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Hepatitis C virus (HCV) inhibitors are essential in the treatment of human norovirus
(HuNoV). This study aimed to map out HCV NS5B RNA-dependent RNA polymerase
inhibitors that could potentially be responsible for the inhibitory activity of HuNoV RdRp. It is
necessary to develop robust machine learning and in silico methods to predict HuNoV
RdRp compounds. In this study, Naïve Bayesian and random forest models were built to
categorize norovirus RdRp inhibitors from the non-inhibitors using their molecular
descriptors and PubChem fingerprints. The best model observed had accuracy,
specificity, and sensitivity values of 98.40%, 97.62%, and 97.62%, respectively.
Meanwhile, an external test set was used to validate model performance before
applicability to the screened HCV compounds database. As a result, 775 compounds
were predicted as NoV RdRp inhibitors. The pharmacokinetics calculations were used to
filter out the inhibitors that lack drug-likeness properties. Molecular docking and molecular
dynamics simulation investigated the inhibitors’ binding modes and residues critical for the
HuNoVRdRp receptor. Themost active compound, CHEMBL167790, closely binds to the
binding pocket of the RdRp enzyme and depicted stable binding with RMSD 0.8–3.2 Å,
and the RMSF profile peak was between 1.0–4.0 Å, and the conformational fluctuations
were at 450–460 residues. Moreover, the dynamic residue cross-correlation plot also
showed the pairwise correlation between the binding residues 300–510 of the HuNoV
RdRp receptor and CHEMBL167790. The principal component analysis depicted the
enhanced movement of protein atoms. Moreover, additional residues such as Glu510 and
Asn505 interacted with CHEMBL167790 via water bridge and established H-bond
interactions after the simulation. http://zinc15.docking.org/substances/
ZINC000013589565.
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INTRODUCTION

Noroviruses were known as “Norwalk-like viruses” in the past, and these viruses were ascertained in
1972 by Dolin et al. (1972) and Kapikian et al. (1972). Noroviruses are positive-sense single-stranded
viruses classified into the family of Caliciviridae and genus Norovirus. The genome of human
norovirus (HuNoV) is ∼7.7 kb dimension and systematized into three different open reading frames
(ORF). ORF1 encodes a large polyprotein into nonstructural proteins. These include VPg-like protein,
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viral protease, and RNA-dependent RNA polymerase (RdRp).
ORF2 encodes a major capsid protein 1 (VP1) that can self-
assemble into virus-like particles (VLPs), and ORF3 encodes an
insignificant but essential protein assumed to be involved in the
building of progeny particles (Allen et al., 2008; Kim et al., 2015).
Furthermore, HuNoV is the most common agent of viral
gastroenteritis, causing about ∼700 million infections, 219,000
deaths, and $60 billion societal costs across the world annually in
the recent decades (Bartsch et al., 2016; Van Dycke et al., 2021).
Chronic and severe HuNoV infections are increasing as the
immunocompromised population grows, for example, in
transplant and cancer patients (Van Dycke et al., 2021), and
HuNov also causes about one-fifth of all gastroenteritis cases in
children less than five years worldwide (Lartey et al., 2020). Hence,
there is a high demand for the efficient development of antiviral
drugs or vaccines to prevent and treat norovirus disease. However,
currently, no specifically approved medication or vaccine is
available to fight against HuNoV infection. The RdRp is a
crucial and attractive drug target for the development of anti-
norovirus agents. It played an essential role in viral replication but
has no host cell homologs; thus, effective HuNoV RdRp inhibitors
can be developed with safer and more effective therapeutics for
treating norovirus diseases. Based on the mode of action, RdRp
inhibitors can be classified into nonnucleoside inhibitors (NNIs)
and nucleoside or nucleotide inhibitors (NIs) (Wei et al., 2016;
Ferla et al., 2018). NIs act as substrate imitators for the polymerase,
blocking the replication and elongation of the RNA chain by
competing with the natural nucleoside triphosphate (Ng et al.,
2008; Wei et al., 2016). CMX521 (NI) was recently reported as the
first direct-acting antiviral therapeutic for treating and preventing
norovirus infections and advancing clinical trials (phase 1). The
NIs that inhibit MNV and HuNoV replications but are unable to
proceed to clinical trials include favipiravir (T-705) (Furuta et al.,
2009), ribavirin (RBV) (Chang and George, 2007), 2′-C-methyl-
cytidine (2CMC) (Rocha-Pereira et al., 2012; Kolawole et al.,
2016), and 2′-fluoro-2′-C-methyl-cytidine (2′-F-2CMC)
(Costantini et al., 2012), among others. Whereas the NNIs bind
to the allosteric sites of RdRp, causing a change in the
conformation necessary to initiate RNA synthesis and inhibit
enzyme activity (Barreca et al., 2011; Wei et al., 2016; Bassetto
et al., 2019). The NNIs include NAF2 (Tarantino et al., 2014),
suramin, NF023 (Mastrangelo et al., 2012), PPNDS (Croci et al.,
2014), NCI02, and NIC12 (Eltahla et al., 2014). Also, nitazoxanide
(NNI), an agent with broad antimicrobial activity, has proven to be
a therapeutic alternative for patients with norovirus gastroenteritis
in clinical trials, but the specific mechanism of nitazoxanide is still
unknown (Siddiq et al., 2011). In contrast, hepatitis C virus (HCV)
is a small, enveloped virus of 50–80 nm diameter, also with a
positive sense, single-stranded RNA (+ssRNA) like norovirus, and
the RNAmolecule contains a single open reading frame (ORF) but
lacks a 5ʹ cap (Eltahla et al., 2015). Considering the similarities of
the replication strategies between noroviruses and HCVs and the
mode of action of NIs and NNIs in their RdRp binding pocket, the
NNIs and NIs of HCV NS5B polymerase could serve as starting
molecules or scaffolds for designing, synthesizing, and developing
antiviral agents against norovirus infections. Although the agent
that targets RdRp enzymes has been able to proceed to the clinical

trial, sadly, no compound has been pinpointed as a specific
inhibitor of the HuNoV RdRp either due to off-target, toxicity,
or low human intestinal absorption of these compounds. Thus,
there is still a great need for searching compounds with low
toxicity and good bioavailability with minimal side effects that
can be effectively developed into antiviral therapeutic agents
targeting norovirus infection.

Furthermore, many computational chemists are exploring
machine learning approaches due to their high accuracy in
activity prediction across multiple targets and pharmacokinetic
properties (Afanasyeva et al., 2020). Machine learning models
could be beneficial for lead optimization and chemical compound
prioritization when using computer-aided drug design
(Lavecchia, 2015). Statistical learning algorithms, namely,
Naïve Bayesian (Murakami and Mizuguchi, 2010; Fang et al.,
2013) random forests (RFs) (Jayaraj et al., 2016; Wei et al., 2016;
Li et al., 2019a;Wei et al., 2020), support vector machines (SVMs)
(Han et al., 2008; Mahé and Vert, 2009; Fang et al., 2013; Jayaraj
and Jain, 2019; Wei et al., 2019), decision stump (Nand et al.,
2020), artificial neural networks (ANNs) (Lobanov, 2004; Li et al.,
2019b), and k nearest neighbors (kNNs) (Mahé and Vert, 2009),
have been used to build models and effectively employed in
virtual screening, prediction of protein–protein interactions,
ADMET prediction, and pharmacokinetic studies with
substantial outputs. Kadioglu and co-workers applied a
workflow of combined virtual drug screening, molecular
docking, and supervised machine learning algorithms to
identify novel drug candidates against COVID-19 (Kadioglu
et al., 2021). Zhang et al. built a machine-learning–based
scoring function for the effective virtual screening of lead
compounds targeting the viral neuraminidase (NA) protein to
develop novel anti-influenza therapies. The RF-NA-Score was
detailed as the best model over the RF-Score, with a root-mean-
square error of 1.46, Pearson’s correlation coefficient of 0.707,
and Spearman’s rank correlation coefficient of 0.707 in a 5-fold
cross-validation study (Zhang et al., 2017a). The best model was
further used to virtually screen the SPECS database for NA
inhibitors (Zhang et al., 2017a). In the reported work of Li
et al., RF, SVM, kNN, and C4.5 decision tree models were
used to discriminate inhibitors of the human topoisomerase I
(Top1) protein from the non-inhibitors with total prediction
accuracies ranging between 89.70 and 97.12% (Li et al., 2019a).
Among machine learning algorithms, the RF model was detailed
as the best model and was used to virtually screen the Maybridge
database for Top1 inhibitors. But, until now, there is limited
investigation on classification predictions of HuNoV RdRp
inhibitors and noninhibitors.

In this study, we conducted a machine learning model
combined with molecular docking and molecular dynamics
simulation to identify small molecule inhibitors of HCV that
could potentially target HuNoV RdRp and could be further
developed into an anti-norovirus agent. This is the first report
that used automated learning approaches, validated, and
demonstrated a virtual screening model to identify HuNoV
RdRp inhibitors to the best of our knowledge. Naïve Bayesian
and random forest models were built to categorize norovirus RdRp
inhibitors from the non-inhibitors using their molecular
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descriptors and PubChem Fingerprints. The best model observed
has accuracy, specificity, and sensitivity values of 98.40%, 97.62%,
and 97.62%, respectively. Meanwhile, an external test set was used
to validate model performance before the model’s applicability to
the screened HCV compounds database. As a result, 775
compounds were predicted as NoV RdRp inhibitors. The
predicted active compounds with drug-likeness properties were
docked into the binding site of the HuNoV RdRp protein. The
protein–ligand complexes were further subjected to MD
simulations to investigate the dynamic nature of the ligand with
the protein during the 50 nanosecond (ns) simulation process.

MATERIALS AND METHODS

Data Source and Dataset Pre-Processing
A total of 188 compounds of norovirus RdRp were collected and
downloaded from the BindingDB (Liu et al., 2007) and PubChem
databases (bioassay, 2013) for the training set in the machine
learning model. The data sets were divided into an active set (65
compounds with inhibitory activity of <50 µM) and an inactive set
(123 compounds with inhibitory activity of ≥50 µM). Besides, a
separate dataset containing 40 compounds was used as an external
dataset. Molecular descriptor parameters were divided into 70/30%
for a training and testing data set to evaluate model performance.
Furthermore, virtual screening was performed on HCV NS5B
RNA-dependent RNA polymerase (HCV NS5B RdRp)
compounds containing diverse scaffolds and substituents from
the ChEMBL database (1766 compounds). In addition, before
calculating the molecular descriptors and fingerprints,
duplicates, missing canonical smiles, and bioactivity values were
removed; all the inorganic counterions were filtered out for easier
handling in PaDEL-Descriptor software (Yap, 2011).

Furthermore, all compounds were advanced to chemical
descriptor computation. The 1D, 2D, and fingerprint
(PubChem) were generated as an input for the machine
learning model in Weka software (Witten and Frank, 2002). A
total of 1,444 descriptors were calculated using WEKA by
employing 489 atom type electro-topological state indices(Hall
and Kier, 1995), 96 burden modified eigenvalues (Todeschini and
Consonni, 2009), and 346 2D autocorrelation (Todeschini and
Consonni, 2009). In addition, 43 extended topochemical atoms
(Roy and Ghosh, 2004), 21 topological charge (Todeschini and
Consonni, 2009), 68 ring counts, molecular linear free energy
relation (Platts et al., 1999), average molecular weight, 91
descriptors based on Barysz matrix, 32 chi path descriptors, 12
constitutional descriptors were also used to calculate decriptors.
Besides, PubChem fingerprint encrypted molecular fragment
information with 881 binary digits (Cereto-Massagué et al., 2015).

Prediction Method for Model Building Using
Machine Learning Approaches
Naïve Bayes
The Naïve Bayes algorithm is an unsophisticated likelihood,
rapid, precise, reliable and robust classifier (Kohavi, 1996).
The approach used the Bayes theorem to adopt classification

with unbiased attributes. Furthermore, the algorithm is a simple
probabilistic classifier and presupposes the independence of
features of a given class which can significantly diminish the
complexity of the development of the classifier (Murakami and
Mizuguchi, 2010). Besides, it can categorize active compounds
from inactive compounds and minimize the odds of
misclassification. The model used classification algorithms for
data distribution according to multivariate Bernoulli
distributions, which means there were numerous features in a
data set. However, each one is presumed to be a binary-valued
(Bernoulli, Boolean) variable. The sample features are caused to
employ the model, and the weight is computed for each feature
using a Laplacian-adjusted probability estimate. The weights are
summed to present probability approximate, which is a relative
predictor of the likelihood of that sample in the active subset
(Fang et al., 2013).

Random Forest
The random forest (RF) classifier is an ensemble modeling
method that combines many tree-like predictors as base
learners. In this approach, the bagging inkling is used in
sequence with random feature selection (Zhang et al., 2017b).
A different training set is drawn, with replacement, from the
original training set. Then, a tree is grown on the new training set
using random feature selection, whereas the trees grown are not
pruned (Cutler et al., 2012). The bagging idea is employed to
boost precision when random features are used. Besides, it can
give continuing estimates for the generalization error (PEp) of the
combined ensemble of trees and the estimates for the strength
and correlation (Cutler et al., 2012). The correctness of random
forest is as good as AdaBoost and occasionally improves and gives
valid internal estimates of error, strength, association, and
variable importance. Besides, it is straightforward, easily
parallelized, and uses more variables than samples. Even if the
data is fused with noise or not sensitive to algorithmic
parameters, it has an excellent predictive ability (Zhang et al.,
2019). Since RF integrates many simple models, it can effectively
reduce over-fitting problems. RF can also handle both categorical
and continuous variables, which can return the importance of
variables and be freely implemented with a high quality.

Validation of the Model Performance of the Naïve
Bayesian and Random Forest Approaches
The equation below presented the parameters used to quantify
the superiority of the NB and the RF classifiers. These parameters
are true positives (TP), true negatives (TN), false positives (FP),
false negatives (FN), sensitivity (SE), specificity (SP), the overall
prediction accuracy (Q), and Matthew’s correlation coefficient
(MCC). TP denotes the number of active compounds that are
predicted as norovirus inhibitors. TN denotes the number of
inactive compounds that are predicted as inactive compounds. FP
stands for the number of inactive compounds predicted as
norovirus agents, and FN is the number of norovirus agents
predicted as inactive compounds. SE denotes the prediction
accuracy for norovirus agents, which means the number of
true positive tests. SP denotes the prediction accuracy for the
non-norovirus agents, which means the number of true negatives
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that test negative, and specific tests will not yield false positives or
misclassify.

SE � TP

TP + FN
; (1)

SP � TN

TN + FP
; (2)

Q � TP + TN

TP + TN + FP + FN
; (3)

MCC � TP × TN − FN × FP��������������������������������������(TP + FN )(TP + FP)(TN + FN)(TN + FP)√ .

(4)

Lipinski’s Rule of Five and ADMET
Properties
Data warrior software is accustomed for data exploration and
visualization. The built-in cheminformatics algorithms in the
software make it a flexible tool for exploring large data sets of
chemical structures with alpha-numeric properties (Sander et al.,
2015). It can be used to determine physicochemical properties,
lead- or drug-likeness–related parameters, ligand efficiencies,
various atom and ring counts, molecular shape, flexibility and
complexity, and indications for potential toxicity in a compound.
The Lipinski’s rule of five (Lipinski et al., 1997) was predicted using
this software. Five significant parameters were estimated directly
from the chemical structure. The total molecular weight in g/mol,
CLogP [conc(octanol)/conc(water)], CLogS (water solubility in
mol/L), H-bond acceptors (HBA), H-bond donors (HBD), and
topological polar surface area (TPSA) using the Ertl approach (Ertl
et al., 2000). The output compounds from Lipinski’s rule of five
were subjected to ADMET (absorption, discretion, metabolism,
and toxicity) prediction analysis using the pkCSM (Pires et al.,
2015) web server tool. A compound’s pharmacokinetics is crucial
in developing drugs because numerous compounds analyzed in
clinical trials lost their way out to the market due to insufficient
efficacy or obnoxious side effects.

Molecular Modeling
Ligand and Protein Preparation
The compounds that passed through Lipinski’s rule of five were
run using OMEGA python application in OpenEye Software to
generate 300 conformers for each molecule. The OMEGA tool
stipulates torsion driving and distance geometry for the
conformational cohort. The torsion driving method works best
on molecules that have a small, flexible ring. In contrast, the
distance geometry method works for all molecules and is also
designed for large, flexible rings (macrocycles) (Hawkins et al.,
2010). Meanwhile, generating the conformers before the
molecular docking leads to decrease in time for the
protein–ligand docking. Spruce (Spruce 1.3.0.1: OpenEye S,
2021) was used to prepare the HuNoV RdRp protein
downloaded from the protein data bank (PDB). The protein
preparation workflow is as follows: 1) expansion of the
asymmetric unit to the biological of the x-ray crystallography;
2) enumeration of alternate locations; 3) building missing side

chains, capping chain breaks, and modeling of the missing loops;
4) placement and optimization of hydrogen atoms including
tautomer enumeration of ligands and cofactors, and evaluation
of those tautomer states in the biomolecule structure.
Furthermore, there were no constraints specified; thus, the
prepared protein was saved for further analysis.

Molecular Docking
In the FRED’s docking procedure (OEDOCKING, 2014), the
HuNoV RdRp protein structure and the multi-conformer ligands
generated from the OMEGA application were used as the inputs
for docking. The first step was the exhaustive search, whereby
each ligand conformation is analytically rotated and translated
within the protein’s binding site at a resolution of 1 Å. The false
poses were dropped during the search, and the remaining poses
were scored. Then, we continued with the subjection of the scored
poses to optimization, and every pose that passed a bump check
was scored. The top-scoring poses were improved by observing
nearby rotations and translations at a resolution of 0.5 Å across all
ligand conformers. Chemgauss4 that accounts for hydrogen bond
interactions, metal-chelator interactions, de-solvation effects, and
the shape complementarity of the ligand to the active site was
employed as the scoring function (McGann, 2012).

Molecular Dynamics Simulations
The MD simulations were achieved using the Desmond
simulation package (Bowers et al., 2006) to explain these
compounds’ superiority against HuNoV RdRp. The system
was built using a pre-defined TIP3P water model. This was
structured under periodic boundary conditions at distances of
10 Å units; meanwhile, the ligands and the proteins were first
prepared using the OPLS-2005 force field. The complexes’ charge
was neutralized with balancing Na+/Cl− ions, and the system
minimized their energies by heating and equilibrium processes
before the MD simulations. The NPT ensembled with the
temperature of 300 K, and a pressure 1 bar was utilized in all
the runs. The simulation length was 50 ns with a relaxation time
of 1ps for the ligands. The interactions of the protein–ligand
complexes were analyzed using the simulation interaction
diagram tool in the Desmond package (DESR, 2021). The
protein–ligand complexes’ dynamical properties were detailed
by observing the root mean square deviation (RMSD) and root
mean square fluctuation (RMSF).

RESULT AND DISCUSSION

Analysis of the Chemical Space
The physicochemical properties of the training and external
datasets were calculated using DataWarrior software (Sander
et al., 2015). The software is used for chemical data
exploration and visualization. We used the calculated values of
MW and CLogP to observe the diversity of the chemical space of
the training set (inhibitors and non-inhibitors of NoV RdRp) and
virtual screening (inhibitors and non-inhibitors of HCV). There
is always a drawback in the machine learning model approach
when the dataset of the compounds is not adequately dispersed.
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The graphical representation of the chemical space distribution
showed that the total molecular weight (MW) was between
149.00–980.00 and CLogP was from 5.00to6.30 for the training
dataset (Supplementary Figure S1A). Also, the chemical space
distribution for the external datasets ranged from 180.00–1800
and 4.00–17.00 for MW and CLogP, respectively
(Supplementary Figure S1B). The distribution of MW and
CLogP values in both datasets indicated that the compounds
occupied substantial chemical space. For the machine learning
model construction, the compounds targeting NS5B RdRp of
HCV were selected as the training set.

Evaluation of Model Prediction
Two types of descriptors were used for modeling in this study,
1D/2D and PubChem fingerprint. Various descriptors, including
acidic group count, ALOGP, APol, ALOGP, bond count, carbon
types, HBA, HBD, Lipinski’s rule of five, rotatable bonds count,
autocorrelation, TPSA, van der Waals volume, were used. A total
of 1,444 descriptors were produced, including 881 PubChem
fingerprints (PFPs) were calculated using PaDEL software. The
training set was filtered by removing descriptors with missing
parameters. This step automatically removed all continuous
attributes and the descriptors that were not valuable for the
classification. Furthermore, two classification models were
explored by using NB and RF classifiers. The models were
initially performed on the fingerprint, as shown in Table 1.
The fingerprint presents the chemical information in any
chemical structures in binary vectors. The result from the
fingerprint detailed that the performance of the RF classifier
was superior to the performance of the NB classifier. For example,
the ROC of NB is 0.879, while RF is 0.997. In addition, the SE
(95.38%), the SP (97.56%), and the overall accuracy (96.80%) of
RF are superior to the statistical values from NB (SE � 81.43%, SP
� 81.25%, and Q � 81.83%). The correctly classified instances (TP
+ TN) of the NB classifier were 153 out of 188 sum weights.

In contrast, the RF classifier generates a total of 182 correctly
classified instances. Also, the kappa statistic (KS) for the RF
model is 0.930 and the RMSE value is 0.174, while the NB model
generates a kappa statistic value of 0.561 and RMSE value of

0.932. The kappa statistic measures the reliability between the
actual values of the instance to be classified and the classifier
model. Thus, the kappa statistic for the RF classifier is suggested
to be in almost perfect agreement, this is otherwise for the NB
classifier, which is suggested to be in moderate agreement.

The combination of fingerprint and 1D/2D descriptors
significantly improved the model performance accuracy, as
shown in Table 1. Using RF and NB classifiers with the same
descriptors, the performance of the RF classifier is superior to NB.
The accuracy of NB increased from 81.83 to 84.97%, and the ROC
value decreased from 0.879 to 0.857. There was a significant
decrease in the RMSE (0.154) of the NB classifier, and the kappa
statistic increased to 0.667. Notably, if the 1D/2D descriptors
were removed, none of the classifiers had superior predictive
power. There was also an increase in the accuracy of the RF
classifier (98.40%), whereas the SP (97.62%) and SE (100%)
calculated were superior to the NB classifier. The RF classifier
was identified as the best model, with better accuracy (98.40%),
RMSE (0.141), and MAE (0.085) values. Molecular descriptor
parameters were divided into 70/30% for the training and testing
data sets to evaluate model performance. As shown inTable 1, the
best model for predicting inhibitors of NoV RdRp, that is, the RF
classifier displayed the highest SE, SP, and Q values (52.94%,
87.18%, and 76.79%, respectively) for 1D/2D descriptors. To
further prove the performance of the models, an external
dataset (27 active compounds and 13 inactive compounds) of
norovirus RdRp was investigated. The RF classifier was identified
as the best model with an accuracy of 100% for both descriptors
(Supplementary Table S1). Thus, the RF classifier was further
used to identify potential NoV RdRp by exploring the NS5B
RdRp HCV dataset (1,289 compounds) in the CHEMBL
database. The RF model predicted 775 compounds as potential
inhibitors of NoV RdRp. The statistical performance values for
both models are listed in Supplementary Table S1. The KS value
for the RF model was 0.997, and the RMSE value was 0.110. In
addition, the ROC value was 1.00, which signified the perfect
distribution of the active compounds from inactive compounds
without overlapping, whereas 99.80%, 99.87%, and 99.84% were
the values detailed for SE, SP, and Q, respectively.

TABLE 1 | Performance of the Naïve Bayes and random forest classifiers.

Training set

Descriptors Models CI IN TP FN FP TN KS RMSE MAE ROC SP (%) SE (%) Q (%)

PFP NB 153 35 39 9 26 114 0.561 0.932 0.186 0.879 81.43 81.25 81.38
RF 182 6 62 3 3 120 0.930 0.174 0.099 0.997 97.56 95.38 96.80

PFP_1 and 1D/2D NB 159 29 53 17 12 106 0.667 0.393 0.154 0.857 89.83 75.71 84.57
RF 185 3 62 0 3 123 0.964 0.141 0.085 0.999 97.62 100.00 98.40

Percentage splitting (70/30)

Descriptors Models CI IN TP FN FP TN KS RMSE MAE ROC SP (%) SE (%) Q (%)

PFP NB 43 13 6 5 8 37 0.333 0.481 0.250 0.758 91.43 37.50 74.51
RF 42 13 11 10 3 32 0.469 0.504 0.261 0.875 91.43 52.38 76.79

PFP_1 and 1D/2D NB 42 14 9 9 5 33 0.391 0.500 0.231 0.773 86.84 50.00 75.00
RF 43 13 9 8 5 34 0.422 0.508 0.268 0.881 87.18 52.94 76.79

TI—Total number of instances; CI—Correctly classified instances; IN—Incorrectly classified instances; TP—True positive; FN—False negative; FP—False positive; KS—Kappa statistics;
RMSE—Root mean squared error; MAE—Mean absolute error; SP—Specificity (%); SE—Sensitivity (%); Q—Accuracy (%).

Frontiers in Chemistry | www.frontiersin.org November 2021 | Volume 9 | Article 7534275

Ebenezer et al. Prediction of New Anti-Norovirus Inhibitor

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Pharmacokinetic Properties
Moreover, 775 compounds were filtered using Lipinski’s rule of
five since the method could rapidly filter out probable challenging
molecules. The compounds that fell out of the five rules were
quickly dropped, and the remaining compounds (352) were used
for further analysis. Surprisingly, out of the 352 well-thought-out
compounds for the ADMET properties, only 59 compounds were
of good pharmacokinetic after considering properties such as
water solubility, caco2 permeability, intestinal absorption
(human), skin permeability, blood−brain barrier (BBB)
permeability, total clearance, AMES toxicity, hERG I inhibitor,
and hERG II inhibitor (Supplementary Table S1). Predicting
ADMET properties is essential in drug development because it
helps in the significant removal of the compounds that will not
meet the optimal requirement of the druggable agent.

Similarities Between HuNoV and HCV
Sequences/Description of HuNoV RdRp
Sequence analysis of HuNoV (RCSB, 2014) and HCV (Di Marco
et al., 2005) showed about 16% sequence identity, but
interestingly, they still had specific architecture enzymatic
mechanisms. The residues lining the binding pocket of HuNov
RdRp that were conserved across the HCV were T419, R414,

S503, G509, and V510 (Supplementary Figure S2). The five steps
that occurred in RNA synthesis by the norovirus RdRp active site
were as follows (Choi, 2012): 1) VPg uridylation by the 3D
polymerase (initiation) and 2) nucleotidyl reaction, which
involves different steps: 1) polymerase first binded a
template–primer; 2) binding of an NTP complementary to the
template base; 3) conversion of polymerase complex into an
activated form, that includes a conformational change from an
“open” to a “closed” form; 4) nucleotidyl transfer reaction; 5)
release of pyrophosphate product 6) template–primer
translocation. The fingers, palm, and thumb were the three
main domains of HuNoV RdRp, including seven motifs (A–G)
(Figure 1). The N-terminal domain bridged the fingers and
thumb domains. The fingers domain consists of two motifs (F
and G), whereas the palm domain, the catalytic core of
polymerase, embraces four highly conserved sequence motifs
(A–D) (Deval et al., 2017; Smertina et al., 2019). The fingers
domain plays a crucial role in setting the geometry of the active
site (Figure 1). At the same time, the thumb domain consists of
residues that involve packing against the template RNA and
stabilizing the initiating NTPs on the template (Ng et al., 2008).

The thumb domain consists of motif E and the enzyme active
site. The active site of RdRp located at the thumb domain consists
of three conserved Asp residues essential for mediating catalysis

FIGURE 1 | Representation of fingers, palm, and thumb domains, including seven motifs (A–G) HuNoV RdRp.
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through a two-metal-ion mechanism. The amino acids, Arg, Asn,
and Ser, are other vital residues required for substrate binding and
catalysis (Zamyatkin et al., 2008; Prasad et al., 2016; Venkataram
Prasad et al., 2016). The palm and thumb domains constitute site
B of the protein structure. The two Asp residues position in the
motif C interact with two divalent metal ions to achieve the
nucleophilic attack, allowing the incoming ribonucleotide to the
RNA chain. Also, in the motif D, the lysine residue acts as the
general acid that deprotonates the pyrophosphate leaving group
and influences the amount of nucleotide addition. The only
glycine in the motif D of the palm domain helps as a hinge
for the structure that might play a critical role in its
conformational changes (Jácome et al., 2015). The motif F,
which is highly conserved, comprises the positively charged
residues Arg and Lys that facilitate interaction with α- and
β-phosphates of the incoming NTP, likely to stabilize the
pyrophosphate as a leaving group (Deval et al., 2017). Motifs
B and G coordinate template and primer binding and motifs A
and C execute the catalysis of nucleotide binding. The motif G is
located in the template cleft and is involved in protein primer
orientation during the initiation of RNA replication (Ng et al.,
2008; Smertina et al., 2019). Also, the motif H lacks the presence
of conserved amino acids; the motif is established based on
multiple sequence alignments, but its actual function has not
been reported (Černý et al., 2014).

Protein Template Search
Different crystal structures of HuNoV RdRp have been deposited
in the protein data bank (PDB). The sequence of HuNoV RdRp
(Entry—D0UGI3; Protein—NTPase; Gene—RdRp) was
downloaded from the UniProt database (Consortium, 2012) to
search for a suitable protein for molecular docking. The sequence
was further imported into the maestro interface, and the BLAST
option in the homology modeling of the Prime application (Zhu
et al., 2014) was used to blast the sequence. Comparing the
sensitivity search and the alignment accuracy using different
protein similarity scoring matrices such as BLOcks SUbstitution
Matrix (BLOSUM45, 62, and 80) and point accepted mutation
matrix (PAM40 and 70) were considered. Interestingly, all the
substitution matrices generated similar results except PAM40,
which showed that the templates 1SHO, 1SH2 and, 1SH3 were
ranked top before 3H5X, 2B43, 4LQ3, 4LQ9, and 4NRT (Table 2).
An insignificant difference was observed comparing the similarity
and identity value of all the templates.

The crystal structure of 4LQ3 with its co-crystallized ligand,
namely, pyridoxal-5′ -phosphate-6-(2′ -naphthylazo-6′ -nitro-

4′,8′ -disulfonate) tetrasodium salt (PPNDS), was downloaded
from the protein data bank (RCSB, 2014). PPNDS was first
known as the P2 receptor antagonist and represented the
pyridoxal-5′-phosphate analog with the superior activity at
P2X1 receptors (Lambrecht et al., 2000). It was reported that
PPNDS was a potent inhibitor of human and murine norovirus
RdRp. Furthermore, PPNDS, the co-crystal ligand of 4LQ3,
emerged as the most potent compound in the inhibitory
activity of HuNov RdRp with an IC50 value of 0.45 μM. In

TABLE 2 | Details of different substitution matrices result in finding a template for
the HuNoV RdRp sequence.

Substitution matrix Templates

PAM40 3H5X, 1SH0, 1SH2, 1SH3, 2B43, 4LQ3, 4LQ9, 4NRT
PAM70 1SH0, 1SH2, 1SH3, 3H5X, 2B43, 4LQ3, 4LQ9, 4NRT
Blosum45 3H5X, 1SH0, 1SH2, 1SH3, 2B43, 4LQ3, 4LQ9, 4NRT
Blosum62 3H5X, 1SH0, 1SH2, 1SH3, 2B43, 4LQ3, 4LQ9, 4NRT
Blosum80 3H5X, 1SH0, 1SH2, 1SH3, 2B43, 4LQ3, 4LQ9, 4NRT

FIGURE 2 | (A) 3D representation of docked complex of PPNDS-HuNoV
RdRp (The multicolor sticks represent the interacting residues in the binding
site of HuNoV RdRp. The big stick color represents the PPNDS molecule). (B)
2D representation of the protein–ligand complex of PPNDS including
distances between the ligands and the interacting residues.
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contrast, NAF2, the co-crystal ligand of 4LQ9, inhibited HuNov
RdRp activity with an IC50 value of 14 μM. In addition, PPNDS is
capable of binding to the free enzyme together with the
enzyme–substrate complex. The binding site of PPNDS (site-
B) is structurally equivalent to the binding site of
benzothiadiazine inhibitors (palm I site) in the HCV RdRp
(Tarantino et al., 2014). The site-B is within the thumb
domain, closer to the C-terminal of the HuNoV RdRp, reports
for taking part in the initiation of RNA replication (Tarantino

et al., 2014; Zhang et al., 2019). PPNDS assists in fixing the
C-terminal end of the enzyme within the active site, possibly
preventing the access of both the ssRNA template and the NTPs.
(Croci et al., 2014; Tarantino et al., 2014). Unfortunately, negative
charges on the sulfonate group on PPNDS have led to its poor cell
absorption. Meanwhile, a new drug’s absorption properties are
crucial, enabling the drug to penetrate the cell to reach the target
site in reasonable concentrations, and create the physiological
effect with minimal or no side effects. Hence, PPNDS could not
proceed to clinical trials due to the deficiency in its drug-likeness
properties. The binding pocket of PPNDS in HuNoV RdRp was
the target for anti-norovirus agents that have good

FIGURE 3 | (A) Superposition of co-crystal structures of PPNDS and
CHEMBL1204385 along with their interactions in the binding site of HuNoV
RdRp (PDB: 4LQ3). (B) 2D representation of the protein–ligand complex of
CHEMBL1204385 including distances between the ligands and the
interacting residues.

FIGURE 4 | (A) Superposition of co-crystal structures of PPNDS and
CHEMBL167790 along with their interactions in the binding site of HuNoV
RdRp (PDB: 4LQ3). (B) 2D representation of the protein–ligand complex of
CHEMBL167790 including distances between the ligands and the
interacting residues.
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pharmacokinetic properties and with high chances of blocking
the RNA viruses require further exploration.

Molecular Docking
Moreover, the three-dimensional protein structure of HuNoV
RdRp downloaded from the PDB was prepared using the Spruce
application (Spruce 1.3.0.1: OpenEye S, 2021). The co-crystal
ligand, PPNDS, was further re-docked into the receptor to
validate the receptor’s binding site using FRED. As shown in
Figure 2, the native ligand formed interesting interactions with
different residues in the receptor’s palm and thumb domains,
including hydrogen bonds with residues Arg419, Arg392, Ser410,
Glu510, Lys166, Gln439, and Arg413. The RNA binding site
residue Asp507 was inserted between the naphthalene ring and
the pyridine moiety of PPNDS to form an electrostatic
interaction, while Val504 hydrophobically interacted with the
pyridine ring. The predicted FRED Chemgauss4 score was
10.50 kcal/mol. Two compounds were found to have an
average Chemgauss4 score but possessed better human
absorption than the native ligand. The docked complex of the
two compounds showing the best Chemgauss4 score are shown in
Figures 3, 4, and the type of interactions with active residues are
listed in Table 2.

Interestingly, the two compounds have a similar network
interaction landscape with PPNDS. However, the native ligand
formed more hydrogen bonds with the active residues than
CHEMBL1204385 and CHEMBL167790, as shown in Table 3.
The visual detail of docked complexes of the two compounds
showed no interaction with the metal ion. In the docked complex
of CHEMBL1204385, the molecule was well positioned to allow
interaction with the side chain of Glu506 and interaction with the
compound’s secondary amine. As a result, the conformation
adopted in this complex appeared to form better π-anion with
Asp507 and π-alkyl with Val504 (Figures 3A,B). The oxygen
atom of the carboxyl function group on the indole ring formed a
hydrogen bond with Glu510. Few variations in the conformation
and position of CHEMBL1204385 at the active site of HuNoV
RdRp were detected compared to CHEMBL167790.
CHEMBL167790 was more fitted into the binding site of
HuNoV RdRp (Figure 4A). The capped end of Arg413, which
is the guanidinium group, was protonated (positively charged).
This led to attractive charge interaction with the carboxyl
functional groups (negatively charged oxygen atom) of
CHEMBL167790. The hydrogen bonding interaction was
observed between amino acid Arg413 and the oxygen atom

double-bonded to the carbon atom of the carboxyl functional
group on the thiophene ring of CHEMBL167790. 3,4 -dimethyl
phenyl well fitted into the hydrophobic pocket of the protein and
formed interaction Leu406, Ile411, Leu443, and Arg392 (Figures
4A,B). From the visualization of the two complexes, it is well
noted that hydrophobic, hydrogen bonding, and electrostatic
interactions played a vital role in enhancing the
thermostability of the protein–ligand complexes. Despite the
binding of the ligands in the same binding landscape as the
co-crystal ligand in the active pocket of HuNoV RdRp,
interactions of few residues were not observed. This was due
to the different orientation of the docked ligands, shape, and size
compatibility compared to those of the co-crystal ligand. The
chemical structures of the best two compounds from the
molecular docking analysis are shown in Figure 5.

Molecular Dynamics Simulations
The RMSD for the ligands with the target HuNoV RdRp receptor
were depicted to show the thermal stability of the ligands to the
targeted protein. Initially, the PPNDS–protein complex showed
no variations at the first 20ns run simulation while high
fluctuations were observed after 20 ns, and this continued till
the end of the simulation. The protein plateaus at 1.2 Å were with
an average RMSD of 2.4 Å and a maximum of 2.8 Å; for ligand,
the RMSD was between 3.2 and 7.2 Å, as shown in Figure 6A.
The protein in the CHEMBL167790 complex plateaus at 0.4 Å
was with an average RMSD of 1.7 Å and a maximum of 2.90 Å;
for ligand, the RMSD was between 0.8 and 9.0 Å. As established
by the density versus RMSD histogram plots, conformational
changes of the protein during the simulation period were
minimal (Figure 6B). The RMSD of the ligand fluctuates at
the start of the simulation, and there was only a slight fluctuation
between 10 and 18ns. In addition, the change in the ligand RMSD
is similar to the RMSD of the protein during simulation time,
thus indicting the ligand stability in the protein active site.
Besides, the RMSF of the ligands is needed further to evaluate
their stability in the protein’s active and pinpoint possible binding
modes. If the ligand is not stable, there will be large fluctuations in
the RMSF; thus, we plotted the RMSF graph of the ligand, and it
indicated the stability of the CHEMBL167790 with a single
binding mode during the 50ns simulation time. The RMSF
result of CHEMBL1204385 (Figure 6A) reflects high
fluctuations at the loop region of the protein. In particular,
the overall MD results show that the fluctuations of
CHEMBL167790 (Figure 6B) are considerably better than

TABLE 3 | Chemgauss4 score and interaction types of the two best compounds from the FRED docking.

ChEMBL ID Chemgauss4
Score

Hydrophobic Hydrogen bonds Electrostatic

Pi-
alkyl

Alkyl Conventional
H-Bond

Carbon
H-Bond

Attractive
charge

Salt
bridge

Pi-
anion

Pi-
sigma

CHEMBL1204385 10.00 Val504 Arg419 Glu510,
Asp507, Val504

Glu506 Asp507
Asp507,
Lys166

CHEMBL167790 10.39 Leu406 Leu406, Ile411,
Leu443, Arg392

Arg413, Gln414 Arg392, Arg413 Arg413 Glu168 Val504
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PPNDS, and this shows the significance of CHEMBL167790
above PPNDS (Supplementary Figure S3).

After the molecular dynamic simulations, interactions of
Leu443, Arg392, Gln414, and Val504 with CHEMBL167790 in
the active pocket of HuNoV RdRp were preserved. Meanwhile,
Leu406, Ile411, Arg413, and Glu168 were lost after the MD
calculation (Supplementary Figures S4A, B). Additional
residues such as Glu510, Asp419, and Asn505 interacted with
the compound CHEMBL167790 and established H-bonding after
the simulations.

Notably, CHEMBL167790 binded to the thumb domain and
interacted with the residues Gln414 and Asp419; this result
corroborated with the previous studies that showed JTK-109
(HCV NNI) interacted with the conserved amino acid Q414
and R419 (Netzler et al., 2017). Despite the bulkiness of
CHEMBL1204385 and the presence of carboxylic and amine
groups in this compound, only two of the interactions
observed in the docking output were preserved (Glu506 and
Arg419). The presence of dimethylethanamine and the
benzazepine ring in CHEMBL1204385 may have affected the
prolific binding of the compound to the protein by altering their
backbone conformation. Furthermore, Lys27, an additional
residue, formed an H-bond interaction with the carboxylic
group of CHEMBL1204385 (Supplementary Figures S5A, B).
This implies that the insertion of the sulfonamide group in
CHEMBL167790 and PPNDS improves their binding score
and interactions. Besides, the presence of the sulfonamide
group in CHEMBL167790 will enhance its anti-norovirus
inhibitory activity.

Thiophene carboxylic acid derivatives bind at the thumb
domain’s outer surface; benzo-1,2,4-thiadiazine derivatives
bind to the palm site. Benzimidazoles and indoles which bind
to the palm site are the three potent nonnucleoside inhibitors (Le
Pogam et al., 2006). CHEMBL167790, the most potent
compound, has the structural moiety of thiophene carboxylic
acids and is a distinctive polymerase inhibitor class that binds to
the allosteric thumb site II of the NS5B protein. The binding
pocket of thiophene carboxylic acids is predominantly
hydrophobic, and the protein–ligand complexes are stabilized
by hydrogen bonding and van der Waals interactions (Biswal
et al., 2005). Amide linkages are critical structural elements that
maintain an optimal dihedral angle between the amide and
thiophene groups. Chan et al. reported the synthesis of 3-

arylsulfonylamino-5-phenyl-thiophene-2-carboxylic acid and
its anti-HCV activity (Chan et al., 2004). Some of the
compounds inhibited HCV NS5B polymerase and HCV
subgenomic RNA replication. CHEMBL167790 inhibited HCV
NS5B polymerase with an IC50 value of 1.0 μMand in the replicon
cell-based assay with an EC50 value of 5.0 μM. Stephens and co-
workers reported synthesizing of 2-amino- and 2-carboxamido-
3-arylsulfonylthiophene derivatives and their evaluation against
antiviral and antitumor inhibitory activity (Stephens et al., 2001).
Among the investigated compounds, 2-amino-3-(2-nitro-
phenylsulfonyl)thiophene emerged as the most potent anti-
HIV-1 with an EC50 value of 3.8 mg/ml, and the observed
CC50 was >100 mg/ml. In broad-spectrum antiviral assays,
some of the tested compounds proved considerably active
(IC50 � 0.1–10 mg/ml) against human cytomegalovirus (CMV)
and/or varicella zoster virus (VZV). Some commercially available
drugs containing thiophene moiety include tipepidine, tiquizium
bromides, timepidium bromide, dorzolamide, tioconazole,
citizolam, sertaconazole nitrate, and benocyclidine. Thus, in
searching for a new generation of an anti-norovirus agent with
potential pharmacological activities, optimization, and derivation
of CHEMBL167790, a derivative of thiophene-2-carboxylic acid
can be explored.

Principal Component Analysis
Principal component analysis (PCA) is very significant because it
gives exclusive perception into the nature of clusters and
conformational changes in the structure of CHEMBL167790
that result from the MD. The plot of PC1 versus PC2 and
PC2 versus PC3 are shown in Figure 7A. The RMSF
fluctuation of the residues along the PC1 (black) and PC2
(blue) are shown in Figure 7B. In comparison, the positive or
negative value of the eigenvectors of PCA is arbitrary. The regions
with the same sign are related in their conformational evolution.
In contrast, the regions with opposite signs are related (Mathew
et al., 2016). The 20 principal components captured 75.0% of the
variance of conformation fluctuations observed in the steady state
of CHEMBL167790 during the MD. The first three PCs (PC1,
PC2, and PC3) are accountable for 46.01% of the total variance, as
seen in the eigenvalue rank plot. PC1 showed the maximum
variability (24.9%), followed by PC2 (11.89%), whereas PC3
(9.22%) showed the remaining variability of all the atomic
motions through the highest principal components. Notably,

FIGURE 5 | Chemical structure of (A) CHEMBL1204385 and (B) CHEMBL167790.
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the observed constant color change of the PC is specifically from
black to deep pink and red to white which indicated a periodic
jump during the simulation. We computed the residual
displacements along PC1 and PC2 during MD’s equilibrium
state, and the RMSF graph was plotted. The plotted graph
revealed that the highest fluctuation peak occurred between
residues 476 and 475, and these residues are positioned at the
loop regions of the protein. There are slight peaks at residues 434
and 436 along PC1 and PC2, respectively. These results are very
similar to the RMSF mentioned earlier, thus implying that PC1

and PC2 dominate the conformational fluctuations of HuNoV
RdRp and may directly contribute to the inhibitory activity of
CHEMBL167790 against norovirus disease.

Dynamical Cross-Correlation Matrix of the
CHEMBL167790–HuNoV RdRp Complex
The correlation and anti-correlation in the motion of the residues
during simulation are shown in Figure 8. The dynamical cross-
correlation matrix (DCCM) was used according to

FIGURE 6 | (A) RMSD and RMSF of the PPNDS complex after molecular dynamics (B) RMSD and RMSF of CHEMBL167790 complex after molecular dynamics.
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C(i, j) � c(i, j)
c(i, i)1/2 c(j, j)1/2.

C (i,j) is the covariance matrix element of protein fluctuation
between residues i and j. The map generated from the result is
detailed based on the colors such as dark cyan, white, and pink.
The positive area (light and dark cyan) means correlated
motions that comprise residues moving in similar
directions. In contrast, the negative area (light and deep
pink) implies anti-correlation related to residues advancing
to reverse directions. The interactions of CHEMBL167790
with HuNoV RdRp depict mostly intra-domain correlation
and a small component of inter-domain. There are highly
correlated motions nearby the diagonal, as displayed in
Figure 8, which stands mainly for the intra-correlations of
residues.

ADMET Detailed of CHEMBL167790
The pharmacological properties of CHEMBL167790 were
examined to evaluate its suitability and sustainability for drug
development Supplementary Table S1. CHEMBL167790 followed
Lipinski’s rule of five for high druggability with no violation. The
predicted percentage intestine absorption value of the active ligand
(98%) was superior compared to PPNDS (>30%). The intestine is
considered a binding site for absorption of a drug from an orally
administered solution; hence, high intestine absorption is essential
for optimal drug development. But PPNDS is poorly absorbed by
the intestine. The predicted caco2 permeability value was >0.9 and
skin permeable (log Kp of −2.735). Since the brain is inaccessible
for exogenous compounds via the blood–brain barrier, the ability
of the drug to cross the brain is a crucial parameter to consider. The
predicted value for BBB (blood–brain barrier) permeability
indicated that the active compound could pass through the

FIGURE 7 | (A) Plot of PCA results in an eigenvalue rank: PC2 vs. PC1, PC2 vs. PC3, PC3 vs. PC1, showing color in order of time and the cumulative variability in
each data point. (B) Residues fluctuated on the PC1 (black) and PC2 (blue).
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blood–brain barrier. The predicted BBB permeability (log BB) and
CNS permeability (log PS) were 0.508 and −2.243, respectively. The
compound showed a low volume of distribution (‒1.453) and was
predicted as a non-substrate of the organic cation transporter 2. In
the pharmacodynamics studies, the toxicity profile that explained
the drug-like compound’s side effects was explored. Toxicity
profiling showed that the compound is non-carcinogenic, as
predicted by the Ames test. The advancement of the long QT
syndrome leading to fatal ventricular arrhythmia is caused by
inhibition of the potassium channels encoded by hERG (human
ether-à-go-go–related gene). This has resulted in the removal of
many medications from the pharmaceutical market. The active
compound is predicted to be non-inhibitors of hERG I and II. The
results from the study show that the compound has a low value of
minnow toxicity (LC50 � ‒0.996) and no skin sensitivity to
humans. The maximum tolerated dose predicted was 0.831 (log
mg/kg/day), the oral rat acute toxicity (LD50) was 2.806 (mol/kg),
and oral rat chronic toxicity (LOAEL) was 1.09 (log mg/kg BW/
day). Conceivably, PPNDS displays non-specific inhibitory effects,
which was reported by Simeonov et al. (Simeonov et al., 2009).
However, due to lack of cell permeability, it was an option out from
had been developed into an orally available drug. Meanwhile,
CHEMBL167790 has drug-like properties that will improve the
superior inhibitory activity of the compound compared to PPNDS
and therefore can be developed as drugs available by the oral route.
The bioinformatics analysis suggests the possibility of
CHEMBL167790 as an anti-norovirus agent. The study has
some limitations as the present study has been conducted
through extensive bioinformatics analysis. Besides, no
comparative studies were conducted to evaluate the effectiveness
of the proposed hit compound with the reported anti-norovirus
agents. Suitable experimental validations are needed to confirm the
therapeutic effectiveness of the hit compound, including the animal
model experimentation. Consequently, this study requires further

in vitro and in vivo studies to develop and validate this potential
inhibitor of HuNoV RdRp for norovirus infections therapy.

CONCLUSION

The drug that can combat human norovirus is still elusive.
Different classification models were generated in this study to
identify the potential anti-norovirus inhibitors from non-
inhibitors utilizing Naïve Bayesian and random forest
approaches. The molecular and fingerprint descriptors selected
played an essential role in the building of the prediction models.
At the same time, the molecular descriptors used in the models
could substantially enhance their prediction accuracy. The RF
classifier was identified as the best model with an accuracy of
100% for both descriptors. These results indicate that RF classifier
enhances the efficiency of virtual screening for HuNoV inhibitors
and can be used effectively to identify new HuNoV inhibitor
frameworks. The molecular binding of the ligands to the receptor
was determined by molecular docking and molecular dynamics
simulation analysis. By comparing the Chemgauss4 scores of
CHEMBL1204385, CHEMBL167790, and PPNDS,
CHEMBL167790 was strongly correlated with the highest
negative energy values in the binding pocket of HuNoV RdRp.
In addition, CHEMBL167790 binds tightly to the HuNoV RdRp
enzyme with excellent stability through RMSD and RMSF
analysis. Thus, the MD results show a rare possible event in
HuNoV RdRp receptor conformation changes that can
significantly favor inhibitory activities of CHEMBL167790
compared with PPNDS. From the evaluation of the
pharmacokinetic properties, the pkCSM results detailed that
CHEMBL167790 had shown high Caco2 permeability of log
p > 0.9 and high human intestine absorption of 98%. The
higher binding affinity results of CHEMBL167790 with the

FIGURE 8 | Correlation (red lines) in the residues of the receptors during the MD simulation was obtained using the DCCM method for CHEMBL1204385
interaction with HuNoV RdRp.
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anti-norovirus target and the pharmacokinetic properties
confirmed the effectiveness of anti-norovirus activity in this
compound, which would provide impetus to other researchers
performing the wet lab and the clinical evaluations.
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