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Abstract: Bombyx mori silk protein genes are strictly turned on and off in different developmental
stages under the hormone periodically change. The broad complex (BrC) is a transcription factor
mediating 20-hydroxyecdysone action, which plays important roles during metamorphosis. Here,
we observed that two isoforms of BmBrC (BmBrC-Z2 and BmBrC-Z4) exhibited contrasting expression
patterns with fibroin genes (FibH, FibL and P25) in the posterior silk gland (PSG), suggesting that
BmBrC may negatively regulate fibroin genes. Transgenic lines were constructed to ectopically
overexpress BmBrC-Z2 in the PSG. The silk protein genes in the transgenic line were decreased to
almost half of that in the wild type. The silk yield was decreased significantly. In addition, the
expression levels of regulatory factors (BmKr-h1 and BmDimm) response to juvenile hormone (JH)
signal were inhibited significantly. Then exogenous JH in the BmBrC-Z2 overexpressed lines can
inhibit the expression of BmBrC-Z2 and activate the expression of silk protein genes and restore the
silk yield to the level of the wild type. These results indicated that BmBrC may inhibit fibroin genes
by repressing the JH signal pathway, which would assist in deciphering the comprehensive regulation
mechanism of silk protein genes.
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1. Introduction

Insects undergo developmental transitions during their growth, which are aided by two major
hormones: 20-hydroxyecdysone (20E) [1] and juvenile hormone (JH) [2]. The hormone 20E is necessary
for the transformation during larva–larva and larva–adult, while JH maintains the larval growth process.
Both 20E and JH change periodically that resulted in the repression or activation of the target genes in
insects [3]. The topic of the relationship of hormones and gene regulation has always been a hotspot
research in insect development. The silkworm, Bombyx mori, is an important economic insect and a
lepidopteran model with applications to biologic science, modern agriculture and biotechnological
industry [4]. Their silk-producing organ, the silk gland is considered an ideal system to elucidate the
relationship between gene expression and hormone because the silk protein genes are turned on and
off during the intermolt to molt stage under JH and 20E control with temporal specific manner [4].

The silk gland of the silkworm is divided into three compartments: the anterior silk gland (ASG),
the middle silk gland (MSG) and the posterior silk gland (PSG). As the spatio-specific protein data, the
MSG synthesizes sericin proteins, including Ser1, Ser2, Ser3 and Ser4 [5–8]. The PSG synthesizes fibroin
proteins, including fibroin heavy chain (FibH), fibroin light chain (FibL) and fibrohexamerin/P25 [9].
According to the temporal-specific gene expression data, the sericin and fibroin genes are highly

Insects 2020, 11, 374; doi:10.3390/insects11060374 www.mdpi.com/journal/insects

http://www.mdpi.com/journal/insects
http://www.mdpi.com
https://orcid.org/0000-0002-3862-0817
http://www.mdpi.com/2075-4450/11/6/374?type=check_update&version=1
http://dx.doi.org/10.3390/insects11060374
http://www.mdpi.com/journal/insects


Insects 2020, 11, 374 2 of 12

expressed during the inter-molting stage, especially in the last instar, but are hardly expressed during
the molting stage [10,11]. Currently, the general opinion is that the spatio- and temporal-specificities of
silk protein genes are controlled by the signaling pathways of segmental differentiation factors and
hormones at the transcriptional level [4].

Silk protein genes are repetitively turned on and off in the inter-molting and molting processes
during the whole larval stage [10]. In order to reveal the molecular mechanisms of transcriptional
regulation, especially of the fibroin genes, regulatory elements or regions upstream of the promoters
of these genes were identified [12–20]. Correspondingly, many factors were identified to regulate
the transcription of silk protein genes, including BmFkh/SGF-1 [21], SGF-2 [22], POU-M1/SGF-3 [23],
SGF-4 [13], FBF-A1 [13], FMBP-1 [17,24], BmFTZ-F1 [25], BmSage [26] and BmDimm [27]. Most of them
function as activators of silk protein genes. For example, BmSage and BmDimm are mainly expressed
at the inter-molting stage [26,27]. BmSage can interact with the silk gland factor-1 (SGF-1), form a
complex after binding to A and B elements on the FibH promoter and activate the fibroin synthesis [26].
BmDimm can interact with BmSage to regulate the transcription of FibH by binding to the E-box
element and be upregulated by Krüppel homolog 1 (BmKr-h1) by the JH-signaling pathway [27].
Both FMBP-1 and BmFTZ-F1 could repress the activity of FibH promoter by binding to the upstream
elements at the cellular level, suggesting that they may be repressors of the FibH gene [24,25].

Broad complex (BrC) is one of the early responding transcription factors of 20E, which has been
widely studied as a medium of the 20E and JH-signaling pathways [28–31]. In B. mori, BrC gene can
produce four isoforms (Z1–Z4) with an evolutionarily conserved bric-a-brac–tramtrack–broad (BTB)
domain and a zinc–finger DNA-binding domain and four another isoforms (NZ1–NZ4) without a zinc
finger domain [2,32,33]. Among them, BmBrC-Z2 and BmBrC-Z4 perform multiple biologic functions in
different tissues and developmental stages. For example, female moths treated with BmBrC-Z2 dsRNA
laid fewer and whiter eggs [34]. BmPOUM2 binds only to BmBrC-Z2 to collaboratively regulate BmVg
expression by 20E induction to control vitellogenesis and egg formation [35]. BmBrC-Z4 enhances the
expression of chitinase 5 during molting and metamorphosis [36]. During the development of wing
disc, BmBrC-Z2 regulates the cuticle protein gene BmWCP10 induction by 20E-signaling pathway [37],
and BmBrC-Z4 regulates the pupal-specific expression of the wing disc cuticle protein gene BmWCP4
through BmPOUM2 [38]. In the innate immune response, BmBrC-Z2 and BmBrC-Z4 also play an
important biologic role in regulating the expression of immune-related genes, including lysozyme and
lebocin [39,40].

According to our previous transcriptomic analysis of the silk glands from molting to inter-molting
stages, BmBrC-Zs were significantly overexpressed, but the expression of the fibroin genes at the
molting stage was almost absent [11]. Synthetic oligopyrrole carboxamides can downregulate the
expression levels of various isoforms of BmBrC gene in the silk gland, which resulted in statistically
enhanced cocoon weight, shell weight and silk yield [41]. Therefore, we hypothesized that BmBrC may
be involved in the negative regulation of fibroin genes. To test the hypothesis, in this study, we further
investigated their expression patterns from molting to inter-molting stages by RT-PCR. Transgenic
lines with ectopic overexpression of BmBrC-Z2 in the PSG was obtained to investigate the phenotype
and gene expression levels. These results may provide an insight into the regulatory mechanism of silk
proteins in the silkworm.

2. Materials and Methods

2.1. Experimental Insects

The silkworm strain Dazao was used for transgenic microinjection was obtained from the gene
resource library of domesticated silkworm, Southwest University, China. Silkworm larvae were fed
with fresh mulberry leaves at 25 ◦C with a photoperiod of 12 h light/12 h dark.
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2.2. Semi-RT-PCR and qRT-PCR

Total RNA was extracted using TRIzol reagent (Invitrogen, USA) according to the protocol
provided by the manufacturer. For reverse transcription, we used the PrimeScript RT reagent Kit
(Takara, Kyoto, Japan) according to the manufacturer’s instructions. The primers used for semi-RT-PCR
are given in Table 1. The following conditions: 94 ◦C for 30 s, followed by 30 cycles at 94 ◦C for 10 s,
60 ◦C for 15 s and 72 ◦C for 30 s, then elongation at 72 ◦C for 7 min and held at 16 ◦C. The ribosomal
protein L3 (RPL3) gene of the silkworm was used as the reference gene.

Table 1. Primers used in the semi-RT-PCR and quantitative RT-PCR.

Purpose Gene Forward (5′–3′) Reverse (5′–3′)

RT-PCR BmBrC-Z1 CCCAAGAAGATTACAGATGCG AGGTGGCTGGTTAGGGTG
RT-PCR BmBrC-Z2 TCGCTGACAAACACGCTG ATGGTAAGAACGGCGGAC
RT-PCR BmBrC-Z4 GCCACAAGGTCTTCCGCA AAGAGCCAGCGGAAGGAT
RT-PCR FibH CAGCATCAGTTCGGTTCC GACTCGTTACCGTCGGAATC
RT-PCR FibL ATACCGATTGGTCACATAACAG GCAGATAGATGGGCGATAA
RT-PCR P25 AGCCGCTGTGGCAGTTTTG TAGGTGGCGTTGAAGTATGG
RT-PCR RPL3 TCGTCATCGTGGTAAGGTCAA TTTGTATCCTTTGCCCTTGGT
qRT-PCR BmBrC-Z2 TCGCTGACAAACACGCTG ATGGTAAGAACGGCGGAC
qRT-PCR BmBrC-Z4 GCCACAAGGTCTTCCGCA AAGAGCCAGCGGAAGGAT
qRT-PCR FibH TCTGTGTCATCTGCTTCATCTCG TATCCAGGACGAAGTAAGAAACAA
qRT-PCR FibL ATACCGATTGGTCACATAACAG GCAGATAGATGGGCGATAA
qRT-PCR P25 AGCCGCTGTGGCAGTTTTG TAGGTGGCGTTGAAGTATGG
qRT-PCR BmKr-h1 CATCGTTTTCAACATTTTGGCGAG CACATCACTTTACCATCGGCAGC
qRT-PCR BmDimm CGTGGAACCCGCATTTGTA AACCTCGGCAATCCAGTCG
qRT-PCR RPL3 TTCGTACTGGCTCTTCTCGT CAAAGTTGATAGCAATTCCCT

BrC—broad complex; FibH—fibroin heavy chain, FibL—fibroin light chain; Kr-h1—Krüppel homolog1;
RPL3—ribosomal protein L3; Bm—Bombyx mori.

Quantitative RT-PCR (qRT-PCR) was conducted with the ABI7500 real-time PCR machine (Applied
Biosystems, Foster, CA, USA) using FastStar Universal SYBR Green Master (Roche, Switzerland). Each
qRT-PCR reaction was performed under the following conditions: denaturation at 95 ◦C for 10 min,
followed by 40 cycles at 95 ◦C for 10 s, 60 ◦C for 30 s and 72 ◦C for 35 s. RPL3 gene was used as the
reference. Three repeat experiments were set up. The expression of the target gene was calculated by
Ct value and graphics were created based on this data. The primers used are shown in Table 1.

2.3. Transgenic Overexpression of BmBrC-Z2 in the PSG

A transgenic ectopic overexpression vector was constructed. The sequence encoding BmBrC-Z2
and a MYC-tag were cloned into the PMD-19 vector between the BamHI and NotI, then sub-cloned
into the mid-vector containing a modified FibH promotor, which was deleted the predicted Br–C
binding sites. Finally, the unit [MFibH-BmBrC-Z2-myc-Sv40] was sub-cloned into the piggyBac vector
[3xP3-Red-Sv40] with the red fluorescence marker by AscI digestion site. The recombinant vector
[3xP3-Red-Sv40-MFibH-BmBrC-Z2-myc-Sv40] was transformed into the E. coli strain Trans1-T1 cells
(TransGen, Beijing, China), screened for positive clones and the plasmid was extracted. The piggyBac
transposase-expressing plasmid pHA3PIG helper was obtained from a previous study [42]. Transgenic
plasmid and helper plasmid were mixed both to 500 µg/µL and injected into preblastoderm embryos at
2 h after oviposition. Positive individuals were screened in the pupal stage by red fluorescence using a
fluorescence stereomicroscope (Olympus, Tokyo, Japan). The phenotypic characters were investigated
between the transgenic overexpressing BmBrC-Z2 lines and the wild type as per the protocols given in
our previous study [43].
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2.4. Juvenile Hormone Treatment

Overexpressing BmBrC-Z2 lines on the 1st day of the 5th instar larvae (V1stD) were treated with
1 µL JH analogs methoprene (Sigma, St. Louis, Missouri, USA) on the back by the pipette with the
concentration of 2 µg/µL. For the controls, equal volumes of DMSO were applied. A quarter of the
treatment samples were collected the 2nd day of the 5th instar larvae (V1stD) and stored at −80 ◦C for
subsequent investigation of gene expression patterns. The remaining larvae were raised to the pupal
stage and were used to investigate the phenotypic data, including total weight of cocoons and weight
of cocoon layer.

2.5. Statistical Analysis

All data were statistically analyzed by t-test. Each set of data were repeated three times. Asterisks
were used to indicate significant differences (* p < 0.05; ** p < 0.01; *** p < 0.001).

3. Results

3.1. Expression Patterns of BmBrC-Zs and Fibroins in the Silk Gland

Previous studies showed that BmBrC was highly expressed in the PSG during the 4th molt (IVM)
stage, while fibroin genes were almost undetectable by northern blot and transcriptomic analysis [11,32].
Here, we investigated the expression patterns of three isoforms (BmBrC-Z1, Z2 and Z4) and fibroin
genes (FibH, FibL and P25) using semi-RT-PCR (Figure 1A). The results indicated that BmBrC-Zs were
expressed from the beginning of IVM to 1st day of the 5th instar stage (V1stD). By qRT-PCR analysis,
the relative expression level of BmBrc-Z2 was higher than that of BmBrc-Z4 (Figure 1B). The expression
levels of fibroin genes were gradually inhibited at the IVM and the expression levels of fibroin genes
started to recover at V1stD when the expression of BmBrC-Zs decreased. Thus, we suspected that
BmBrC may negatively regulate the expression of fibroin genes.
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Figure 1. Expression patterns of BmBrC-Zs and fibroin genes in Bombyx mori. (A). Expression levels
of BmBrC-Zs and fibroins in the PSG from 3rd day of the 4th instar to the 2nd day of the wandering
stage by semi-RT-PCR analysis; (B) relative expression level of BmBrC-Zs in PSG at 3rd day of the 4th
instar (IV3) to the 3rd day of the 5th instar (V3) by qRT-PCR analysis. RPL3 shown as a control. d—day;
h—hour; E—ecdysis; IV—4th instar; M—molting; V—5th instar.
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3.2. Transgenic Ectopic Overexpression of BmBrC-Z2 in the PSG

Previous studies on transcription factors regulating the expression of silk protein genes confirmed
it in the cellular level [24–27]. To confirm the biologic function of BmBrC-Z2 in vivo, a transgenic
vector with ectopic overexpression of BmBrC-Z2 was constructed with a modified FibH promotor, in
which the predicted Br–C binding site was deleted (Figure 2A). After embryo injection and screening
from 366 eggs, fourteen individuals positive for overexpression of BmBrC-Z2 were obtained. The
investigation showed that in the silk glands, there were no obvious phenotypic differences between
the transgenic lines and the wild types in the V5thD larvae (Figure 2B). Interestingly, the cocoons of
transgenic lines became thinner and lighter color compared with those of the wild types (Figure 2C).
The cocoon layer ratios decreased significantly in both the male and female individuals (Figure 2D,
n = 50). The results indicated that ectopic overexpression of BmBrC-Z2 in the PSG can lead to a decline
in the silk protein synthesis.
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Figure 2. Transgenic overexpression of BmBrC-Z2 in the PSG. (A) Transgenic overexpression vector
was constructed to overexpress BmBrC-Z2 in B. mori PSG. The positive transgenic phenotype was
observed in the pupae; (B) silk gland phenotype exhibited no obvious changes at the V5thD; (C)
cocoons became thinner and lighter and (D) cocoon layer ratio (weight of cocoon layer/total weight of
cocoon) was obtained by statistical analysis (n = 50). Wild type was used as the control. WT—wild
type; OE—overexpression; ***—p < 0.001.
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3.3. Transgenic Overexpression of BmBrC-Z2 Downregulates Gene Expression

To investigate the effect of overexpression of BmBrC-Z2 in the PSG, genes encoding silk proteins
and transcription factors were detected by qRT-PCR at the V5thD (Figure 3). The results showed that
BmBrC-Z2 was increased significantly in the transgenic line than those of the wild type (Figure 3A).
All of the silk protein coding genes, including FibH, FibL and P25, were inhibited in the transgenic
line (Figure 3B). Interestingly, the expression of two transcription factors, BmKr-h1 and BmDimm, was
also significantly inhibited (Figure 3A). We also tested the endogenous BmBrC-Z4 and found that it
was significantly upregulated in the transgenic line (Figure 3A). Our previous study had confirmed
that these two transcription factors were important regulators to activate the expression of FibH gene
by the JH-signaling pathway [27]. These results not only indicated that the ectopic overexpression of
BmBrC-Z2 may inhibit the expression of silk protein genes in the PSG of the V5thD larvae, but also
showed that the overexpression of BmBrC-Z2 affected the positive regulatory factors of fibroin genes.
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3.4. Exogenous JH Analog Can Rescue the Phenotype of the Transgenic Line Overexpressing BmBrC-Z2

To further determine whether the overexpression of BmBrC-Z2 repressed the JH-signaling pathway,
we treated the transgenic line and wild type larvae at V1stD with exogenous JH analog methoprene
(JHA), where dimethyl sulfoxide (DMSO) was used as the control (Figure 4). The results showed that
the cocoon phenotypes of the transgenic line overexpressing BmBrC-Z2 were rescued similar to those
of the wild type with the application of JH analog (Figure 4A). Further, the cocoon layer ratios reached
8.9% and 11.9% in the female and male individuals, respectively, which were close to that of the wild
type (Figure 4B). The expression levels were tested by qRT-PCR in the transgenic line after JH analog
treatment. Interestingly, the expression of BmBrC-Z2 and BmBrC-Z4 was inhibited (Figure 4C). The
expression levels of BmKr-h1 and BmDimm were significantly increased. In addition, the expression
levels of all the three fibroin genes were significantly increased (Figure 4D). These results indicated
that the exogenous JH analog can reverse the effect of the ectopic overexpression of BmBrC-Z2 in the
PSG to increase the expression levels of silk protein genes.
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BmDimm, BmKr-h1, FibH, FibL, P25. RPL3 was used as the control. *—p < 0.05, **—p < 0.01, ***—p <

0.001); WT—wild type; OE—overexpression.

4. Discussion

The transcriptional regulation of silk protein genes has always been a research hotspot in research
on silkworms. Silk protein genes are repeatedly turned on and off from the inter-molting to the molting
stages and are controlled by a large number of positive and negative transcriptional factors. In this
study, we constructed a transgenic line to ectopically overexpress BmBrC-Z2 using the FibH promoter
in the PSG at the inter-molting stage. The phenotype and molecular investigation demonstrated that
the ectopic overexpression of BmBrC-Z2 not only inhibited the expression of silk protein genes and
silk protein synthesis, but also repressed the expression of positive regulatory factors BmKr-h1 and
BmDimm, which respond to the JH signal to activate the expression of silk protein genes [27].

Several transcription factors have been reported to inhibit the expression of silk protein genes
at the molting stage. Both of FTZ-F1 and FMBP-1 could downregulate the expression of FibH at
the cellular level by binding to the regulatory element on its promoter [24,25]. An element −397
to −389 upstream of the FibH promoter was bound by FTZ-F1 to inhibit the promoter activity [25].
FMBP-1 repressed FibH promoter activity by directly binding to the −152 to −125 element in the
FibH promoter region [24]. However, evidence on their in vivo regulatory functions is still mostly
absent. Among most of the previous studies, the activity of FibH promoter was very weak in the
silkworm cell lines. For the activators of FibH gene, such as SGF1, Sage and Dimm, these results
may be credible [26,27], but for inhibitors, the cellular-level results may be insufficient to explain the
molecular regulatory mechanisms in vivo, as the silk gland is a specialized organ. In this study, to
explore whether BmBrC-Z2 could inhibit the expression of silk protein genes in vivo, transgenic lines
were obtained by the ectopic overexpression of BmBrC-Z2 using a modified FibH promotor in the
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PSG (Figure 2). In the overexpression–transgenic line, the relative mRNA level of BmBrC-Z2 was
significantly increased in the PSG at the fifth instar stage (Figure 3), the expression levels of silk protein
genes were also significantly inhibited to almost half of the wild type, thus resulting in a significant
reduction in the cocoon weight and cocoon layer ratio. We believed that BmBrC was a strong inhibitor
of silk protein genes, but the high efficiency of inhibition is still unknown which need further explore
in our next step.

FibH promoter was very specific and strong to promote foreign gene expression in the PSG [42].
Although the promoter was modified by deleting the BmBrC-Z2 binding site to eliminate its influence,
the expression level of BmBrC-Z2 in the transgenic line was not as high as we expected. It should be
noted that the overexpression of BmBrC-Z2 significantly downregulated the expression of BmKr-h1
and BmDimm in the PSG at the inter-molting stage (Figure 3). Thus, we assumed that the reduction of
BmKr-h1 and BmDimm may be the reason behind the low activity of the modified FibH promoter in the
overexpression of BmBrC-Z2 in the transgenic line. JH-mediated BmKr-h1 repressed the expression
of BmBrC by binding to the BmBrC promoter during the larval-adult metamorphosis [31,44]. Our
previous research reported that BmKr-h1-BmDimm cascade response to the JH signal could activate the
FibH gene expression [27]. After JH analog treatment of the BmBrC-Z2 overexpression–transgenic line,
the expression levels of BmKr-h1 and BmDimm were significantly increased, and then the expression
levels of BmBrC-Z2 were inhibited significantly. Moreover, the expression levels of all the three fibroin
genes were significantly increased (Figure 4). It is suggested that JH-signaling was inhibited when
ectopically overexpressing BmBrC-Z2 in the PSG at the inter-molting stage. However, how BmBrC-Z2
repressed the expression of BmKr-h1 and BmDimm needs to be explored.

In addition, the endogenous BmBrC-Z4 was significantly upregulated in the inter-molting stage
and was also downregulated when treatment of JH in the transgenic line (Figures 3A and 4C), suggesting
that overexpression of BmBrC-Z2 may function as a feedback regulation on ecdysone-signaling pathway.
This present study is the inadequacy of the lack of the in vitro activity analysis of promoters of silk
protein genes and genetic loss-of-function of BrC in the silk gland in vivo. The promoters of silk protein
genes are almost hardly active in silkworm cell lines, which is not applicable to the negative regulation
of BrC to the silk protein genes in vitro. In addition, knocking-out BrC may not be suitable because
BrC is very crucial in the hormone-signaling pathway for the development and physiology in the
silkworm life cycle [28–30]. Based on the present and previous studies [11,27,31], here, we propose a
hypothesis for the regulatory mechanism for the inhibition of the expression of silk protein genes by
BmBrC at the molting stage (Figure 5). BmBrC could inhibit the expression of fibroin genes directly by
binding to the upstream regulatory elements or indirectly by BmKr-h1 and BmDimm cascade in the JH
signal pathway. At the inter-molting stage, JH binds to a heterodimer of BmMet2/SRC, which directly
activates the expression of BmKr-h1. BmKr-h1 inhibits the expression of BmBrC-Z2 and meanwhile
activates the expression of BmDimm and then activates the expression of the fibroin genes in the
silkworm. Therefore, our findings will assist in deciphering a comprehensive regulation mechanism of
silk proteins in the silkworm.
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