
ORIGINAL RESEARCH
published: 14 July 2015

doi: 10.3389/fncom.2015.00084

Frontiers in Computational Neuroscience | www.frontiersin.org 1 July 2015 | Volume 9 | Article 84

Edited by:

Florentin Wörgötter,

University Goettingen, Germany

Reviewed by:

Jan-Matthias Braun,

Georg-August-Universität Göttingen,

Germany (in collaboration with

Poramate Manoonpong)

Poramate Manoonpong,

The University of Southern Denmark,

Denmark

Josh Merel,

Columbia University, USA

*Correspondence:

James Y. Liao,

Medical Scientist Training Program,

Case Western Reserve University,

School of Medicine T401,

10900 Euclid Ave., Cleveland, OH

44106-4936, USA

james.liao@case.edu

Received: 09 March 2015

Accepted: 19 June 2015

Published: 14 July 2015

Citation:

Liao JY and Kirsch RF (2015) Velocity

neurons improve performance more

than goal or position neurons do in a

simulated closed-loop BCI

arm-reaching task.

Front. Comput. Neurosci. 9:84.

doi: 10.3389/fncom.2015.00084

Velocity neurons improve
performance more than goal or
position neurons do in a simulated
closed-loop BCI arm-reaching task

James Y. Liao 1, 2* and Robert F. Kirsch 1, 2

1Cleveland Functional Electrical Stimulation Center, Cleveland, OH, USA, 2Department of Biomedical Engineering, Case

Western Reserve University, Cleveland, OH, USA

Brain-Computer Interfaces (BCIs) that convert brain-recorded neural signals into

intended movement commands could eventually be combined with Functional Electrical

Stimulation to allow individuals with Spinal Cord Injury to regain effective and intuitive

control of their paralyzed limbs. To accelerate the development of such an approach,

we developed a model of closed-loop BCI control of arm movements that (1)

generates realistic arm movements (based on experimentally measured, visually-guided

movements with real-time error correction), (2) simulates cortical neurons with firing

properties consistent with literature reports, and (3) decodes intended movements from

the noisy neural ensemble. With this model we explored (1) the relative utility of neurons

tuned for different movement parameters (position, velocity, and goal) and (2) the utility

of recording from larger numbers of neurons—critical issues for technology development

and for determining appropriate brain areas for recording. We simulated arm movements

that could be practically restored to individuals with severe paralysis, i.e., movements

from an armrest to a volume in front of the person. Performance was evaluated by

calculating the smallest movement endpoint target radius within which the decoded

cursor position could dwell for 1 s. Our results show that goal, position, and velocity

neurons all contribute to improve performance. However, velocity neurons enabled

smaller targets to be reached in shorter amounts of time than goal or position neurons.

Increasing the number of neurons also improved performance, although performance

saturated at 30–50 neurons for most neuron types. Overall, our work presents a

closed-loop BCI simulator that models error corrections and the firing properties of

various movement-related neurons that can be easily modified to incorporate different

neural properties. We anticipate that this kind of tool will be important for development

of future BCIs.
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Introduction

Brain-Computer Interfaces (BCI) are systems that record
electrical signals from the brain and relate information in these
signals to intended actions such as armmovements (Bansal et al.,
2012; Hochberg et al., 2012; Collinger et al., 2013; Nakanishi et al.,
2013) or communication (Santhanam et al., 2006; Krusienski and
Wolpaw, 2009). Two landmark studies have shown that BCIs
can provide a means for people with tetraplegia to command
prostheses like robotic arms (Hochberg et al., 2012; Collinger
et al., 2013) and could allow these individuals to perform
functional tasks of daily living by controlling such assistive
devices. BCIs have large potential benefits for individuals with
tetraplegia, particularly those with high cervical level injuries
or brainstem stroke, because these individuals have relatively
few muscles or movements under volitional control that could
otherwise be used to command a prosthetic device.

Many studies, including Collinger et al. (2013) and Hochberg
et al. (2012), assume that firing rates of individual neurons
recorded from primary motor cortex are linearly related to the
kinematics of the robot hand. Specifically, they assume that the
neurons are directionally cosine-tuned and gain-modulated by
the magnitude of the kinematic variable (Kettner et al., 1988;
Schwartz et al., 1988; Moran and Schwartz, 1999; Wang et al.,
2007).

One potential way to improve the performance of these BCI
systems is to utilize qualitatively different kinds of information.
The brain contains many movement-related signals in addition
to the well-characterized continuous movement kinematics on
which existing studies have relied. In the context of restoring arm
reaching movements, signals that represent the movement goal
are particularly relevant because for such movements the target
is usually more functionally relevant than the specific trajectory
used to reach the target. Obtaining accurate information related
to movement goal would greatly simplify the user interface, as
the participant would simply think about the intended goal and
the assistive device generating the movement [e.g., a functional
electrical stimulation system (Memberg et al., 2014) or a robotic
exoskeleton] would automatically generate the needed trajectory
and use feedback control to guide the arm to this goal location
with minimal ongoing input from the user. A variety of brain
areas contain information about the movement goal (Alexander
and Crutcher, 1990; Shen and Alexander, 1997; Hatsopoulos
et al., 2004; Saito et al., 2005; Pesaran et al., 2006; Santhanam et al.,
2006; Yu et al., 2007; Mulliken et al., 2008a,b; Bhattacharyya et al.,
2009; Shanechi et al., 2013a) and there are several ways to refine
the decoded hand trajectory using the available goal information
(Hatsopoulos et al., 2004; Srinivasan and Brown, 2007; Yu et al.,
2007; Kulkarni and Paninski, 2008; Corbett et al., 2012; Lawhern
et al., 2012; Shanechi et al., 2013b). In particular, a recent study
showed that human parietal cortex contains goal-tuned neurons
that can perform a closed-loop goal selection task (Aflalo et al.,
2015).

Although it is clear that goal-related signals can be recorded
from the brain, it is currently unclear how useful goal-tuned
neurons would be, relative to position or velocity-tuned neurons,
as inputs to a BCI for controlling arm movements. Exploring

the likely effectiveness of goal-tuned neurons is thus important
for justifying the future targeting of recording electrode implants
to brain areas that contain goal-tuned cells. The purpose of the
current study was to provide some insight into this issue by
developing a simulation of a closed-loop BCI for controlling arm
movements. This simulation included a submovement-based
movement controller (Liao and Kirsch, 2014) that was trained
on experimental movements, an encoder of neural firing rate
modulation and noise properties based on literature reports, and
an Extended Kalman Filter decoder that had the same structure
as the encoded neural properties (i.e., it was assumed that the
ideal decoding structure was known a priori). We then used
this simulator to predict the relative contributions of various
combinations of neurons modulated by position, velocity, and
movement goal to overall BCI performance, as well as the impact
of the number of neurons of each type on performance.

Materials and Methods

A schematic of the simulator is shown in Figure 1. The three
main components were the Multiple Submovement Controller
(MSC), theNeural Encoder, and theDecoder. TheMSC (Liao and
Kirsch, 2014) is a submovement-basedmodel of error corrections
during human movements that provided movement commands
in the form of position, velocity, and goal, as a function of
the target position, start position, and the decoded position,
velocity, acceleration, and goals that were fed back to the MSC
from the Decoder. The Neural Encoder generated firing rates
based on the movement commands computed by the MSC,
the modulation properties of cortical neurons as extracted from
previous studies, and spiking noise (see below). Finally, an
Extended Kalman Filter (the Decoder) decoded the noisy firing
rates into the aforementioned position, velocity, acceleration,
and goal signals. One complete simulated reaching movement
is represented in Figure 2, including the three dimensional
kinematics commanded by the MSC (Figures 2A–D, red traces),
the firing rates generated by the Neural Encoder (Figure 2F),
and the decoded kinematics (Figures 2A–D, blue traces). The
simulator components and their representations on Figures 1, 2
are discussed in more detail below. Sample code is available in the
Supplementary Materials.

Multiple Submovement Controller
The MSC (Liao and Kirsch, 2014) generates realistic reaching
trajectories and consists of three Artificial Neural Networks
(ANNs) that were pre-trained using experimentally recorded
human reaching data to generate a command trajectory
by linearly summing a discrete number of minimum-jerk
submovements. This controller is based on a theory of human
movement that represents movements as a set of overlapping-
in-time submovements, each representing an error correction
to the overall trajectory made in order to sustain progression
to the target. Each submovement was evoked by kinematic
features of the ongoing reaching movement. Specifically, one
ANN predicted when a corrective submovement should be
initiated and added to the current movement, and two additional
ANNs predicted the durations and amplitudes of the new
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FIGURE 1 | Diagram of simulator components. The BCI simulator

contains three major components. The Multiple Submovement Controller

(red) generates realistic trajectories from a starting position to a target

position, and the resulting position, velocity, and goal trajectories are used as

inputs by the Neural Encoder (green) to drive the firing rates of neurons that

are Gaussian or Linear tuned. These nominal firing rates are converted into

noisy firing rates and finally decoded by an Extended Kalman Filter (EKF). The

decoded state vector (labeled “Current State Est.”) contains Position,

Velocity, Acceleration, and Goal, and is fed back to the Multiple

Submovement Controller to generate possible error corrections. It is also fed

back to the EKF so that the estimate can be iteratively improved at each

timestep. The delay box at the right completes the diagram and is how the

state estimate at the current timestep is passed into the simulation at the

subsequent timestep.

submovement, respectively. Each submovement was represented
as follows:

posi (t) = di

(

6

(

t − t0,i

td,i

)5

− 15

(

t − t0,i

td,i

)4

+ 10

(

t − t0,i

td,i

)3
)

,

t0,i ≤ t ≤
(

t0,i + td,i
)

(1)

posi (t) = 0, t < t0,i
posi (t) = di, t >

(

t0,i + td,i
)

Here, the 3D position trajectory pos (t) of the i -th submovement
was a minimum-jerk trajectory that started at time t0,i, had
duration td,i, and had 3D amplitude di. Three separate ANNs
predicted these parameters as functions of kinematic features
of the movement. For instance, based on the start position,
target position, decoded position, decoded velocity, decoded
acceleration, and the predicted position at the end of the current
submovements, an ANN predicted the next amplitude di to
generate a submovement to bring the decoded position toward
the target (see Supplementary Materials and (Liao and Kirsch,
2014) for a more detailed description).

Similar expressions to Equation (1) exist for the velocity and
acceleration trajectories. The MSC generated a 3D command
trajectory that was the linear summation of the individual
submovements:

poscommand (t) = posstart +
∑

i
posi (t)

velcommand (t) =
∑

i
veli (t)

acccommand (t) =
∑

i
acci (t)

goalcommand (t) = posstart +
∑

i
Di (t) (2)

Di (t) = 0, t < t0,i
Di (t) = di, otherwise

The commanded position trajectory was the sum of the
individual submovement position trajectories posi (t) initiated
so far, plus the start position. The commanded velocity was
the sum of the individual submovement velocities, and so
on for acceleration. The commanded goal trajectory was the

start position plus the sum of the amplitudes Di of all the
submovements that had initiated by time t. One additional
restriction was that the commanded trajectories were limited
to remain inside the workspace. The three red traces in
Figures 2A–D represent the 3D commanded position, velocity,
acceleration, and goal signals, respectively. In addition, the green
traces in Figure 2A represent the individual MSC-generated
minimum-jerk submovements that were summed to form the
commanded position trajectory. For more examples of simulated
trajectories, see Supplementary Figure S4.

Neural Encoder
The second component of the simulator was the Neural Encoder
that simulated rate-based neurons that were tuned for position,
velocity, or a combination of both position and velocity, in order
to emulate known cortical cell populations. In addition, the
Neural Encoder simulated neurons that were goal-only tuned.
The encoding model generated firing rates for 30ms timesteps.
These nominal firing rates were then run through a saturation
function to reflect physiologically feasible firing rates and then
a spiking noise function to reflect the known (see below) noise
properties of these neurons. Figure 2F shows an example of the
noisy firing rates for simulated goal, position + velocity (labeled
PV), position-only, and velocity-only neurons.

Position and Velocity Tuning
Position tuned cells were modeled as follows:

f = fbase + fbase fdepth
(

x1 sin qθ cos qφ + x2 sin qθ sin qφ

+ x3 cos qθ

)

(3)

Here, qθ and qϕ represented the preferred direction of the neuron
relative to the origin, fdepth represented the tuning depth, fbase
represented the baseline firing rate, and x1, x2, and x3 represented
the current position. This description, in spherical coordinates,
is equivalent to gain-modulated cosine tuning (Moran and
Schwartz, 1999). The origin (0, 0, 0) was set at the approximate
center of the volume that contained the targets (Figure 3).
For positions near the center of the workspace, the position
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FIGURE 2 | Example of a single simulated reach. (A–F) represent

position, velocity, acceleration, goal, distance to goal, and noisy firing rates,

respectively. In each panel, the red traces represent the trajectory that the

Multiple Submovement Controller commanded. (A) also contains green traces

that represent the individual submovements that compose the commanded

trajectories. The blue traces represent the respective trajectories decoded by

the Extended Kalman Filter. The distance to goal panel also indicates that the

(Continued)

FIGURE 2 | Continued

minimum attainable target radius for this particular simulation was 3.02 cm,

and the initial distance to goal was 41.76 cm. (F) indicates the noisy firing rates

corresponding to 10 goal neurons (Gaussian tuned with 20 cm standard

deviations), 1 position-only neuron, 4 position and velocity neurons (labeled

PV), and 5 velocity-only neurons.

neurons fired near their baseline rate. The firing rates increased
for positions in the preferred direction from the origin, and
decreased in the anti-preferred direction. For position tuning,
fbase and fdepth were randomly sampled from exponential and
gamma distributions previously reported (Wang et al., 2007),
and the preferred directions were randomly sampled from the
uniform spherical distribution.

Velocity-tuned neurons were also modeled using Equation
(3), firing at baseline rates for zero velocity, increasing for
velocities x1, x2, and x3 in the preferred velocity direction qθ

and qϕ , and decreasing in the anti-preferred direction. As with
position tuning, fbase and fdepth were randomly sampled from
exponential and gamma distributions previously reported (Wang
et al., 2007), and the preferred directions were randomly sampled
from the uniform spherical distribution.

For the first analysis in this study (see below for description
of the two analyses performed), we simulated a population of
M1 neurons, which are known to contain a mixture of position-
only tuned cells, velocity-only tuned cells, and cells that are tuned
for both position and velocity (Wang et al., 2007). Based on the
Wang study, our simulated M1 population was 50% velocity-
only, 37% position and velocity, and 13% position-only tuned
(note that these percentages exclude cells that Wang et al found
had no velocity or position tuning). Cells tuned for both position
and velocity were represented by:

f = fpos + fvel −
fbase,pos + fbase,vel

2
(4)

In this equation, fpos and fvel represent position and velocity-
tuned components that were generated using Equation 3, and
fbase,pos and fbase,vel represent corresponding baseline firing rates.
The third term corrected the overall baseline to be the mean of
the position and velocity baseline firing rates.

Goal Tuning
In this study, we considered two kinds of goal tuning. First,
we considered cortical neurons that were Gaussian tuned to
specific locations in global space. These are representative of cells
that have retinal receptive fields tuned for target position in an
external reference frame (Galletti et al., 1993). As a simplification,
this tuning model assumes that depth tuning is also Gaussian.
There is also some evidence suggesting that M1 cells represent
preferred spatial locations in this way (Aflalo and Graziano, 2006,
2007). Each Gaussian neuron was modeled as follows:

f = fmin + famp exp







∥

∥

∥
x− qpos

∥

∥

∥

2

−2q2
std






(5)
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FIGURE 3 | Sample three-dimensional trajectories to all targets. This

figure shows all of the simulated decoded trajectories to all 33 targets,

using one set of neuron parameters, and 3 position, 10 velocity, 7

position-velocity, and 20 goal neurons at 10 cm tuning width. Each

subpanel represents a different view of the same data. The top-left panel

represents viewing the data projected unto the Y-Z plane. The top-right

panel represents the data projected unto the X-Z plane. The bottom left

panel represents the data projected unto the X-Y plane. The bottom right

panel represents a 3D view. In each panel the blue traces represent each

of the decoded trajectories, and the green spheres with red centers

represent each target. The radii of the spheres correspond to the

Minimum Attainable Target Radius (MATR) for the corresponding

simulation to each target. The mean MATR for this set of reaches is

2.22 cm. The workspace origin was located at (0, 0, 0).

Here, x represented the 3D intended goal, qpos represented the 3D
preferred position in space of this neuron (a randomly selected
point in the 3Dworkspace), fmin was assumed to be 0Hz, and famp

was assumed to be 100Hz. The tuning width was represented by
qstd for which 10, 20, 30, and 40 cm were simulated.

Second, we considered a linear tuning function where the
firing rate of each neuron was related to the direction and
distance to the target. This is representative of the activity of goal-
tuned cells in the dorsal premotor cortex (PMd) and is similar to
the activity of gaze-related cells in several parietal areas (Sakata
et al., 1980; Genovesio and Ferraina, 2004; Hadjidimitrakis et al.,
2011) that contain neurons that are linearly or monotonically
tuned for direction and depth, in three dimensions, of targets
that are being fixated. Each linear goal neuron was modeled
using Equation (3), where qθ and qϕ represented the direction
of the preferred goal from the origin, fdepth represented the
tuning depth, fbase represented the baseline firing rate, and x1,

x2, and x3 were the three coordinates of the intended goal. For
intended goals near the center of the workspace, linear-tuned
goal neurons fired near their baseline rate. The firing rates
increased for intended goals in the preferred direction from the
origin, and decreased in the anti-preferred direction. The linear
tuning parameters fbase and fdepth were sampled from exponential
and gamma distributions generated using the mean parameters
reported for position and velocity neurons.

Saturation Function and Spiking Noise
In order to limit the firing rates to physiologically realistic values,
we applied an additional saturation function to the firing rates:

g(x) =
150

1+ 9.305 exp(−0.01602(x+ 190))6.015
(6)

These particular parameters of this generalized logistic curve
were chosen to generate a sigmoidal saturation curve that
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converted large negative rates to zero, large positive rates
to 150Hz, and minimally affected moderate firing rates. For
simplicity, we used the same saturation curve for all neurons. For
the simulation, the spiking noise was either Poisson or Norm-
Gaussian distributed according to Shoham et al. (2005)’s ratio.

Decoding using Kalman Filter
The Decoder was an Extended Kalman Filter with a linear
trajectory model and a nonlinear measurement model. The
state vector included position, velocity, acceleration, and goal
(Mulliken et al., 2008a; Corbett et al., 2012). The linear trajectory
model was trained using least squares (Wu et al., 2006) using
experimentally recorded trajectories augmented by a goal term
derived from submovement decomposition (Liao and Kirsch,
2014), i.e., the same set used to train theMSC. This instantaneous
goal was the endpoint specified by the sum of all submovements
initiated so far. We did not train the measurement model and
instead assumed that it was ideal, i.e., it was identical to the
encoding model used to generate the neural firing rates in
the “neural encoder.” This was done to focus the analyses on
the relative effectiveness of different neuron types (e.g., goal,
position, velocity, position + velocity) and NOT on distortions
introduced by a non-ideal decoder.

Kalman Filters represent the estimated state as Gaussian
probability distributions, with a mean value representing the
most likely state, and a covariance value representing the
uncertainty in that state estimate. The state vector included
position, velocity, acceleration, and goal estimates. For each
simulation, the Kalman Filter estimated state (the mean of the
Gaussian probability distribution) was initialized with the known
starting position, zero velocity, and zero acceleration. Because
these were known, the Kalman Filter was initialized with low
uncertainty in the initial estimates of these quantities, with
covariances 0.001 cm for position, 0.001 cm/s for velocity, and
0.001 cm/s2 acceleration, in each dimension x, y, and z.

Unlike the starting position, the initial planned goal was
unknown to the Kalman Filter. To reflect the high uncertainty
in the initial goal estimate, the Kalman Filter covariance for goal
was set to a high value of 1000 cm in each dimension, which is
more than ten times the longest edge of the workspace (Figure 3).
The probability distribution of the initial goal estimate was
essentially flat over the workspace, indicating high uncertainty
in this estimate. The initial estimated goal state (the mean of
the distribution) was set to the average of the endpoints of the
initial submovements of the same set of experimentally recorded
reaches used to train the trajectory model. However, because
of the high covariance, the precise value was inconsequential.
The blue traces in Figure 2 correspond to the decoded position,
velocity, acceleration, and goal. The blue traces start at t = 0
with the initialized values but drift apart from the commanded
trajectory due to the spiking noise added to the neurons, the
numbers of neurons used, and imperfections in the trained
trajectory model.

Targets
The set of movements that we simulated represented outward-
from-armrest target-oriented reaching, the kind of reaches that

would be made by individuals from sitting positions. These are
also the types of movements that we ultimately hope to restore
to these individuals in a rehabilitation setting (Cornwell et al.,
2012). For each of simulation parameters, 33 different reaches
were simulated (Figure 3). The same targets were used for all
parameter sets. The mean distance-to-target was 48.2 cm, the
minimum distance was 27.98 cm, and themaximum distance was
68.69 cm.

Performance Metrics
We developed a performance metric that reflects the practical
need for a BCI to both attain a target AND stably maintain
the target for a functionally meaningful period. This metric is
termed Minimum Attainable Target Radius (MATR), defined as
the smallest target radius to which the decoded position moved
and remained within for 1 s:

MATR = argmin
r

{

distance
(

t + d
)

< r,

∀
∣

∣d
∣

∣ <
1

2
,
1

2
< t <

(

tstop −
1

2

)}

(7)

In this equation, the distance is the instantaneous distance to
target. The variables t and d represent time, together indicating
a sliding window of width 1 s. The MATR is the minimum r such
that the distance is less than r for every time step inside the 1 s
window. The variable tstop represents the stop time. The first and
last half-second of simulation were not included. An example
of this is shown in Figure 2E. The gray rectangle represents
the MATR. Note that target radius was not varied during
the simulations—all of the reported MATR calculations were
performed post-hoc on simulated trajectories. To characterize
the smallest target radius achievable at various points in the
workspace, we averaged the MATR over all 33 simulated targets
(Minimum Attainable Target Radius over Targets, MATR-T).
For a 3D view of sample simulated (decoded) trajectories with
corresponding MATR for each target, see Figure 3.

Finally, each simulation to each target was repeated with
30 different sets of neuron parameters (preferred directions,
tuning depths, baselines, etc.). To summarize MATR-T over
neuron parameter sets, we took an additional mean over neuron
parameters (MATR-T over Parameters, or MATR-TP) and also
calculated the 95% confidence intervals of the mean. This
confidence interval characterized the variation in MATR-TP due
to different neuron parameter sets.

Analyses Performed
As mentioned above, two analyses were performed. The first
analysis constrained the neuron tuning to represent the types
of neurons that would be recorded in a practical BCI, with
electrode arrays implanted in M1 (neurons tuned for position,
velocity, or both) and in a goal-tuned region. The numbers of
M1 and goal-tuned neurons were each varied from 0 to 50.
We simulated Gaussian and linear goal neurons separately. The
simulator stopped each movement at 3 s or 30 submovements,
whichever came first, and ran at a 30ms step size. The simulation
shown in Figure 2 was performed under these conditions.
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In the second analysis, we separated the movement time, the
number of neurons, and the controller, from the performance
of the three neuron types. We simulated 50 position, 50
velocity, and 50 goal neurons when movement time was not
a limiting factor (we allowed 30 s of movement time or 300
MSC submovements). To understand the unique performance
contributions of position and velocity neurons, cells that were
simultaneously tuned for both position and velocity were not
included. To investigate the influence of the MSC on simulated
performance, we performed a number of movement simulations
with theMSC included and then performed the same simulations
with constant position and goal commands set exactly at the
target location. Note that constant commanded velocities cannot
reach the target and were not included in these simulations.
In theory, a closed-loop controller such as the MSC should
outperform the constant command signal and correct for any
steady-state errors that may occur.

Results

Analysis 1: M1 Position-velocity Ensemble Vs.
Goal Ensemble
The relationships between the number of neurons and MATR
are presented separately for Gaussian (Figure 4) and linear
(Figure 5) goal tuning.

Gaussian Goal Tuning
Figure 4A illustrates the minimum attainable target radius
(MATR-TP) (whose magnitude is represented by the colormap)
for simulations run with different combinations of “goal
neurons” and “position-velocity neurons.” Gaussian goal neuron
ensembles of size 0 through 50 (represented on the horizontal
axis) and position-velocity neural ensembles of size 0 through
50 (represented on the vertical axis) were simulated. Each
simulation represented a 3 s reaching movement and (in this

example) the Gaussian tuned goal neurons had an initial 20 cm
standard deviation. The colors represent the MATR-TP for the
corresponding number of goal vs. position-velocity neurons,
with blue representing better performance and red representing
poorer performance. The contour lines in Figure 4A correspond
to the target radii indicated by the horizontal lines on the color
bar of Figure 4A. The same reach targets and the same neuron
sets were used for each combination of goal and position-velocity
neuron number. These simulations indicated that increases in
the number of both goal neurons and position-velocity neurons
contributed to increased performance (i.e., decreases in MATR-
TP) for target radii greater than 3 cm. However, MATR-TP
decreased more quickly for increased numbers of position-
velocity neurons than for increased numbers of goal neurons.

Figure 4B shows the MATR-TP (vertical axis) vs. the number
of neurons (horizontal axis) for simulations performed with only
position-velocity-tuned cells (red trace), with only goal-tuned
cells (blue trace), and with a 1:1 ratio of goal and position-velocity
cells (green trace). For each color, the middle lines represent
the MATR-TP, and correspond to the information along three
slices through Figure 4A (the vertical axis, horizontal axis, and
the diagonal). The 95% confidence intervals of the MATR-
TP are also shown, representing the variation in MATR-TP
caused by repeating the same simulations with different neuron
parameter values. Non-overlapping confidence intervals between
the various curves indicate statistically significant differences.
For small numbers of neurons (<5) and large targets (>15 cm)
the position-velocity and the 1:1 mixture confidence intervals
overlap, indicating similar performance. For small numbers
of goal neurons (<15) and targets >5 cm the goal and 1:1
mixture confidence intervals overlap, also indicating similar
performance. For the same number of neurons, though, goal
neurons perform worse than position-velocity neurons. Note
that position-velocity neurons reached a MATR-TP asymptote
of ∼2 cm using approximately 30 neurons. The 1:1 mixture

FIGURE 4 | Minimum attainable target radius for combinations of

20cm tuning width Gaussian goal and linear position-velocity

neurons. (A) shows the relationship between the minimum attainable

target radius and the number of goal and position-velocity neurons. The

colors represent the minimum attainable target radius averaged over 33

targets and again over 30 neuron sets (MATR-TP, see text). The contour

line values are indicated by horizontal lines on the colormap bar. (B)

shows three slices through the left panel. The blue trace (slice along the

horizontal axis) represents the target radius vs. number of goal-only

neurons. The red trace (slice along the vertical axis) represents the same

for position-velocity neurons. The green trace (slice along the diagonal line

through the plot) represents the same for a 1:1 mixture of goal and

position-velocity cells, the diagonal of the left panel. The 95% confidence

intervals are also shown.
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FIGURE 5 | Minimum attainable target radius for linear goal

and linear position-velocity neurons. This figure follows the same

conventions as Figure 4, showing the relationship between

minimum attainable target radius (MATR-TP, see text) and number

of goal or position-velocity neurons on the left (A). The right (B)

shows the mean and 95% confidence intervals for MATR-TP, for

goal-only neurons, position-only neurons, and a 1:1 mixture of these

neuron types.

reached a similar asymptote at approximately 30 neurons, while
the goal neuron asymptote was approximately 1.3 cm higher.
The green curve was generally located between the red and
blue curves, indicating that the mixture of neurons did not
perform better than an equivalent number of position-velocity
neurons. However, the addition of goal neurons to any particular
number of position-velocity neurons did improve performance.
For instance, for 10 position-velocity neurons (red trace) the
MATR-TP was ∼7 cm. In comparison, 20 mixture neurons
(green trace) contains 10 position-velocity and 10 goal neurons,
and the MATR-TP was ∼3.5 cm. However, note that the MATR-
TP for 20 position-velocity (red trace) neurons was ∼2.8 cm.
Therefore, the MATR-TP was reduced less by 10 additional
goal neurons than by 10 additional position-velocity neurons.
A Kruskal-Wallis test comparing the three curves indicated
that the differences were statistically significant (p < 0.001).
Pairwise comparisons between the curves were also significant
(p < 0.005).

The corresponding figures for different Gaussian goal tuning
widths (standard deviations) are included in the Supplemental
Materials. Note that the goal neuron MATR-TP was smaller at
20 and 30 cm tuning widths, and larger at 10 and 40 cm tuning
widths. Also, note that for 10 cm Gaussian standard deviation,
the contour lines that originate at above 10 position-velocity
neurons have positive slopes in the x-y plane, indicating that
MATR-TP actually increased with additional neurons, before
leveling off and decreasing with higher numbers of neurons. For
40 cm Gaussian standard deviation, MATR-TP decreased with
additional goal neurons except for the transition from 1 to 2 goal
neurons. For the other goal tuning widths, MATR-TP decreased
with additional goal neurons.

Linear Goal Tuning
Figure 5 shows the MATR-TP for simulations run with linear
goal neuron populations of size 0 through 50 and position-
velocity neural populations of size 0 through 50. Other than
the different type of goal tuning, the panels and labeling are
the same as in Figure 5. Compared to Figure 4A, the contour

lines close to the origin in Figure 5A have slope ≤1, indicating
that adding goal neurons would have larger performance benefit
than adding P-V neurons initially. However, for greater than 10
neurons the contour spacing along the horizontal axis increases
relative to the vertical axis spacing, indicating that additional P-
V neurons have a more beneficial impact on performance than
adding goal neurons. This effect is also visible in Figure 5B,
where the MATR-TP confidence intervals for goal are less than
for position-velocity neurons at less than 10 cm, and overlap at
up to 15 neurons, and do not overlap for larger numbers of
neurons where the P-V curve is consistently lower (i.e., better
performance). The 1:1 mixture of P-V and goal neurons never
performed better than position-velocity neurons only or goal
neurons only. Position-velocity and 1:1 neuron populations reach
asymptotic performance of ∼2 cm in approximately 30 neurons,
and goal neuron performance asymptote was approximately
1.3 cm higher. As in Figure 4B, adding goal neurons did improve
upon P-V only performance, but the improvement was not as
great as it was when additional P-V neurons were included.
A Kruskal-Wallis test comparing the three curves indicated
that the differences were statistically significant (p < 0.001).
Pairwise comparisons between Goal and PV (p = 0.78), 1:1
and PV (p = 0.24), and 1:1 and Goal (p = 0.091) were not
significant.

Analysis 2: 50 Position, Velocity, or Goal Neurons,
with Longer Reach Durations
For the second analysis, the MATR for each neuron type, the
relationship between target radius and movement time, and
the relationship between target radius and distance from origin
were explored, and the results are presented in Figures 6–8,
respectively. Specifically, movement times up to 30 s and up to
300 submovements (for the MSC simulations) were allowed.

Minimum Attainable Target Radius
Figure 6 shows the minimum attainable target radius (MATR-
TP) (vertical axis) plotted for different neuron types (horizontal
axis), with 50 neurons for each type. The neuron types included
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FIGURE 6 | Minimum attainable target radius for separate neuron

types, both continuously modulated and constant. The minimum

attainable target radius (MATR-TP, see text) is shown for position, velocity,

linear goal (GL), Gaussian 10 cm tuning width goal (GG10), 20 cm (GG20),

30 cm (GG30), and 40 cm (GG40). Blue error bars indicate mean and 95%

confidence intervals for the MATR-TP using 50 of the respective neurons and

the Multiple Submovement Controller. Red error bars indicate the same metric

for constant (i.e., not corrected) trajectory commands, for position and goal

tuning.

position-only neurons (labeled Pos), velocity-only neurons
(labeled Vel), goal-only neurons with linear tuning (GL), and
goal-only neurons with Gaussian tuning at 10, 20, 30, and 40 cm
tuning widths (standard deviations, labeled GG10, GG20, GG30,
and GG40). The blue error bars represent performance using
the MSC. The means and 95% confidence intervals depicted by
the bars represent the MATR-TP and the variation in MATR-
TP due to neuron parameter sets. The red error bars indicate
the corresponding values when the command signals for position
and goal were constant, set to the target position (the start
position was not changed). Non-overlapping confidence intervals
indicate statistically significant differences. For the case where
intervals overlapped, the p-value is shown. Constant commanded
velocities cannot reach the target and were not included in this
figure.

Using the MSC, velocity tuned cells consistently provided
the smallest attainable targets. Also, linear and Gaussian goal-
tuned cells (except for 10 cm standard deviations) performed
better than position-tuned cells. Gaussian goal tuned neurons
with 10 cm standard deviation performed poorest among all
tuning types. Note that the MATR-TP of goal-tuned cells in this
figure (with up to 30 s of movement time allowed) were smaller
than in Figures 4, 5 (where movement time was limited to 3 s).
This indicates that short movement times limit the minimum
attainable target radii for goal-tuned neurons.

The MSC performed better than the constant controller for
linear, 20 (p = 0.005), 30, and 40 cm goal tuning. For position

FIGURE 7 | Target radius vs. movement time for separate neuron

types. Each curve represents the relationship between target radius and

movement time for simulated reaches using 50 position, velocity, or goal

neurons of the respective types (GL, linear goal; GG, Gaussian Goal of 20, 30,

or 40 cm standard deviation). The bottom-right-most points of each series

represent the minimum achievable target radius (MATR-TP) from Figure 6.

The error bars represent the 95% confidence interval of the movement times

at particular target radii.

and 10 cm goal tuning, the MSC was worse than the constant
controller.

Target Radius vs. Movement Time
The amount of time required to achieve targets of a particular
radius decreased as the target radii increased. We investigated
this relationship post-hoc with MSC-controlled reaches
(Figure 7). This figure contains six data series corresponding
to the neuron types from Figure 6, with the exception that the
poorest-performing 10 cm standard deviation Gaussian tuning
condition is not included. Each curve represents the target
radius vs. movement time relationship for the labeled neuron
type. The error bars indicate the 95% confidence intervals
of the movement times at specific radii. Like the MATR-TP,
the movement times were calculated as means of means over
targets and neuron parameter sets. The lower right point of
each data series represents the MATR-TP and the corresponding
movement time when that target radius was attained. The
y-values of these points are identical to the error bar means
from Figure 6. The other points along the curves represent the
movement times required to reach larger targets. Note that the
horizontal axis has a log scale.

Velocity neurons enabled the smallest target as well as
the shortest movement times, and position neurons allowed
larger targets and required longer movement times for a
given target radius. Goal neurons enabled performance levels
between those of position and velocity neurons. For goal and
position-tuned neurons, the MATR-TP was attained at greater
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FIGURE 8 | Minimum attainable target size vs. distance from origin to

target. For each of 33 targets, the relationship between minimum attainable

target radius, averaged across neuron parameter sets (MATR-P) is plotted

against the distance from origin to target. The green dots represent this

relationship for 50 position neurons. The blue and red points represent this

relationship for 50 velocity and 50 linear goal neurons, respectively. The

relationship between MATR-P and distance from target to origin is statistically

significant for position and linear goal neurons (p < 0.001, labeled above as *),

but is not significant for velocity neurons (p = 0.71).

than 10 s of movement time. Note that as the target radius
increased (top left of Figure 7), the difference between the
movement times decreased. The velocity and goal curves began
to overlap at 7.62 cm target radius. At this target radius the
differences in movement times between velocity and linear goal
(p = 0.361), velocity and 20 cm goal tuning (p = 0.036),
velocity and 30 cm goal tuning (p = 0.042), were not
significant. The other comparisons (velocity to position, and
velocity to 40 cm goal tuning) were significant (p < 0.001).
By 8.89 cm target radius, the mean velocity movement times
were larger than the goal movement times. The velocity
and 40 cm goal tuning traces had overlapping confidence
intervals and the difference was not statistically significant
(p = 0.121).

Target Radius vs. Distance of Target from Origin
The MATR was related to the distance from target to the origin
(Figure 8) for some neuron modalities but not others. For this
figure, the MATR was averaged across neuron parameter sets
only (MATR-P), and is plotted for each of the 33 targets as a
function of the distance from origin to the target. The green
points represent the MATR-P for 50 position cells, the red points
represent the same for linear tuned goal cells, and the blue
points represent the same for velocity cells. Note that the velocity
MATR-P was not a function of distance from origin to target
(p = 0.71). However, the MATR-P for linear goal and position
tuned cells increased with increasing distance from origin to
target (p < 0.001).

Discussion

We have developed a model of a closed-loop BCI for controlling
human arm movements that uses a model of point-to-point arm
movement trajectories (including error correction), constructs
an ensemble of movement-related cortical neurons that encode
these ideal movements using realistic firing characteristics and
noise properties based on literature reports, and then decodes the
movement commands that would be expected from a practical
decoder. We performed a number of simulations to explore
the likely contributions of different combinations of position,
velocity, and goal-tuned neurons, as well as the impact of the
number of neurons, the tuning properties of the goal-based
neurons, the allowed movement times, and the distance from
origin to target. These simulations suggest that these neuron
types all contributed to improve performance (i.e., decrease the
size of reachable targets).

Relative Utility of Goal Neurons
Most previous studies that evaluated goal information content
in neural signals have used a classification approach to predict
which of a pre-defined set of targets the participant intends to
reach (Santhanam et al., 2006; Achtman et al., 2007; Shanechi
et al., 2013a; Aflalo et al., 2015). Our approach uses the MATR
metric to characterize how well targets that are arbitrarily placed
in the workspace can be reached with a given number of neurons.
This allows goal neuron performance to be directly compared to
that of position or velocity neurons.

In most cases, performance improved and eventually
saturated as the number of neurons increased (Figures 4, 5 and
Supplementary Figures S2, S3). For neurons tuned for position
and/or velocity, the performance saturated at ∼30 neurons,
which would allow for targets of ∼2 cm to be reached within
2 s (not including the dwell time). Goal neuron performance
also saturated at ∼30 neurons, allowing for targets of 3–5 cm to
be reached in 2 s (Figures 4, 5 and Supplementary Figures S2,
S3). While goal neurons did not allow for as much precision as
a similar number of M1 neurons tuned for both position and
velocity, the range of performance provided by goal and position-
velocity tuned neurons is likely fast and accurate enough for
many practical arm reaching tasks. In addition, given >5 s of
movement (not including the dwell time), 50 goal neurons were
able to specify targets of 2–3.5 cm (Figure 7). One exception was
the 10 cm tuning width goal neurons (Figure S1). This case will
be discussed in the next section.

Our results suggest that given a limited number of recording
electrodes, maximizing the number of M1 electrodes (neurons
tuned for position and/or velocity) would be more beneficial
than recording neurons from a goal-tuned cortical region, with
a few caveats. Our study did not account for movement-related
neural activity in different brain areas that occur at different
times (Shibasaki and Hallett, 2006). Though it takes more time
for a goal neuron ensemble to specify targets as small as the
same number of velocity neurons can (Figure 7), the goal-
related neurons may modulate earlier in movement planning
than position or velocity neurons. The effect of this “early
information” should be investigated in a future study.
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Even if goal neurons could only specify larger targets, there
may be advantages to their use. Goal information can be used to
constrain (Srinivasan et al., 2006; Yu et al., 2007; Corbett et al.,
2012; Shanechi et al., 2013b) the decoded trajectory, potentially
reducing the cognitive burden associated with specifying that
trajectory. To our knowledge, the effect of goal-tuned neurons on
cognitive burden has not yet been tested in humans. This would
be important to study in a future human BCI participant.

Because performance saturates with increasing numbers of
neurons, our study suggests that small neuron ensembles of
<50 neurons can provide most of the performance that a much
larger neuron ensemble would provide. Also, at greater than
20–30 neurons the confidence intervals for the MATR-TP are
very narrow, indicating that in the saturation region there is
minimal variability in performance due to different sets of neuron
parameters. This requires that the tuning functions of each
neuron be well characterized. This could be accomplished via
adaptive closed-loop decoding, where neurons adapt to the BCI
over time and thus become better tuned for movement-related
parameters over the course of decoder training (Carmena, 2013).

Effect of Gaussian Goal Tuning Width on
Performance
The effect of the Gaussian goal tuning width (standard deviation)
on performance is shown in Figure 6. The ability of Gaussian-
tuned neurons to represent goal location depend on how much
the firing rate changes, on average, over the entire workspace
(Zhang et al., 1998). If the tuning widths were too narrow (Brown
and Bäcker, 2006) as in the 10 cm case (Figure S1), the firing
rates over most of the workspace would be in the tails of the
Gaussian distribution. A similar phenomenon would occur if
the tuning widths were too wide. The average change in firing
rate per change in goal position would be low, and the decoder’s
ability to detect changes in commanded goal position would be
diminished. Performance for 10 cm tuning widths (Figure S1)
at 5–10 goal neurons improved at above 20–30 goal neurons as
the workspace was “covered” by a sufficient number of narrowly
tuned goal neurons. For the workspace size simulated, the 20 cm
tuning width provided the best performance. However, our
results suggest that goal neurons with a wide range of tuning
widths can contribute to improve decoding performance.

At less than three goal neurons at 10 and 40 cm tuning
width, performance initially worsened before improving with
additional neurons (Figures S1, S3). This reflects the relatively
poor information represented by small numbers of 10 or 40 cm
tuning width neurons, combined with the simulation stop
parameters. With very few neurons the decoded trajectories
poorly matched those expected by the MSC, which initiated
30 submovements quickly. The simulations stopped before the
decoded trajectory drifted too far from the start position. With
a few more neurons (e.g., 2 or 3 goal neurons in Figure S1),
the MSC corrections occurred less quickly but control was still
poor, and the decoded trajectories drifted away from the target
resulting in larger MATR. With larger numbers of goal neurons
the decoded trajectories approached the target, reducing the
MATR.

Effect of Distance-from-origin-to-target on
Performance: Signal to Noise Ratio
The relationship between MATR and distance from origin to
target (Figure 8) suggests an explanation for the performance
contributions of the different neuron types. Near the target, the
commanded velocities were near zero, so the firing rates were
near their baselines. The commanded positions and linear goal
tuning were not near zero—they were at baseline plus an offset
that was proportional to the distance from the origin. However,
the magnitudes of the small corrections near the targets were not
proportional to this distance. In addition, large magnitude offsets
drove the firing rates closer to saturation. Therefore, the SNR
for position and linear goal neurons decreased with increasing
distance from origin, while the velocity neuron SNR remained
constant. These phenomena are reflected in the minimum
attainable target size (Figure 8). Thus, for the position and goal
neurons simulated, the reference frame of the neurons and the
BCI task workspace both affected performance.

Careful characterization of neuron reference framesmay allow
BCI tasks to be designed such that the SNR of the recorded
neurons is optimized. Understanding neuron reference frames
is an ongoing effort (Sakata et al., 1980; Kettner et al., 1988;
Schwartz et al., 1988; Alexander andCrutcher, 1990; Galletti et al.,
1993; Shen and Alexander, 1997; Moran and Schwartz, 1999;
Genovesio and Ferraina, 2004; Saito et al., 2005; Churchland
et al., 2006; Pesaran et al., 2006; Aflalo and Graziano, 2007; Wang
et al., 2007; Bhattacharyya et al., 2009; Hadjidimitrakis et al.,
2011) and is difficult because neurons do not have to be tuned
for any particular coordinate system and are even modulated by
non-movement-related parameters such as expectation of reward
(Musallam et al., 2004). Again, adaptive closed-loop decoding
(Carmena, 2013) may reduce the need to fully characterize the
original reference frames of the neurons as they learn to control
the BCI.

Multiple Submovement Controller
The MSC (Liao and Kirsch, 2014) is based on the hypothesis
that target-oriented arm reaching movements consist of a series
of overlapping submovements (Lee et al., 1997; Burdet and
Milner, 1998; Rohrer et al., 2004; Fishbach et al., 2007) that each
represent corrections to the movement based on feedback AND
whose summation represents the commanded trajectory. Under
this hypothesis, the early portion of each reach is not specified
precisely (Rand and Shimansky, 2013) and tends to undershoot
the target (Worringham, 1991), necessitating corrections in order
to achieve the target. Thus, the intended goal does not necessarily
coincide with the target early in the reaching movement (Lyons
et al., 2006). We chose the MSC to drive the simulation of neural
data because it models the commanded goal trajectory in addition
to the position and velocity trajectories. A model of the goal
trajectory is required for simulation of goal-tuned neurons.

The MSC was able to guide the decoded position to the
vicinity of the target under various tuning conditions and
numbers of neurons (Figures 4–6). However, the MSC was
not perfect. Ideally, it should achieve smaller targets than a
constant command signal would. The MSC training process
may have introduced imperfections—larger datasets, datasets
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with more precise experimentally recorded reaches, different
data preprocessing, or a different ANN architecture may have
improved the MSC’s performance.

We made the simplification to use the same MSC for all
cases, although it is possible that actual BCI users adopt different
control strategies depending on the different numbers or types
of neurons. The possible effect of our simplification would be
more pronounced with small numbers of neurons, or, when the
neurons each represent less information as in the 10 cm Gaussian
case. This could be addressed by using a controller that models
the optimization process that occurs as users learn to operate the
BCI, but this is beyond the scope of the current study.

Optimal control theory may provide a solution for this
problem. One group developed a velocity feedback controller
that drives a set of simulated velocity neurons, pushing the
decoded position to a target (Kowalski et al., 2013; Lagang and
Srinivasan, 2013). It may be possible to extended this controller
to also command a time-varying goal signal to optimally drive
the decoded position to the target. Eventually, dynamics of the
decoded signal (when coupled to a robotic or FES-enabled arm)
could also potentially be incorporated into the controller.

Other alternatives include using human participants in the
loop whose real-time arm kinematics drive simulated neural
spiking (Cunningham et al., 2010). This approach makes fewer
assumptions about the control strategy but is difficult to scale to
hundreds or thousands of simulations. Another group assumed
that the mapping between commanded and decoded movement
directions could be learned, so the commanded trajectories
always resulted in straight movements to the targets (Chase et al.,
2009), even though the study was essentially open-loop. It is yet
unclear how a time varying goal signal should be added to these
approaches, but they are worth exploring further.

Suitability of Kalman Filter Approach to Goal
Signal Integration
Our simulations confirm that the Kalman Filter with a linear
trajectory model augmented with goal (Mulliken et al., 2008a;
Corbett et al., 2012) is capable of utilizing that goal information to
improve the decoded trajectory, as the addition of goal neurons
improved performance (Figures 4, 5) in every case except for
10 cm standard deviation Gaussian tuning (Figure S1). However,
more sophisticated methods for incorporating goal have been
proposed (Srinivasan et al., 2006; Srinivasan and Brown, 2007;
Corbett et al., 2012; Lawhern et al., 2012; Shanechi et al., 2013a).
Our closed-loop simulation approach allows these methods to be
directly compared and would be a useful future study.

Impact of Assumptions and Comparisons with
Other Studies
This study made the assumption that the decoder had knowledge
of the ideal neuron tuning functions. This was done explicitly
to eliminate any confounds that could result from the training
of a practical decoder, thus allowing us to compare the utility
of position, velocity, and goal signals for generating appropriate
arm trajectories per se. It is possible, however, that practical
decoders trained on experimental or simulated neural data
will perform somewhat differently and increase or decrease the
relative performance contributions of neuron types. A future

simulation study could thus use a decoder that is trained on
simulated neural data, and the analyses could then be repeated
using that non-ideal decoder.

This assumption makes it difficult to directly compare
our simulation results to those reported in experimental BCI
studies. Also, differences between tasks, success conditions, and
performance metrics further complicate direct comparisons.
Collinger et al. (2013) reported that a human participant
could, with ∼50 velocity neurons, hit ∼90% of targets at
8 cm radius. Hochberg et al. (2012) reported that a human
participant could hit ∼95% of targets where the target radius
was approximately 13 cm (3 cm target radius plus 10 cm of
robot hand aperture). The number of neurons used was not
reported. In comparison, the MATR in our simulation are
less than 3 cm at greater than 30 position-velocity neurons. It
would be interesting to explore how this would change using a
decoder trained on simulated neural data rather than an ideal
decoder.

In terms of performance vs. number of neurons, Aflalo et al.
showed that hit rate saturated at ∼90% using a decoder trained
on 20–30 experimentally recorded neurons, when neurons were
selected using a greedy algorithm in order of contribution to
task performance. However, using random instead of greedy
neuron selection, it took ∼100 neurons to reach ∼90% hit rate
(Aflalo et al., 2015). In our simulation we used a random neuron
selection and an ideal decoder, and performance saturated at 20–
30 neurons. We expect the performance to saturate at a larger
number of neurons if we used trained decoder rather than an
ideal decoder, but further simulations are required to determine
the saturation curve.

We also made assumptions regarding goal neuron tuning
depths. The relationship between goal neuron tuning depths and
their relative contribution to the size of reachable targets was
not investigated. However, our assumptions about tuning depths
likely over-estimate the goal neuron contributions. For instance,
linear goal neurons represent the same amount of workspace as
position-tuned neurons, but the linear goal neurons were more
deeply tuned. Even with this potential over-estimation, the goal
neurons did not contribute as strongly as velocity-tuned neurons.
This issue is addressable using the closed-loop BCI simulator and
would be an interesting future study.

Conclusion

Goal, position, and velocity-tuned neurons all strongly
contributed to decrease the size of targets that could be
reached by a simulated BCI. However, goal neurons did not
contribute as strongly as velocity neurons did. Therefore, for
BCIs that require high precision, additional recording channels
in M1 would be more useful than additional channels in brain
areas that contain goal-tuned neurons. However, although this
study does not address it, there may be other benefits to using
goal neurons such as decreased cognitive burden that would still
make them useful for a practical BCI.

This study also contributed a BCI simulator capable of making
error corrections in closed-loop, based on a model of human
movement previously developed in our lab. We anticipate that
approaches incorporating similar, or more advanced, models of
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error corrections will be useful development tools for future BCI
algorithms, especially those that incorporate goal-tuned neurons,
and allow them to be tested in simulated closed-loop prior to
in vivo experimental study.
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