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For a more detailed description of the interaction between residues, this paper proposes an amino acid network model, which
contains two types of weight—similar weight and dissimilar weight. e weight of the link is based on a self-consistent statistical
contact potential between different types of amino acids. In this model, we can get a more reasonable representation of the distance
between residues. Furthermore, with the network parameter, average shortest path length, we can get a more accurate re�ection of
themolecular size.is amino acid network is a “small-world” network, and the network parameter is sensitive to the conformation
change of protein. For some disease-related proteins, the highly central residues of the amino acid network are highly correlated
with the hot spots. In the compoundwith the related drug, these residues either interacted directly with the drug or with the residue
which is in contact with the drug.

1. Introduction

In living cells, proteins are very important molecules, and
they participate in almost all of the cell functions. During
these biological activities, the structure of some proteins
shows an obviously conformational �exibility. For a correct
and fast implementation of the biological functions through
the conformation change, there needs a motor coordination
for the residues in different parts of the protein. In this
process, a fast communication mechanism is vital for the
information sharing between residues about these concerted
actions. In fact, this information exchange is achieved
through the interaction between residues. But when we put
all these residues and the interactions between them together,
the protein becomes a very complicated system.

On the other hand, from the viewpoint of complex net-
work [1, 2], a protein molecule can be treated as a complex
network. In this network, each residue can be simpli�ed
as a node, and the interaction between different residues is
treated as the link. With this useful tool—complex network,
some new research ideas and methods are applied to the
study of the structure-function relationship, and some

phenomenon can be explained through the analyzing of this
network. �uch related work as the identi�cation of the “key
residues” through the network parameter—betweenness
[3]. In the measuring process of the topology of the protein
contact network, the result shows that the kinetic ability for
folding is determined by the topological properties of the
protein conformation [4]. rough the biological networks,
the rigidity and �exibility of protein structure can be ana-
lyzed. Furthermore, with this approach, the cytoskeletal ten-
segrity can be discussed [5]. e network model also has
been wildly used in the drug design and drug discovery
[6].

In the amino acid network, each residue is simpli�ed to
a single point, and this point is used as the network node.
Generally, the carbon alpha is selected as the network node.
In some other network models, a point between the carbon
alpha and the carbon beta is used to as the network node.
e links between these nodes are determined by the distance
between them. If the distance between two nodes is less than
a cut-off value, then there will exist a link between these two
nodes. is cut-off is usually set to 7.0 angstrom [7] or set to
8.5 angstrom [3].
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ere is another type of amino acid network model. In
this model, each residue is also simpli�ed to a node. But the
link between two nodes is based on the atom contact between
these two residues. A cut-off value—4.5 angstrom [8], or 5.0
angstrom [9], is used as a criterion for the contacts between
atoms. If there is an atom contacts between two residues,
these two nodes will be connected by a link. For different
amino acid network models, the criterion to dictate residue
contacts has been reviewed and analyzed [10]. In this paper,
the Miyazawa-Jernigan potential is used to construct the link
weight, so the side chain center is used to represent the node,
and the cut-off value used by Miyazawa and Jernigan is also
used in this work [11, 12].

In the weighted amino acid network, in which the link is
based on a contact between different residues, the weight of
the link can be drawn from the contact probability between
different residues [3], or the weight can be drawn from a
statistical residue contact potential [11–13]. With the contact
potential as the link weight, a weight elastic network model
is used to calculate the protein structure dynamics [13]. For
the network model based on atom contact, the weight of
the link can be deduced from the number of atom contacts
between nodes. Furthermore, when the diversity of amino
acids is taken into account, these weights can be modi�ed by
a normalization factor [8].

For the weight of the link, it can be classi�ed into two
types. One is the similar weight and the other is the dissimilar
weight [14]. For the similar weight, the value describes the
similarity between two nodes. A higher value means that the
two nodes are more similar, and the distance between them
will be shorter. As for the dissimilar weight, a higher weight
value, corresponding to a longer distance between the two
nodes, means that the difference between these two nodes are
more distinct.

For the weighted amino acid network, the related re-
search work is underway, and many questions needed to
be explored, such as which parameter should be selected
as the weight and how to assign the weight to the link
with a more reasonable mode. In our previous work, we
proposed a weight amino acid model [15], but only one type
of weight—similar weight is used in the previous model, so
we cannot get a more detailed description of the interaction
situation between residues.

is paper will modify the previousmodel with two types
of weight, and the weight used in this paper is based on
a self-consistent statistical contact energy between residues
[12]. In this paper, �rstly, the construction methods of the
weighted network are compared. en, for the 197 proteins
with low homology, the weighted amino acid networks are
constructed and the statistic characteristics of the para-
meters of these networks are studied, including the average
clustering coefficient (𝐶𝐶) and the average shortest path length
(𝐿𝐿). irdly, with this weighted network, in order to get a
relation between the change of the network parameter and the
change of the protein conformation, we studied the changes
of the average shortest path length for the small protein CI2
on its high temperature unfolding pathway. e last, take
the FKBP-FK506 as an example, we show the application of
amino acid network in the drug design.

2. Theory andMethod

In this weighted amino acid network, for each amino acid, the
geometrical center of the side chain is chosen to represent the
network node.e link between a pair of nodes is determined
by the distance between them. If the distance between
residues 𝑖𝑖 and 𝑗𝑗 (marked with 𝑟𝑟𝑖𝑖𝑗𝑗) is less than the cut-off (𝑟𝑟𝑐𝑐),
there will be a link between them. In this paper, the cut-off is
6.5 angstrom. ereby, the adjacency matrix element of the
unweighted amino acid network can be expressed as follows:

𝑎𝑎𝑖𝑖𝑗𝑗 = 
1, 𝑖𝑖 𝑖 𝑗𝑗, 𝑟𝑟𝑖𝑖𝑗𝑗 < 𝑟𝑟𝑐𝑐,
0, 𝑖𝑖 = 𝑗𝑗 or 𝑟𝑟𝑖𝑖𝑗𝑗 ≥ 𝑟𝑟𝑐𝑐.

(1)

Based on the contact potential between residues, the
weighted network can be constructed. In the previous model,
we use another set of contact potential. All the items of the
contact potential are less than zero, and the calculation of the
repulsive interaction between residues is very complex.

In this work, we adopt a self-consistent interresidue con-
tact potential to construct the weight of the link. In this con-
tact potential, if two residues are attracted in most cases, the
potential between them will get a negative value, and if they
are repulsed generally, the potential will be a positive value.
With this contact potential, the adjacency matrix element of
the weighted amino acid network can be expressed as

𝑎𝑎𝑤𝑤𝑖𝑖𝑗𝑗 = 
𝑎𝑎𝑖𝑖𝑗𝑗𝑤𝑤𝑖𝑖𝑗𝑗, 𝑗𝑗 𝑖 𝑖𝑖 𝑗 1,
0, 𝑗𝑗 = 𝑖𝑖 𝑗 1.

(2)

In this de�nition, we take the contact potential between
residues 𝑖𝑖 and 𝑗𝑗 as the link weight, marked as 𝑤𝑤𝑖𝑖𝑗𝑗. e value
of 𝑤𝑤𝑖𝑖𝑗𝑗 is related to the types of the residues 𝑖𝑖 and 𝑗𝑗. For the
covalent bond between residues 𝑖𝑖 and 𝑖𝑖 𝑗 1, the link weight is
assumed as zero.

In this amino acid network, if the two nodes are attracted,
the potential between them is a negative real number, so, the
link between them will get a negative weight. If the attraction
between these two nodes become stronger, the absolute value
of the weight will become a bigger one. en, the negative
weight can be treated as a similar weight. For the same reason,
if the two nodes are repulsed, the potential between them
corresponds to a positive real number, and the link between
them will get a positive weight. When the repulsion between
these two nodes become stronger, the link will get a bigger
positive weight value. So, the positive weight can be treated
as a dissimilar weight.

us, based on the weighted adjacency matrix, the dis-
tance matrix can be constructed and the de�nition of its
element can be written as follows. We labeled this de�nition
as de�nition 1:

𝑑𝑑𝑖𝑖𝑗𝑗 =





0, 𝑖𝑖 = 𝑗𝑗,
∞, 𝑎𝑎𝑖𝑖𝑗𝑗 = 0, 𝑖𝑖 𝑖 𝑗𝑗,
1
1 − 𝑤𝑤𝑖𝑖𝑗𝑗

, 𝑤𝑤𝑖𝑖𝑗𝑗 < 0, 𝑎𝑎𝑖𝑖𝑗𝑗 = 1,

1, 𝑤𝑤𝑖𝑖𝑗𝑗 = 0, 𝑎𝑎𝑖𝑖𝑗𝑗 = 1,
1 + 𝑤𝑤𝑖𝑖𝑗𝑗, 𝑤𝑤𝑖𝑖𝑗𝑗 > 0, 𝑎𝑎𝑖𝑖𝑗𝑗 = 1.

(3)
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When the interaction between two residues is an attrac-
tive interaction, the corresponding link weight is a similar
one. In this distance de�nition, a reciprocal function of
the weight is used to represent the distance between a pair
of attracting nodes. For a stronger attractive interaction
between residues, the actual distance between them is shorter
than others. And because the weight for attraction is neg-
ative, a bigger absolute value corresponds to a shorter dis-
tance, as de�ned in the distance matrix.

At the same time, if the interaction between residues is
repulsive, the corresponding link weight is a dissimilar one.
e distance de�nition between them is a linear combination
function of the weight. A stronger repulsive interaction, cor-
responding to a longer actual distance between them, will get
a bigger distance value from the distance matrix.

e network model used in this work is an undirected
model, and the link is just to represent the existence of the
interaction between these two residues. e status of the two
ends of a link is equal. So, for the weighted network and the
unweighted one, the adjacency matrixes are all symmetric
matrixes. In the distance matrix, the similar weight and the
dissimilar weight are coexistent in the same distance matrix,
and the distance matrix is also a symmetric one.

For a comparison between different de�nitions, if we do
not make a difference between the similar weight and the dis-
similar one, and just the dissimilar weight is used in this
model, the distance matrix can be de�ned as below. We lab-
eled it as de�nition 2:

𝑑𝑑𝑖𝑖𝑖𝑖 =




0, 𝑖𝑖 = 𝑖𝑖,
∞, 𝑎𝑎𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖 𝑖 𝑖𝑖,

1 +
𝑤𝑤𝑖𝑖𝑖𝑖
2.19
, 𝑎𝑎𝑖𝑖𝑖𝑖 = 1.

(4)

On the other hand, we can convert the dissimilar weight
to the similar weight. e distance between nodes can be
de�ned as below, and it is labeled as de�nition 3:

𝑑𝑑𝑖𝑖𝑖𝑖 =




0, 𝑖𝑖 = 𝑖𝑖,
∞, 𝑎𝑎𝑖𝑖𝑖𝑖 = 0, 𝑖𝑖 𝑖 𝑖𝑖,
1
1 − 𝑤𝑤𝑖𝑖𝑖𝑖

, 𝑎𝑎𝑖𝑖𝑖𝑖 = 1.
(5)

Additionally, a new network parameter—strength—is
introduced into the weighted amino acid network. e
strength of node 𝑖𝑖 can be written as [16, 17]

𝑆𝑆𝑖𝑖 =
𝑁𝑁

𝑖𝑖=1
𝑎𝑎𝑤𝑤𝑖𝑖𝑖𝑖 , (6)

where𝑁𝑁 is the number of network nodes and 𝑎𝑎𝑤𝑤𝑖𝑖𝑖𝑖 is an element
of the weighted adjacency matrix.

e clustering coefficient of the weighted network can be
calculated using the next expression [16, 17]:

𝐶𝐶𝑖𝑖 =
1

𝑆𝑆𝑖𝑖 𝐾𝐾𝑖𝑖 − 1

𝑖𝑖,𝑗
𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑗𝑎𝑎𝑖𝑖𝑗

𝑤𝑤𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑖𝑖𝑗
2
, (7)

where 𝑆𝑆𝑖𝑖 is the strength of the node 𝑖𝑖, and𝐾𝐾𝑖𝑖 is its degree.e
means of 𝑎𝑎𝑖𝑖𝑖𝑖 and𝑤𝑤𝑖𝑖𝑖𝑖 are the same as that of the expression (2).

e betweenness of node 𝑢𝑢 can be de�ned as below [18]:

𝐵𝐵𝑢𝑢 = 
𝑖𝑖,𝑖𝑖

∑𝑙𝑙𝑙𝑆𝑆𝑖𝑖𝑖𝑖 𝛿𝛿
𝑢𝑢
𝑙𝑙

𝑆𝑆𝑖𝑖𝑖𝑖
. (8)

e denominator is the number of shortest paths between
𝑖𝑖 and 𝑖𝑖, and the numerator is the number of shortest paths
between 𝑖𝑖 and 𝑖𝑖 through node 𝑢𝑢. Betweenness is a useful
measure of the node’s importance to the network. In order
to re�ect the signi�cance of betweenness for different nodes,
the 𝑍𝑍-score is introduced, and the de�nition of 𝑍𝑍-score for
𝐵𝐵𝑢𝑢 is as follows [19]:

𝑍𝑍𝑢𝑢 =
𝐵𝐵𝑢𝑢 − 𝐵𝐵
𝜎𝜎
, (9)

where 𝐵𝐵𝑢𝑢 is the betweenness of residue 𝑢𝑢, 𝐵𝐵 is the average
value of the betweenness of all protein residues, and 𝜎𝜎 is the
standard deviation of these betweenness values.

3. Results and Discussion

For the contract potential used to construct the weighted
network in this paper, the value ranges from −1.19 to 0.76.
e corresponding distance for varying weights, get from
the three different de�nitions of distance matrix, is shown
in Figure 1(a). From this �gure, we can see that, when the
interaction between residues is a repulsive interaction, if the
link weight is a similar weight, the distance got from the
distance de�nition 3 will increase sharply. But based on
common sense, it is unreasonable.

On the other hand, in the statistical calculation process
of this self-consistent statistical contact potential between
different types of amino acids, the cut-off is 6.5 angstrom,
and this cut-off is still being used in the contact de�nition
between residues in this paper. So, the distance between a
pair of network nodes should be less than 6.5 angstrom. In
a statistic calculation process of the actual distance between
nodes, the result shows that this actual distance ranges from
3.88 to 6.5 angstrom. e ration of the maximum with
the minimum is about 1.7. In the de�nition 3, due to the
sharply increasing of the distance, this ratio is about 9. But
for de�nition 1 and 2, this ration is about 3. So, it can be
concluded that in the de�nition 3, it is not a reasonable
assumption that the positive weight be treated as a similar
weight.

In our previous work, there is only one type of
weight—similar weight. is de�nition should be revised as
follows: a link with a positive weight should be assigned a
dissimilar weight, as the rule of de�nition 2.

At the same time, in the statistic calculation process
of the actual distance between nodes, as mentioned above,
the result shows that the a great majority of the distances
is about 5 angstrom, and most of the interactions between
these nodes are an attractive one. So, the middle part of
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F 1:e comparison between the three de�nitions of the distance matrix. (a)e relation between the weight and the distance. (b)e
comparison of the correlation between the average shortest path length and the radius gyration.

the weight-distance curve should be a nearly horizontal line.
For the negative weight, the curve of de�nition 3 is more
horizontal than that of de�nition 2.is phenomenon shows
that when the link weight is a negative value, the similar
weight assumption is more suitable to re�ect the truth.

Based on the above discussion, we can see that the similar
weight assumption is reasonable for a negative weight, and
the dissimilar weight assumption is suitable for a positive
value. Put all these together, we can get de�nition 1, and
the following calculation of distance will use the de�nition
showed in (3).

With a set of 197 proteins selected from the Protein
Data Bank (PDB), the weighted amino acid networks are
constructed. ese proteins include the four structure types:
𝛼𝛼, 𝛽𝛽, 𝛼𝛼𝛼𝛽𝛽, and 𝛼𝛼𝛼𝛽𝛽.e resolution of these selected proteins
is better than 1.8 Å and the sequence identity is less than
20%. e sizes of proteins vary from 51 to 779 residues. e
distance matrix is calculated with de�nition 1.

Radius of gyration is a useful parameter to indicate the
size of a molecule. With the network model, the average
shortest path length can also be used as an indicator of
the molecular size. For the data set, we calculate the radius
of gyration for each protein with GROMACS [20]. At the
same time, we can get the average shortest path length from
the weighted amino acid network. e relation between the
average shortest path length with the radius of gyration is
shown in Figure 1(b). e correlation coefficient for the path
length from de�nition 1 with the radius of gyration is 0.9�.
is correlation coefficient is 0.95 for de�nition 2 and 0.79
for de�nition 3. De�nition 1 gets the best result.

3.2. e Small-World Characteristic of the Amino Acid Net-
work. e “small-world” property is a very important char-
acter for complex networks, and the “small-world network” is

ubiquitous in the real life, such as the neural networks [21, 22]
and the gene network [23, 24]. A vivid example of the “small-
world network” is the “six degrees separation” [21, 25]. In a
small-world network, most nodes are not connected directly
by a link. But due to the short-cut between nodes, most nodes
can be reached from every other through a small number of
steps. With the increasing of the nodes number, the shortest-
path distance between nodes grows sufficiently slowly, and it
can be expressed as a function of the logarithm of the number
of nodes in the network.

For a complex network and a random network, if they
have the same node numbers and the same link numbers,
when some condition be satis�ed, the complex network can
be thought that it holds the “small-world” property. ese
conditions include two items, the �rst one is that the average
clustering coefficient 𝐶𝐶 of the complex network is far more
than that of the random network, and the second condition
is that the average shortest path length 𝐿𝐿 is about equal to
that of the random network.ese conditions can be showed
as the following expression [21]:

𝐶𝐶 𝐶 𝐶𝐶𝑟𝑟, 𝐿𝐿 𝐿 𝐿𝐿𝑟𝑟. (10)

In this inequality, 𝐶𝐶𝑟𝑟 and 𝐿𝐿𝑟𝑟 are the network parameter of
the random network. 𝐶𝐶𝑟𝑟 is the average clustering coefficient
and 𝐿𝐿𝑟𝑟 is the average shortest path length. 𝐶𝐶𝑟𝑟 and 𝐿𝐿𝑟𝑟 can be
calculated with the following expressions [21]:

𝐶𝐶𝑟𝑟 ≈
⟨𝐾𝐾⟩
𝑁𝑁
, 𝐿𝐿𝑟𝑟 ≈

ln𝑁𝑁
ln ⟨𝐾𝐾⟩
. (11)

In this expression, 𝑁𝑁 is the node number and ⟨𝐾𝐾⟩ is the
average degree of the random network.

In the “small-world” network, most of the nodes can
be reached fast from every other through the “short-cut”
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F 2: For the 197 proteins and the corresponding random networks with the same size, the comparison of network parameter. (a) e
clustering coefficient of the weighted amino acid network and that of the random network with the same size; (b) the average shortest path
length of the weighted amino acid network and that of the random network with the same size.

between residues. So, the average clustering coefficient of
the network will get a relatively large value, and the average
shortest path length (also be called: characteristic path
length) will keep as small as that of a random network.

For the 197 proteins, we constructed the weighted net-
work and calculated the average clustering coefficients and
the average shortest path lengths with the distance matrix
de�nition 1. Figures 2(a) and 2(b) showed these results. At
the same time, for the random networks with the same size,
these two parameters are calculated and the results are also
shown in Figures 2(a) and 2(b). From these two �gures,
we can see that the weighted amino acid networks, contain
similar and dissimilar weight for the link, present an obvious
“small-world” property. From other works, we have known
that the amino acid network is a “small-world” network, so,
these results prove that the distinction introduced between
similar and dissimilar weights is reasonable, and the con-
struction method of the weighted network also is rational.

In the amino acid network, very few residues can get a
high degree value. ey usually lie in the core of the globular
protein and act as the hubs of the networks [8, 26]. ere
are more interactions between these hub residues with other
residues, so these hub residues play a vital role to the stability
of whole protein structures [7, 8, 27]. In some other work,
in order to embody the in�uence of the local environment,
the distribution of residue clusters has been analyzed, and the
outcome is a log-normal distribution [28].

3.3. e Change of Average Shortest Path Length with the
Conformation Change. For exploring the changes of network
parameters with the changes of the protein conformations,
the protein CI2 (PDB code: 3CI2) was selected as a research
object.

With the MD program GROMACS 3.3 [20], the molec-
ular dynamic (MD) simulation was performed at 498K for
11.2 ns. e force �eld parameters used in this simulation
were taken from GROMOS96 43a1 and the SPC/E water
model was used. Aer the simulation, this protein will
become unfolded, and most secondary structures will be
depolymerized. However, the protein still keeps a random
coil state. With this MD trajectory data, we extract the
structures with an interval of 100 ps and then construct the
weighted amino acid networks. On this unfolding pathway,
alongwith the conformational changes, the change rule of the
average shortest path length (short as: 𝐿𝐿) was analyzed. is
change of𝐿𝐿 is used to represent the conformation change, and
the results are shown in Figure 3.

On the unfolding pathway, when the structure becomes
looser, the average shortest path lengths of the weighted
amino acid network become longer. Under a high temper-
ature, with the unfolding of the protein, the hydrophobic
core will be destroyed. In this process, the hydrophobic-
hydrophobic link, which is important to the stability of
the protein structures, will be broken. ese hydrophobic-
hydrophobic links all have a negative weight, and the distance
of these links is less than 1. erefore, while the hydrophobic
core derogates, the shortest path length will rise more
obviously. From Figure 3, we can see that the average short-
est path length from de�nition 1 is more sensitive to the
conformation change than that of the other two de�ni-
tions.

3.4. e Application of the Amino Acid Network in Drug
Design. In the process of drug action, many drugs take the
related protein as their target. e structure and the dynamic
of this target protein hold a very important role to the
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therapeutic effect of the drug. e residues located at the
binding sites are crucial to the binding and the stability of the
complex.ese residues oen are tightly packed and can pro-
vide a major part of the decrease of the binding free energy.
ey are oen called as hot spots, and the central nodes of
the amino acid network usually can be predicted as the hot
spots [19, 29, 30]. With the support vector machine techno-
logy, a model is proposed for the prediction of the binding
sites of heme protein [29]. is model contains three types
of information: the �rst is the se�uence information, the
second is the geometry information of the structure, and the
last one is based on some amino acid network parameter.
Some scoring function based on the amino acid network
also has been proposed for the protein docking [31–33].
Here, we take the immunosuppressant drug (FK506) binding
protein—FKBP [34] as an example to show the application of
amino acid network in the drug design.

FKBP, or FK506 binding protein (PDB ID: 1FKF), is a
immunophilins protein, which is involved in the immune
response pathway and is used as a target for the immunosup-
pressant drug (FK506). rough the binding of FKBP with
FK506, the signal transduction in T cells will be blocked, and
then the normal immune system reaction will be interfered
[35, 36].

Figure 4 shows the structure of the complex of FKBPwith
FK506.

With the structure, we can draw the detailed information
about the complex that the binding sites contain which parts
of the drug and which parts of the protein. We can �nd, as
the structure showed above, that the 𝛼𝛼 helix and the 𝛽𝛽 sheet
of the FKBP form a cavity, and the FK506 is binding with
FKBP in this shallow cavity. For this structure, we construct
its amino acid network and then calculate the related network
parameter (betweenness) with the corresponding 𝑍𝑍-score.

F 4: e structure of FKBP-FK506 complex (PDB ID: 1FKF).
In this �gure, the FK506 is shown with a stick model, and the FKBP
is shown with a cartoon model. e Val63 and Phe99 are shown with
stick model in black color. e Trp59 is shown with lines model.

In this work, only the 𝑍𝑍-score value, which is greater than
or e�ual to 3.0, is considered as a signi�cant one, and the
corresponding node will be discussed in the following parts
[19]. For 1FKF, the calculating results show that there only
two nodes get a higher 𝑍𝑍-score value: Val63 and Phe99. At
the same time, the contacts between the FKBP and FK506 are
calculated. For FK506 holds a bigger volume than a residue,
so, we use the atom contact between FK506 and FKBP.
e Phe99 has ten atom contacts with the FK506, and these
contacts are mainly due to the side chain of Phe99, which
participates in assembling of the binding cavity with other
residues. For Val63, although there is no direct interaction
with FK506, it has nine atom contacts with Trp59, and Trp59 is
interacted with FK506 through 20 atom contacts. e nodes
with high 𝑍𝑍-score value, for 1FKF, are either corresponding
to the hot spot or to the residue which has a direct interaction
with the ligand [19].

We also take the complex of bp12 with rapamycin (PDB
ID: 1C9H [37] and 1FKB [38]) to calculate the 𝑍𝑍-score value
for every node of the amino acid network and to determine
the contacts between the drugs with FKBP. e results also
show that the node with high 𝑍𝑍-score value either interacted
directly with the drug or with nodes which is contacted
directly with the drug. For these three proteins, the region
from Phe99 to Val101 all contain a binding site with the drug.
One is the Phe99 for 1FKF and 1FKB, and Val101 for 1C9H.
On the other hand, when FK506 is binding to FKBP, we can
�nd that the change of FKBP�s structure is undersi�ed, but the
structural change of FK506 is large. So, we can deduce that
the binding sites of FKBP with the related drug are spatial
conserved. is useful information is helpful for the design
of some new drugs, which has a better curative effect or less
toxic than the FK506.
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4. Conclusion

A modi�ed weighted amino acid network based on a self-
consistent contact potential is proposed in this paper. is
model contains two types of weight, one is the similar weight
and the other is the dissimilar weight. By the analysis of the
in�uence of di�erent de�nitions of the distance based on the
weights, it is revealed that the distance de�nition contains
two types of weights is more reasonable.e average shortest
path length has a signi�cant linear correlation with the radius
gyration of the molecule. For a set of 197 proteins, through
the analysis of the network parameters of the weighted amino
acid networks, it is found that the weighted amino acid
network holds an obvious “small-world” property. Addition-
ally, with the protein CI2 as an example, through the analysis
of the changes of the weighted network parameters on the
unfolding pathway, it is observed that the shortest path
length of the weighted network will rise increasingly when
the protein is unfolding. e highly central residues of the
amino acid network play a key role in the binding of protein
with drug.ese central nodes either interacted directly with
the drug or contacted with a residue which is interacted
directlywith the drug. In otherwords, for the interaction path
between these central residues with the drug, at most, there
is an interval between them.

is modi�ed weighted network, which contains two
types of weights, is more reasonable than the previous model.
is work is helpful for the studies of the structure-function
relationship and also is bene�cial to the drug design.

Acknowledgments

is work was supported by the National Natural Sci-
ence Foundation of China (Grant no. 31070828, 31271005,
and 11032008), the China Postdoctoral Science Foundation
funded project (Grant no. 2012T50247, 20100471587), Pro-
gram for the Innovative Talents of Higher Learning Institu-
tions of Shanxi, and Natural Science Foundation of Shanxi
(Grant no. 2009021018-2). An earlier version of this paper
was presented at the International Conference on ICISE 2010.

References

[1] R. Albert and A. L. Barabási, “Statistical mechanics of complex
networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47–97,
2002.

[2] M. E. J. Newman, “e structure and function of complex
networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.

[3] M. Vendruscolo, N. V. Dokholyan, E. Paci, and M. Karplus,
“Small-world view of the amino acids that play a key role in
protein folding,” Physical Review E, vol. 65, no. 6, Article ID
061910, 4 pages, 2002.

[4] N. V. Dokholyan, L. Li, F. Ding, and E. I. Shakhnovich,
“Topological determinants of protein folding,” Proceedings of
the National Academy of Sciences of the United States of Ameri-
ca, vol. 99, no. 13, pp. 8637–8641, 2002.

[5] M. E. Gáspár and P. Csermely, “Rigidity and �exibility of bio-
logical networks,” Brie�ngs in Functional Genomics, vol. 11, no.
6, pp. 443–456, 2012.

[6] P. Csermely, T. Korcsmáros, H. J. M. Kiss et al., “Struc-
ture and dynamics of molecular networks: a novel paradigm
of drug discovery. A comprehensive review,” http://arxiv.org/
abs/1210.0330.

[7] A. R. Atilgan, P. Akan, and C. Baysal, “Small-world commu-
nication of residues and signi�cance for protein dynamics,”
Biophysical Journal, vol. 86, no. 1 I, pp. 85–91, 2004.

[8] K. V. Brinda and S. Vishveshwara, “A network representation
of protein structures: implications for protein stability,” Bio-
physical Journal, vol. 89, no. 6, pp. 4159–4170, 2005.

[9] L. H. Greene and V. A. Higman, “Uncovering network systems
within protein structures,” Journal ofMolecular Biology, vol. 334,
no. 4, pp. 781–791, 2003.

[10] W. Sun and J. He, “From isotropic to anisotropic side chain
representations: comparison of three models for residue con-
tact estimation,” PLoS ONE, vol. 6, no. 4, article e19238, 2011.

[11] S. Miyazawa and R. L. Jernigan, “Residue-residue potentials
with a favorable contact pair term and an unfavorable high
packing density term, for simulation and threading,” Journal of
Molecular Biology, vol. 256, no. 3, pp. 623–644, 1996.

[12] S. Miyazawa and R. L. Jernigan, “Self-consistent estimation of
inter-residue protein contact energies based on an equilibrium
mixture approximation of residues,” Proteins: Structure, Func-
tion, and Bioinformatics, vol. 34, no. 1, pp. 49–68, 1999.

[13] W. Sun, “Normal mode analysis of protein structure dynamics
based on residue contact energy,” in Proceedings of IEEE
International Conference on Bioinformatics and Biomedicine
Workshops (BIBMW ’11), 2011.

[14] L. D. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas,
“Characterization of complex networks: a survey of measure-
ments,” Advances in Physics, vol. 56, no. 1, pp. 167–242, 2007.

[15] X. Jiao, S. Chang, C. H. Li, W. Z. Chen, and C. X. Wang,
“Construction and application of the weighted amino acid
network based on energy,” Physical Review E, vol. 75, no. 5,
Article ID 051903, 2007.

[16] M. Aabuddin and S. Kundu, “Weighted and unweighted
network of amino acids within protein,” Physica A: Statistical
Mechanics and Its Applications, vol. 369, no. 2, pp. 895–904,
2006.

[17] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespig-
nani, “e architecture of complex weighted networks,” Pro-
ceedings of the National Academy of Sciences of the United States
of America, vol. 101, no. 11, pp. 3747–3752, 2004.

[18] K. I. Goh, E. Oh, B. Kahng, and D. Kim, “Betweenness cen-
trality correlation in social networks,” Physical Review E, vol.
67, no. 1, Article ID 017101, 4 pages, 2003.

[19] A. del Sol and P. O’Meara, “Small-world network approach to
identify key residues in protein-protein interaction,” Proteins:
Structure, Function and Genetics, vol. 58, no. 3, pp. 672–682,
2005.

[20] E. Lindahl, B. Hess, and D. van der Spoel, “GROMACS 3.0:
a package for molecular simulation and trajectory analysis,”
Journal of Molecular Modeling, vol. 7, no. 8, pp. 306–317, 2001.

[21] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-
world’ networks,”Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[22] C. J. Stam, B. F. Jones, G. Nolte, M. Breakspear, and P.
Scheltens, “Small-world networks and functional connectivity
in Alzheimer’s disease,” Cerebral Cortex, vol. 17, no. 1, pp.
92–99, 2007.



8 Computational and Mathematical Methods in Medicine

[23] P. Mendes, W. Sha, and K. Ye, “Arti�cial gene networks for
objective comparison of analysis algorithms,” Bioinformatics,
vol. 19, supplement 2, pp. ii122–ii129, 2003.

[24] P. Brazhnik, A. de la Fuente, and P. Mendes, “Gene networks:
how to put the function in genomics,” Trends in Biotechnology,
vol. 20, no. 11, pp. 467–472, 2002.

[25] D. J. Watts, Six Degrees: e Science of a Connected Age, WW
Norton, New York, NY, USA, 2004.

[26] U. K. Muppirala and Z. Li, “A simple approach for protein
structure discrimination based on the network pattern of
conserved hydrophobic residues,” Protein Engineering, Design
and Selection, vol. 19, no. 6, pp. 265–275, 2006.

[27] E. Estrada, “Universality in protein residue networks,” Biophy-
sical Journal, vol. 98, no. 5, pp. 890–900, 2010.

[28] W. Sun and J. He, “Understanding on the residue contact
network using the log-normal cluster model and the multilevel
wheel diagram,” Biopolymers, vol. 93, no. 10, pp. 904–916, 2010.

[29] R. Liu and J. Hu, “Computational prediction of heme-binding
residues by exploiting residue interaction network,” PloS One,
vol. 6, no. 10, article e25560, 2011.

[30] S. Grosdidier and J. Fernandez-Recio, “Protein-protein docking
and hot-spot prediction for drug discovery,” Current Phar-
maceutical Design, vol. 18, no. 30, pp. 4607–4618, 2012.

[31] C. Pons, F. Glaser, and J. Fernandez-Recio, “Prediction of pro-
tein-binding areas by small-world residue networks and appli-
cation to docking,” BMC Bioinformatics, vol. 12, no. 1, p. 378,
2011.

[32] X. Jiao and S. Chang, “Scoring function based on weighted
residue network,” International Journal of Molecular Sciences,
vol. 12, no. 12, pp. 8773–8786, 2011.

[33] S. Chang, X. Jiao, C. H. Li, X. Q. Gong, W. Z. Chen, and C. X.
Wang, “Amino acid network and its scoring application in pro-
tein-protein docking,” Biophysical Chemistry, vol. 134, no. 3, pp.
111–118, 2008.

[34] G. D. van Duyne, R. F. Standaert, P. A. Karplus, S. L. Schreiber,
and J. Clardy, “Atomic structure of FKBP-FK506, an immu-
nophilin-immunosuppressant complex,” Science, vol. 252, no.
5007, pp. 839–842, 1991.

[35] T. Wang, P. K. Donahoe, and A. S. Zervos, “Speci�c interaction
of type I receptors of the TGF-𝛽𝛽 family with the immunophilin
FKBP-12,” Science, vol. 265, no. 5172, pp. 674–676, 1994.

[36] J. Liu, J. D. Farmer, W. S. Lane, J. Friedman, I. Weissman,
and S. L. Schreiber, “Calcineurin is a common target of cyclo-
philin-cyclosporin A and FKBP-FK506 complexes,” Cell, vol.
66, no. 4, pp. 807–815, 1991.

[37] C. C. S. Deivanayagam, M. Carson, A. otakura, S. V. L.
Narayana, and R. S. Chodavarapu, “Structure of FKBP12.6 in
complex with rapamycin,” Acta Crystallographica Section D:
Biological Crystallography, vol. 56, no. 3, pp. 266–271, 2000.

[38] G. D. van Duyne, R. F. Standaert, S. L. Schreiber, and J. Clardy,
“Atomic structure of the rapamycin human immunophillin
FKBP-12 complex,” Journal of the American Chemical Society,
vol. 113, no. 19, pp. 7433–7434, 1991.


