers often want to consider and compare the consequences of proposed policy

designs before implementation. Simulation modeling is a powerful tool for projecting likely

population health outcomes under different policy scenarios. Broadly, models use existing

knowledge and data to project how consumer and supply-side behaviors (e.g., SSB consump-

tion, product reformulation) and health outcomes (e.g., obesity, diabetes) are likely to change

over time in response to policy actions [5]. Modifying model parameters allows investigators

to examine different ‘what if’ scenarios, such as how expected health impacts might differ if the

policy was less effective, or if consumers or suppliers respond in particular ways. This func-

tionality makes simulation modeling a compelling method for providing policymakers with

information on the likely health outcomes of different policy actions to inform policy design

and implementation.

A growing number of studies have used simulation models to project how SSB policy action

might impact population health outcomes. To advance SSB policy research with simulation

modeling, it is important to synthesize trends in the type and amount of evidence available

across these studies and identify areas for improvement. Prior reviews have examined simula-

tion models of nutrition policies generally [6–9], but have not focused specifically on SSB poli-

cies, despite their growing importance. Other work has reviewed the effects of specific SSB

policies like taxes [10] or warning labels [11], without a focus on simulation modeling studies

exclusively. What is missing from the current literature is a clear understanding of the variety

of SSB-specific policies that have been assessed with simulation models, and the characteristics

of the models.

Thus, we aimed to conduct a systematic scoping literature review to describe the current

state of the SSB policy simulation modeling literature. The goal of this review was to spur

thoughtful considerations of next steps for simulation modeling of SSB policies, including

where policy evidence might be lacking and where methodologies can be improved. We

focused on two questions: 1) what SSB policies have been evaluated using simulation modeling

and 2) what are the characteristics of the simulation models used, including the models’ set-

tings/populations, health outcomes, and modeling methods?
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Methods

We used systematic scoping review methods, as our research questions were related to the

broad scope of literature on SSB policy simulation models [12, 13]. Scoping reviews are

broader in scope than traditional systematic reviews, but like systematic reviews, scoping

reviews define eligibility criteria, systematically search the literature, and extract data from

included studies [14]. A trained clinical health sciences librarian (STW) performed a system-

atic electronic search of publications in PubMed, Cumulative Index to Nursing and Allied

Health Literature (CINAHL) via EBSCO, EMBASE via Elsevier, PsycInfo via EBSCO,

Cochrane Central Register of Controlled Trials, SCOPUS, and Communication and Mass

Media Complete via EBSCO, collecting results from the inception of the database through

June 25, 2020. A database search update was performed on June 10, 2021. Our search terms

addressed the three main concepts of the review: 1) computer simulation or computer model

or economic evaluation; 2) sugar-sweetened beverages; and 3) health policy or public health or

nutrition guidelines (S1 File). We included articles that used mathematical simulation model-

ing in a human population, presented novel findings, simulated at least one policy focused

exclusively on SSBs, translated policy impacts to health outcomes beyond behavior change,

and were published in English. We excluded economic modeling that simulated changes in

consumption only, without translating consumption changes into health outcomes (e.g.,

demand system modeling [15]). We also excluded articles that included an SSB policy as one

component of a multi-faceted intervention or policy (e.g., a three-component childcare inter-

vention to increase physical activity, reduce screen time, and replace SSBs with water [16]),

unless SSB-exclusive policies were examined in comparison to these multi-component poli-

cies. We also excluded articles targeting sugar consumption generally, not specifically sugar

consumption from SSBs (e.g., added sugar labeling policies [17]). We used Covidence software

(Veritas Health Innovation, Melbourne, Victoria, Australia) to screen abstracts and full-text

articles [18].

Two investigators (NRS and LF) independently screened abstracts; AHG resolved discrep-

ancies at this stage. The same two investigators then independently screened full text articles

for inclusion and resolved discrepancies through discussion. In addition to articles identified

by the database search, we included an article known to our team that was not picked up by

search terms because it did not have an abstract [19]. We also screened the reference lists of

full text articles from 2020 and 2021. NRS extracted data from included articles in Redcap [20]

using a standardized extraction template and a random 10% of article extractions were

checked by the senior author. We extracted data using only the main text of articles for all

questions except for one question specifically about the inclusion of a supplement and its level

of detail. We did not infer details beyond what was explicitly stated by authors.

Results

Included articles

The database search yielded 4,903 titles/abstracts after excluding duplicates (Fig 1) [21]. Of

these, 4,761 were excluded during abstract screening, leaving 142 full text articles assessed for

eligibility. Sixty of these were eligible for inclusion [22–81]. In the full text review stage, articles

were most often excluded for not examining at least one policy focused exclusively on SSBs

(n = 32) or because they were a conference abstract (n = 22). We include 61 articles in our

results, adding in the article known to our team that did not include an abstract to the 60 iden-

tified via database and reference list searches [19].
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Included articles were published between 2011 and 2021, with over half published in 2017–

2021 (n = 37). The main text provides aggregate statistics on the included articles; individual

data for each can be found in S1 Table and in an interactive table at https://natsmith.

shinyapps.io/Article-Information/.

RQ1: What policies have been evaluated using simulation modeling?

Most articles (n = 54) simulated one SSB policy. Six articles simulated two SSB-focused poli-

cies, and one simulated three. Some articles simulated SSB policies in comparison to other

health promotion policies (n = 10). For example, Basu et al. 2013 simulated a ban on SSB pur-

chasing with nutrition assistance dollars and a one-cent-per-fluid-ounce SSB volumetric excise

Fig 1. PRISMA 2020 flow diagram for new systematic reviews. Notes: �An additional article known to our team that was not picked up by search

terms because it did not have an abstract was added after identification of articles via registers and databases, bringing the final number of studies

included to 61.

https://doi.org/10.1371/journal.pone.0275270.g001
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tax (two SSB-focused policies) alongside two fruit and vegetable incentive policies (other

health promotion policies) [27].

Fifty out of 61 included articles examined at least one tax policy (Fig 2). To fully character-

ize taxes, we extracted information on both the tax rate (e.g., ad valorem/percentage-based,

such as 20%, or unit-based, such as 1 cent-per-fluid-ounce) and how that tax rate would be

implemented (i.e., excise, sales, other, unclear), based on the exact language used in the article

[3, 5]. Ad valorem tax rates were the most commonly examined tax (n = 25), with most studies

of tax policies examining a 20% tax on SSBs (n = 20/25). Volumetric taxes were the second

most common (n = 23, also referred to as volume-based taxes); 13 of these evaluated 1-cent-

per-fluid-ounce taxes. Among articles that described tax implementation, most evaluated taxes

were implemented as excise taxes; however, many articles did not specify implementation

mechanisms (Fig 2). Two articles noted that they were specifically not discussing tax imple-

mentation mechanisms to minimize the modeling assumptions required. Studies generally

simulated impacts on consumption by first estimating changes in SSB prices under tax policies,

using assumptions about baseline prices of SSBs and the percent of tax passed through (i.e., the

amount of tax that the taxed entity ‘passes through’ to consumers via price increases). Changes

in prices were then translated to changes in consumption using price elasticities (which quan-

tify the percent change in consumption for a percentage change in price).

Fig 2. Sugar-sweetened beverage policies examined by simulation modeling studies (n = 61). Notes: SNAP = Supplemental Nutrition Assistance

Program.

https://doi.org/10.1371/journal.pone.0275270.g002
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Thirteen of the 61 articles simulated a non-tax policy (two simulated both a tax and non-tax

policy, Fig 2). Five studies modeled bans on SSB purchases. Policies to ban SSBs most com-

monly focused on prohibiting SSB purchases using US Supplemental Nutrition Assistance

Program benefits. Articles also examined policies designed to restrict the use of price promo-

tions for SSBs (n = 1, stores could not sell SSBs under ‘two-for-one’ deals) or restrict the avail-

ability of SSBs in schools (n = 1). Two studies, both in the US, examined policies requiring

warning labels on SSBs. Two studies examined portion size policies that would prohibit the

sale of SSBs larger than 375 milliliters (about 12.7 fluid ounces) or 250 milliliters (about 8.5

fluid ounces). Finally, three studies considered policies requiring reformulation targets for

SSBs (e.g., policies requiring manufacturers to reduce added sugars in SSBs by a given percent-

age). Simulations of these policies used estimated impacts from published behavioral science

research or assumptions about behavioral responses to these changes. For example, a warning

label simulation model used observed effects on purchases of SSBs from a randomized trial in

a mock convenience store [43, 82]. Another model simulated the consumption effects of a por-

tion size policy by assuming any modeled individual who drank a beverage larger than the por-

tion size cap in the policy would reduce their consumption after policy implementation to

drink exactly the portion size specified in the policy [35].

RQ2: What are the characteristics of SSB policy simulation models?

A wide range of countries were represented in the included texts, with the US being the most

commonly modeled country (n = 24, Table 1). To simulate potential health effects of policies

in these countries, models use hypothetical populations with characteristics that are similar to

the population of interest (e.g., adults in the US, children aged 5–18 in Australia). Nearly all

studies modeled hypothetical populations with age (n = 59) and gender or sex attributes

(n = 58, Table 1). Studies generally presented results by population subgroups (n = 48), which

can shed light on a policy’s potential to affect disparities in health outcomes (specific sub-

groups examined by included studies are shown in Table 1).

Table 1 also displays major health outcomes simulated. All but 7 studies translated changes

in SSB consumption into impacts on weight (n = 54), typically using energy balance

approaches [83–89]. These approaches translate changes in energy intake (e.g., decreases in

calories from SSBs under a policy change) into changes in body weight [83]. Forty studies used

some form of an energy balance equation (or heuristic based on an energy balance equation)

in their modeling approach, with equations from Hall et al. being the most commonly used

(n = 24/40). Notably, five studies assumed that eating 3,500 fewer calories equates to 1 pound

of weight lost, an energy balance heuristic that has been widely criticized [83, 90–92]. Nine

studies used estimates of direct effects of SSB intake on weight change from published

literature.

Language used to describe modeling methods varied widely (Table 2). When stated, the

most commonly used simulation methods were cohort models (Markov or life table modeling,

n = 6 and 15, respectively) or microsimulation models (n = 13). Six studies stated that they

used comparative risk assessment methods, two used system dynamics modeling, and two

used agent-based modeling.

Studies typically simulated outcomes over a 10-year (n = 18), 20-year (n = 5), or lifetime

(n = 14) time horizon. In some cases (n = 14) the time horizon was not clearly stated. Nearly

half of the studies stated that their work was based on an existing model or modeling frame-

work (n = 26, e.g., ACES-Obesity [93], CHOICES [94], CVD-PREDICT [95]). Thirty of the

included studies included a visual of their logic model or modeling flow. Forty-six articles

included a descriptive table of input parameters, though the specific format of tables varied

PLOS ONE Simulation models of sugary drink policies

PLOS ONE | https://doi.org/10.1371/journal.pone.0275270 October 3, 2022 6 / 19

https://doi.org/10.1371/journal.pone.0275270


widely. Some articles presented high-level overviews and included information like data cita-

tions or distributional assumptions (e.g., Lal et al., 2017 [49]). Other articles presented more

granular information on specific parameters such as average SSB consumption among differ-

ent age groups (e.g., Ma et al., 2016 [56]). All studies mentioned assumptions of their work,

and most studies performed some form of sensitivity or uncertainty analysis (n = 56).

Table 1. Populations and outcomes modeled in included studies (n = 61).

Variable N %

Countries modeled

US 24 39%

Australia 8 13%

Mexico 5 8%

South Africa 4 7%

UK 3 5%

All other countriesa 17 28%

Attributes given to simulated populationsb

Age 59 97%

Sex or gender 58 95%

Income 21 34%

Race, ethnicity, nativity, or related 14 23%

Education 4 7%

SNAP 4 7%

Socioeconomic status 4 7%

Attributes for results stratification (n = 48 out of 61 that stratified results)b

Age 33 69%

Sex or gender 26 54%

Income 18 38%

Race, ethnicity, nativity, or related 12 25%

Socioeconomic status 2 4%

Outcomeb

Weight or BMI 54 89%

Diabetes 30 49%

Cardiovascular disease 24 39%

Cancer 12 20%

Dental caries 7 11%

Osteoarthritis 8 13%

Kidney disease 2 3%

Quality of life outcomec 20 33%

Economic outcomed 36 59%

Notes: US = United States, UK = United Kingdom, SNAP = Supplemental Nutrition Assistance Program,

BMI = Body Mass Index.
aOther countries simulated in fewer than 3 studies include Germany (n = 2), Thailand (n = 2), Canada (n = 1),

Colombia (n = 1), Ecuador (n = 1), England (n = 1), Global (n = 1), India (n = 1), Indonesia (n = 1), Ireland (n = 1),

Netherlands (n = 1), New Zealand (n = 1), Philippines (n = 1), Portugal (n = 1), Zambia (n = 1).
bArticles could simulate more than one attribute or outcome, so percentages will not sum to 100.
cFor example, quality-adjusted life years.
dFor example, disease-attributable healthcare costs, cost-effectiveness ratios.

https://doi.org/10.1371/journal.pone.0275270.t001
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Most studies included supplemental files (n = 54) with varying levels of detail. Twenty sup-

plemental files only presented additional tables/figures, without any further exposition on the

modeling methods. Particularly useful appendices included detailed descriptions of how the

authors came to modeling decisions (e.g., Wilde et al., 2019 [80]) or how a method was imple-

mented (e.g., Basu et al., 2013 [27]). Although supplements were quite common, including

data or code to replicate models was much less common (n = 8). Examples of methods for pro-

viding replication code included posting datasets in publicly accessible repositories and dis-

cussing equations and pseudocode (i.e., narrative/plain language description of computer

code) in supplemental files [22], or providing code directly on GitHub [25].

Stakeholder involvement–of any stakeholder, at any time in modeling work–was described

by 9 studies. For example, Urwannachotima et al. engaged stakeholders in exercises to help

build the structure of their model [77]. Models from the CHOICES group in the US incorpo-

rate stakeholder input into their intervention selection and implementation considerations

[42, 54, 55].

Discussion

We identified 61 studies that used simulation modeling methods to project the potential health

impacts of policies targeting SSB consumption. Use of simulation models to evaluate SSB poli-

cies has grown over time; all studies were published after 2011, and over half were published

Table 2. Modeling methods of included studies (n = 61).

Variable N %

Modeling Methods

Life table modeling 15 25%

Microsimulation 13 21%

Markov cohort modeling 6 10%

Comparative risk assessment 6 10%

System dynamics modeling 2 3%

Agent-based modeling 2 3%

Other or not stated 17 28%

Time Horizona

10 years 18 29%

20 years 5 8%

Lifetime 14 23%

Unclear 14 23%

Other (e.g., 1 year, 50 years) 13 21%

Methods Details

Existing model or modeling framework 26 43%

Visual of modeling flow or logic 30 49%

Table of input parameters 46 75%

Assumptions mentioned 61 100%

Included sensitivity or uncertainty analyses 56 92%

Supplementary materials 54 89%

Replication code, pseudocode, or data provided 8 13%

Included stakeholders 9 15%

Notes: aArticles could simulate over multiple primary time horizons (e.g., 10 years and over the cohort lifetime), so

percentages will not sum to 100.

https://doi.org/10.1371/journal.pone.0275270.t002
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within the past four years (2017–2021). Consistent with prior literature, we find that the most

commonly evaluated SSB policy is a tax, with the tax literature dominated by ad valorem and

volumetric tax policies [8, 9]. We also document an emerging literature that includes other

policy options such as purchasing bans, warning labels, and portion size restrictions. Most

models we reviewed used either cohort or microsimulation modeling methods, simulated a

population defined by age and gender or sex, and projected changes in weight, diabetes, or car-

diovascular disease. These results are in line with findings from other reviews of food policies

[8, 9]. Our results point to norms in the literature and highlight areas for future work to build

on this strong foundation.

A closer examination of the articles revealed that future policy design and dissemination

work would benefit from models including more explicit details about policy design and

implementation. For example, some articles examining taxes modeled only on the final price

change in SSBs induced by the tax. This could be problematic because some tax designs can

have markedly different impacts on SSB consumption and health outcomes [19, 51, 96], even

when they raise prices by the same amount [19]. For example, one study found that taxing

sugar content instead of beverage volume would increase the public health benefits of an SSB

tax by 30% because sugar-based taxes could create price incentives for consumers to substitute

from higher- to lower-sugar SSBs, while volumetric taxes would not [19]. Additionally, many

articles we reviewed did not specify how a given tax rate would be implemented. This could

lead to inaccurate or imprecise results from simulation models because, for example, research

shows that consumers tend to respond less strongly to taxes that are added at the register (e.g.,

sales taxes) compared to those reflected in the shelf price (e.g., excise taxes) [97]. In the case of

excise taxes, strategic responses by manufacturers or distributors may also result in differential

price-pass through of the tax and/or reformulations to minimize the tax (under sugar-based

taxes) across their product portfolios and their market shares or dominance in product catego-

ries which could vary geographically [96, 98, 99]. New evidence also suggests that the way shelf

prices show (or do not show) the inclusion of an SSB tax also impacts efficacy [100].

Researchers could also provide more policy details and implementation scenarios around

non-tax policies, which would provide valuable implementation advice for policymakers. For

example, when evaluating a warning label policy, the topic (health or nutrient warning) and

design (text or graphic) of the warning label used to develop estimates of efficacy should be

specified. These details are important because nutrient warnings have been shown to generate

substantial product reformulation as companies seek to reduce nutrient densities to below the

regulatory thresholds that trigger warnings [101, 102]; these supply-side changes are likely to

amplify demand-side effects of warnings and should be incorporated into simulation models

of warning policies. For policies such as portion size restrictions, clearly defining what SSBs

would be targeted and where restrictions would be in place is critical; observational and experi-

mental research also indicates that focusing on unsealed drinks sold in food service establish-

ments, targeting large drinks sold at convenience stores, or limiting free refills can greatly

impact potential reductions in consumption and health outcomes [103–105].

Broadly, future modeling research should seek to be attentive to real-world policymaking

and implementation questions. Modeling results will be more useful for policy implementa-

tion when researchers clearly define tax and non-tax policies and include implementation

details in their models, including the scope of regulated SSBs and associated implementation

scenarios. Models can be used to probe how different contexts impact policy implementation,

or how industry responses to policy implementation could impact policies’ realized health

effects [33]. With an eye towards informing policymaking and implementation, engaging

stakeholders will be critical to ensure that models have the best chance to inform advocacy

efforts and contribute to policymaking and implementation.
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We found that all articles discussed the assumptions their model made, and nearly all

reported some form of sensitivity or uncertainty analyses, though the descriptions of such

analyses and language used varied widely. Future work should build from this base to include

more concrete discussions of how assumptions, and their potential violations, might impact

results, and should be specific about the strength of parameter estimate(s) used. Including

these details is important both to establish confidence in modeled results (e.g., if there are con-

cerns about the causal strength or appropriateness of parameter estimates used) [106] and to

help policymakers understand what to expect under different implementation scenarios [107].

For example, included studies evaluating excise tax policies often assumed a 100% pass-

through rate in their primary models and examined results assuming alternative rates in sensi-

tivity analyses. This approach is useful and could be strengthened by linking results to a discus-

sion of when and why we might expect pass through rates to vary (for example, based on

different implementation considerations or industry responses given known market concen-

tration). The SSB modeling literature would also benefit from using methods such as probabi-

listic Value of Information (VOI) analyses [108, 109] which offer a structured way to prioritize

research dollars towards future behavioral science or policy research that would reduce deci-

sion uncertainty.

Most models we reviewed focused on one policy. An important next step will be for

researchers to simulate multiple policy options within one modeling framework to compare

policy effectiveness, and possibly expand into comparing policy options with other types of

public health action such as community-based programs or interventions. Comparative assess-

ments can help policymakers considering multiple policy options identify tradeoffs given

potential limited resources for implementation and limited political capital, potentially making

research more useful to policymakers and increasing its use in policy decision making. Model-

ing also offers a way to anticipate the potential impacts of multi-policy, multi-sectoral obesity

and chronic disease prevention plans [110]. Modeling multiple policies could also help

researchers uncover potential interactions between policies, though additional behavioral sci-

ence research will be needed to support this by providing evidence on how consumers respond

to different combinations of policies (e.g., warning labels combined with taxes) [111].

Most studies we reviewed modeled SSB policy impacts on weight, diabetes, cardiovascular

diseases (including stroke and hypertension), and cancers. Emerging work has considered

additional health outcomes, including dental caries, kidney disease, and osteoarthritis. Models

typically presented population average outcomes alongside outcomes by subgroups, with most

focused on age or sex or gender groups and fewer studies evaluating results by income, race,

ethnicity, education, or other sociodemographic characteristics. Future research should con-

tinue to include individual heterogeneity to paint a more complete picture of policies’ potential

to affect health equity. Researchers should also consider methods specifically designed to con-

sider equitable impacts of policies, particularly those drawn from the field of economic evalua-

tion [112–115] such as equity-based weighting, extended cost-effectiveness analysis,

distributional cost-effectiveness analysis, and multi-criteria decision analysis [112]. For exam-

ple, equity-based weighting involves increasing (or decreasing) the contribution of outcomes

for different groups (e.g., increasing the weight of quality-adjusted life years gained among

low-income cohorts or individuals) [112, 114]. As authors seek to further consider equity

implications, techniques like microsimulation models that allow for using distributions from

the relevant population(s) in question will become increasingly important [9].

Future research should consider a number of other improvements to modeling methods.

For example, methods like agent-based and system dynamics modeling allow analysts to incor-

porate important complexity when studying SSB policies, such as interactions between indi-

viduals and their social and physical environments and feedback loops between health
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behaviors [116]. Applying these methods to SSB policies is a fruitful new area of research, as

the models we reviewed generally did not consider how policy impacts may differ due to social

network effects. Failing to account for how social relationships may relate to food consump-

tion [117], other health behaviors [118, 119], and downstream health effects like weight [120–

122] could lead to estimates of policy impact, both overall and within subgroups, that are over-

or under-estimated.

Another area for improvement is replicability. Very few articles we reviewed provided code

or data to replicate their work, and supplementary material often focused more on supplemen-

tary results rather than providing additional methodological details that would support repli-

cation. We advocate for increased transparency and code sharing of simulation models, as

other reviews have called for [8, 9]. For example, researchers should consider the framework

set out by Alarid-Escudero and colleagues [123] and utilize platforms such as GitHub or the

Open Science Framework.

Standardized reporting guidelines for simulation modeling could also help push the field

towards more consistent and transparent modeling [8, 9]. In our study, data extraction was at

times challenging due the many disciplines (e.g., health economics, epidemiology, behavioral

science) represented in this research. Although multi-disciplinarity offers many benefits, the

diversity of disciplines engaging in SSB policy modeling also led to articles using different simu-

lation vocabulary, informal reporting norms (e.g., what details are reported in the main text ver-

sus supplementary material), and formal reporting requirements (e.g., journal word and figure

limits). Past research has provided guidance for improving modeling research practices [124],

but to our knowledge there are no standardized systems for reporting on simulation models.

Existing guidelines are either focused on specific types of modeling [125, 126] or economic eval-

uation more broadly [127, 128]. The CHEERS checklist, for example, is targeted towards eco-

nomic evaluations but lacks specific guidance for simulation models [127, 128]. Reporting

guidelines for simulation modeling could set out common language for discussing sensitivity

and uncertainty analyses, specify what methods details should be in the main text of an article

versus in supplementary material (e.g., time horizon, time step used for discrete models), and

set standards for reporting and discussing model assumptions. Given the large number of ana-

lytic decisions involved in developing a simulation model, clear guidance about what to report

is critical for building confidence in published models, creating comparability across models,

and helping researchers make better a priori decisions. While the specific details relevant to dif-

ferent kinds of models may differ (e.g., there is no specific time component in comparative risk

assessment models [129]) reporting guidelines will help make these differences clear.

Limitations

As with any review, we may have missed relevant articles in our search. However, we built a com-

prehensive and systematic search along with a trained information specialist, and used terms sim-

ilar to previously published reviews of simulation modeling [130] and SSB warning labels [11].

Our inclusion/exclusion criteria enabled us to include a range of studies, yielding a comprehen-

sive commentary on the state of the science and allowing us to identify important considerations

for future SSB policy simulation modeling. Although errors may have been made in the data

extraction process, we used a standardized extraction template to ensure consistency between

articles and a random 10% of article extractions were checked by the senior author.

Conclusions

Simulation modeling is a powerful tool for projecting how SSB policies could impact public

health. Many SSB policies have shown potential for improving population-level health, but
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decision making requires more specific and nuanced understanding of policy effects. Our

review indicates key areas for improvements in simulation modeling methods, including that

future work should incorporate more details regarding how policies would be implemented,

thoroughly assess the equity impacts of policies using established methods, and standardize

reporting to improve transparency and consistency. These improvements will lead to higher-

quality simulation models that better inform public health decision making.
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