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Differential fracture response to 
traumatic brain injury suggests 
dominance of neuroinflammatory 
response in polytrauma
Kazuhito Morioka   1,2, Yotvat Marmor2, Jeffrey A. Sacramento1, Amity Lin1, Tiffany Shao2, 
Katherine R. Miclau2, Daniel R. Clark2, Michael S. Beattie1, Ralph S. Marcucio2, 
Theodore Miclau III.2, Adam R. Ferguson   1,3, Jacqueline C. Bresnahan1 & Chelsea S. Bahney2,4

Polytraumatic injuries, specifically long bone fracture and traumatic brain injury (TBI), frequently 
occur together. Clinical observation has long held that TBI can accelerate fracture healing, yet the 
complexity and heterogeneity of these injuries has produced conflicting data with limited information 
on underlying mechanisms. We developed a murine polytrauma model with TBI and fracture to evaluate 
healing in a controlled system. Fractures were created both contralateral and ipsilateral to the TBI to 
test whether differential responses of humoral and/or neuronal systems drove altered healing patterns. 
Our results show increased bone formation after TBI when injuries occur contralateral to each other, 
rather than ipsilateral, suggesting a role of the nervous system based on the crossed neuroanatomy 
of motor and sensory systems. Analysis of the humoral system shows that blood cell counts and 
inflammatory markers are differentially modulated by polytrauma. A data-driven multivariate analysis 
integrating all outcome measures showed a distinct pathological state of polytrauma and co-variations 
between fracture, TBI and systemic markers. Taken together, our results suggest that a contralateral 
bone fracture and TBI alter the local neuroinflammatory state to accelerate early fracture healing. We 
believe applying a similar data-driven approach to clinical polytrauma may help to better understand 
the complicated pathophysiological mechanisms of healing.

In the United States, trauma is the primary cause of fatality in individuals younger than forty-six1,2 years old, and 
in 2006 trauma surpassed cardiovascular disease as the leading medical expenditure3. Head injury combined 
with extremity fracture are a common result of high-energy traumas, such as motor-vehicle accidents, falls, and 
combat injuries. A recent study found that of 18,404 patients with a femoral shaft fracture, more than one-third 
sustained a concomitant head or neck injury4.

Interestingly, there is a clinical perception that concomitant TBI accelerates bone repair. Clinical studies 
remain conflicted on the evidence for this phenomenon, partly due to heterogeneous injury patterns and the 
complex clinical treatment of these polytrauma patients5. Moreover, pathophysiological changes that occur as a 
result of polytrauma are rarely studied and there remains no consensus on how TBI may alter fracture healing at 
a mechanistic level. The aim of this study is to evaluate mechanisms that may influence healing in a pre-clinical 
murine model of combined fracture and TBI compared to each injury alone.

When considered alone, mechanical damage from a TBI causes an immediate and direct loss of neural tissue. 
This damage is followed by a rapid activation of the immune system and a compromised blood-brain-barrier 
that allows transmigration of leukocytes and activation of microglia6. The systemic and local immune activation 
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results in cytokine production that has bimodal impacts on neural tissue: first, by promoting neural damage, 
approximately days 1–7 in the mouse model, and later repair. Furthermore, the nervous system normally exerts 
control over the immune system, making the immunological consequences of central nervous system injury 
complicated7–9.

Similarly, fracture healing proceeds through distinct, overlapping processes that require cross-talk across mul-
tiple systems10–13. Following fracture, a hematoma forms immediately to stop the bleeding, contain debris, and 
activate a pro-inflammatory response that initiates repair; in the mouse this process occurs from roughly days 3–5 
post-fracture14,15. Periosteal and endosteal progenitor cells adjacent to the fracture undergo direct differentiation 
to form bone through intramembranous ossification (days 3–7)16. In the fracture gap, periosteal progenitor cells 
differentiate into chondrocytes and generate a provisional cartilaginous matrix that gives rise to bone indirectly 
by endochondral ossification (days 5–14)17. The cartilage callus matures to bone through transformation of chon-
drocytes into osteoblasts and matrix remodeling18–20. During these remodeling phases, the pro-inflammatory 
response must resolve or fracture healing will be impaired15,21.

A few pre-clinical systems for studying TBI combined with fracture have been published, but similar to clini-
cal trials, there is considerable variation between models and outcomes5,22,23. Two recent preclinical studies sup-
port evidence for accelerated fracture healing with TBI. These show TBI increased bone volume by μCT at the 
end stages of fracture repair compared to fracture only, but did not investigate the mechanism(s) driving altered 
healing24,25. Separate studies have shown that serum from patients with TBI can stimulate proliferation of mes-
enchymal progenitor and/or osteoblast cells lines in vitro26–30. Candidate screening approaches have identified 
potential molecular mediators of the osteogenic and/or mitogenic responses, but there is still no consensus that 
these factors drive the overall response of fracture to TBI in vivo5.

In this study, our goal was to focus on the earlier stages of fracture repair, days 5–14 post- injury, that are 
responsible for establishing healing patterns in order to provide more insight to the factors that may drive altered 
fracture response following combined bone and brain polytrauma. Since it is well-known that the most common 
deficit following stroke is contralateral hemiparesis, coupled with evidence that changes in the peripheral nervous 
system can impact fracture healing and heterotopic bone formation31–33, we hypothesized that TBI contralateral 
to a fracture injury would have a differential impact on healing than ipsilateral injuries. If our hypothesis were 
incorrect, and sidedness does not influence healing outcomes, it would strengthen the argument that systemic 
factors drive changes in fracture repair following TBI. To test our hypothesis, we created bone and brain injuries 
either alone, or on the same (ipsilateral) versus opposite (contralateral) sides from each other and compared bone 
healing, brain lesion size, and inflammatory state. To effectively understand how these complex longitudinal 
factors work together to drive overall healing response we then integrated all outcome measures into a multidi-
mensional principal component analysis (PCA). This preclinical study is the first to specifically investigate the rel-
ative influence of systemic versus neuronal factors in driving bone healing outcomes following TBI and fracture 
polytrauma and suggests that tracking these factors in a clinical environment are important towards delineating 
differential healing patterns.

Results
Traumatic brain injury accelerates endochondral bone formation during fracture healing with-
out reciprocal effect on brain tissue in contralateral polytrauma.  To assess both the humoral and 
neuronal impacts of TBI on fracture healing, we created a novel rodent model which combined a TBI with a 
concomitant long bone fracture either ipsilateral (same side) or contralateral (opposite side) to the brain lesion 
(Fig. 1A). Polytrauma injuries were compared to both TBI and fracture only. TBI were produced in the right 
hemisphere following a craniotomy using an electromagnetic-controlled cortical contusion impactor (CCI)34–36 
(Fig. 1B). Immediately after the TBI, closed, mid-shaft fractures were created in the left or right tibia using a 
three-point bending device17,19 (Fig. 1C). Animals survived for 5, 10 or 14 days. Blood and spleen were collected 
to evaluate systemic inflammation. Fracture callus and brain tissue were collected for histological processing and 
quantification.

Fracture callus volume and composition were quantified by blinded reviewers using the Olympus CAST sys-
tem and Visopharm software to enable an unbiased stereological evaluation of soft and hard tissues within the 
fracture callus. Fracture alone was compared to the effect of polytrauma. A two-way ANOVA indicates statis-
tically significant differences in fracture healing outcomes considering the main interaction of group crossed 
with days post-injury for total fracture callus volume (F(4,39) = 6.754, p = 0.0003, η2 = 0.292, power = 0.986) and 
bone composition (F(4,39) = 3.616, p = 0.013, η2 = 0.024, power = 0.83). Total callus volume was impacted by 
both polytrauma and sidedness of the injuries (Fig. 2A and Supplemental Fig. 1). Interestingly, bone compo-
sition was not affected by polytrauma overall (F(1,43) = 0.004, p = 0.95, η2 = 0, power = 0.05), but only by sid-
edness of the injury (F(1,26) = 8.297, p = 0.008, η2 = 0.242, power = 0.79) (Supplemental Fig. 1). Tukey-Kramer 
HSD post-hoc testing on the main interaction of group shows that at the earliest time point, 5 days post-injury, 
there was increased bone formation with polytrauma when the bone injury occurred contralateral to brain injury 
(Fig. 2B, p = 0.0056). Contralateral polytrauma also had significantly more bone than the ipsilateral polytrauma 
(p < 0.0105) but did not find a difference between ipsilateral polytrauma and fracture only (p = 0.988). Increased 
bone composition does not appear to be due to a change in the total fracture callus volume between the contralat-
eral polytrauma group and fracture only (Fig. 2A, p = 0.30), rather increased bone formation was observed along 
the periosteum adjacent to the fracture gap (Fig. 3C*,F*).

Differential temporal dynamics in total callus volume and bone composition are apparent between fracture 
and polytrauma groups (Fig. 2). Total callus volume at day 10 post-injury is very similar across all groups. This 
normalization in volume difference corresponds to the phase in fracture healing where cartilage tissue dominates 
the fracture callus and we find non-significant differences in cartilage composition with polytrauma (Fig. 2C, 
F(4,39) = 0.897, p = 0.475, η2 = 0.008, power = 0.258). Similarly, post-hoc testing suggests there are no significant 
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difference in bone composition at day 14 (Fig. 2A, F(2,12) = 0.52, η2 = 0.246, power = 0.404) Given the significant 
differences in bone composition at day 5, it suggests that polytrauma is affecting the intramembranous not endo-
chondral healing processes.

To evaluate if there was a reciprocal effect of the bone fracture on the brain repair, brain lesion area and 
volume were quantified using imaging software. Impact data recorded from each animal shows a high level of 
consistency between all brain injuries (Supplemental Fig. 2). Representative gross images from injured brains 10 
days post-injury, show expanded loss of the cortical tissue in the damaged pericontusional region and the absence 
of swelling (Fig. 4A–C). Coronal cross section at the lesion epicenter in the same mice show diffuse cortical and 
subcortical atrophy involving the cerebral cortex, corpus callosum, hippocampus, thalamus and hypothalamus 
in the ipsilateral hemisphere. Based on other studies from our group using similar TBI injury parameters6,34–36, 
differences in gross brain lesion area (F(2,25) = 0.335, p = 0.72, η2 = 0.026, power = 0.098) and total brain lesion 
volume (F(2,25) = 1.344, p = 0.28, η2 = 0.097, power = 0.26) between groups and over time were considered practi-
cally unimportant and p > 0.05 supports no statistical effect (Fig. 4D,E).

Differential systemic circulation and inflammatory characteristics in polytrauma.  A complete  
blood count (CBC) was obtained using a multispecies hematology system. Within the broad category of white 
blood cells (WBC) a two-way ANOVA indicates statistically significant differences with the main interaction 
of group (WBC; F(6,51) = 3.539, p = 0.005, η2 = 0.29, power = 0.92). Individual WBC types, including lym-
phocytes (LY; F(6,48) = 2.92, p = 0.016, η2 = 0.268, power = 0.86), monocytes (MO; F(6,48) = 4.044, p = 0.002, 
η2 = 0.336, power = 0.96), and neutrophils (NE; F(6,48) = 4.485, p = 0.001, η2 = 0.36, power = 0.97) were also sig-
nificantly different (Fig. 5). Within the main effect of group, Tukey-Kramer HSD post-hoc analysis showed that 
5 days post-injury, there was an upregulation of monocytes in contralateral polytrauma relative to the TBI only 
(p = 0.036). At 10 days post-injury, TBI only was significantly different from polytrauma in WBC, lymphocytes 
and monocytes (p < 0.005). Differences between group at day 14 were much smaller and p > 0.05 supports that 
early differences in WBC become less important as healing progresses.

WBC differentiation also has a differential temporal dynamic among the injury groups that became evident 
by plotting these profiles over time (Supplemental Fig. 3). Significant temporal differences are noted in overall 
WBC (p = 0.02) and LY (p = 0.003) components (Supplemental Fig. 3A–C). Generally, this temporal difference 
manifests as a unique peak in the TBI only group at 10 days post-injury.

The red blood cell (RBC) counts indicate blood restoration of regenerative anemia caused by trauma-related 
hemorrhage. In both the fracture only and contralateral polytrauma groups, average RBC, hemoglobin (HGB), 
hematocrit (HCT), and mean corpuscular hemoglobin (MCH) levels tended to fall below the normal range at 5 
and/or 10 days post-injury according to established clinical pathology reference values (Fig. 6A–F)37. Two-way 
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Figure 1.  Experimental design overview of traumatic brain injury (TBI) with concomitant tibia fracture. 
Schematic of experimental design and protocol is described in Materials and Methods. (A) The TBI only group 
included TBI without tibia fracture, the ipsilateral polytrauma group included TBI with ipsilateral tibia fracture, 
the contralateral polytrauma group included TBI with contralateral tibia fracture, and the fracture only group 
included tibia fracture without TBI. All assessments were performed at three time points, 5, 10 and 14 days 
post-injury (n = 5–6/group). (B) The diagram of craniotomy site for TBI. (C) The representative radiographic 
image of closed transverse tibia shaft fracture.
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ANOVA finds that the majority of RBC indices do not fall below our significance threshold for post-hoc analysis 
of p < 0.05, with the exception of hemoglobin (HGB, F(6,50) = 2.27, p = 0.05, η2 = 0.211, power = 0.74). By one-way 
ANOVA, at day 5 post-injury, both RBC (RBC, F(3,17) = 3.85, p = 0.024, η2 = 0.122, power = 0.72) and hemoglobin 
(HGB, F(3,17) = 6.87, p = 0.002, η2 = 0.211, power = 0.91) had significant differences by group (Fig. 6A,B).

To understand the systemic inflammatory state, we performed quantitative RT-PCR on spleen tissue. Tumor 
necrosis factor-α (Tnfα) and interleukin-1β (IL-1β) are canonical pro-inflammatory markers; arginase (Arg1) 
and interleukin-10 (IL-10) are canonical anti-inflammatory markers (Fig. 7). Two-way ANOVA indicated signif-
icant changes only in IL-1β (F(11,49) = 4.3306, p = 0.0002, η2 = 0.257, power = 0.96) and Arg1 (F(11,49) = 10.8744, 
p < 0.0001, η2 = 0.444, power = 1.0). Tukey-Kramer HSD found fracture only shows higher expression of both IL-
1β and Arg1 relative to all other groups 5 days post-injury. By 10 days post-injury the inflammatory response had 
shifted such that TBI only was the only differential group with higher Arg1 expression relative to the other groups.

Multivariate analysis of polytrauma.  A principal component analysis (PCA) was completed to provide 
an unbiased comprehensive assessment of variation given the complexity of our experimental model and the 
cross-system outcomes. Specifically, PCA enabled us to reduce a large set of variables to a smaller set most likely 
to contain the meaningful parameters and understand which outcome measures have meaningful co-variation. 
This was specifically done to complement the discrete hypothesis testing facilitated by classic ANOVA and avoid 
simplistic dichotomization as statistically significant or not given the limitations of our sample size. The three 
fracture groups were eligible for the data-driven multivariate analysis since they included all outcome measure-
ments. The PCA revealed three principal components (PCs) that together accounted for 58.6% of the total var-
iance (Supplementary Fig. 4). PC scores of individual subjects on PC1-3 were plotted within the 3-dimentional 
syndromic space (Fig. 8A).

PC1 accounted for 28% of the total variation (Supplementary Fig. 4A,B) and largely explained variation in 
fracture healing (Fig. 8B and Supplementary Fig. 4C). Loading values for PC1 were strongly positive for the frac-
ture callus measurements (bone volume, bone composition, marrow composition, cartilage composition) and 
these responses co-varied with measurements of the hematoma formation (LY, RBC, HGB, HCT). Fracture callus 
responses negatively correlated with arginase and brain gross lesion area, indicating that accelerated fracture 
healing was associated with a smaller TBI and less of an anti-inflammatory response. We then assigned individual 

Figure 2.  Stereological evaluation of fracture healing. (A) Total volume of the fracture callus, (B) bone 
composition in the fracture callus, (C) cartilage composition in the fracture callus, (D) bone marrow and blood 
vessel space composition in the fracture callus. Individual data points (red dots) are indicated on the bar graph 
representing the mean ± standard error of the mean. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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subject PC scores on PC1 and used ANOVA and Tukeys HSD post-hoc testing to assess the effect of injury 
condition on PC1 as an ensemble outcome. Statistical analysis of PC1 suggest that fracture healing response in 
ipsilateral polytrauma is different from contralateral polytrauma (Fig. 8E, F(2,25) = 9.896, p = 0.001, η2  = 0.442, 
power = 0.971).

PC2 accounted for 17.3% of the total variance and the largest positive loading values were associated with 
the TBI measurements (CCI depth and velocity, gross lesion area, total lesion volume), showing co-variation 
with blood regeneration (Hb, MCH, mean corpuscular hemoglobin concentration; MCHC), and negative cor-
relation with total fracture callus volume and anti-inflammatory response in the same manner as PC1 (Fig. 8C 

Figure 3.  Histology of Bone Fracture. Hall Brundt’s Quadruple Stain (HBQ) histology stains bone red and 
cartilage blue. (A–F) 5 Days post-injury, (G–L) 10 days post-injury, (M–R) 14 days post-injury.
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and Supplementary Fig. 3C). As confirmation that PC2 largely describes the brain injury measurements, loading 
values for fracture only form a distinct group in PC2 (Fig. 8F, F(2,25) = 7.247, p = 0.003, η2  = 0.367, power = 0.904). 
Further, we again find a differential response between ipsilateral and contralateral polytrauma (Fig. 8E,F). PC3 
explains 13.3% of total variance and is associated with systemic inflammation and circulation, including, the 
hematoma formation and blood regeneration related to injury (Fig. 8D and Supplementary Fig. 3C). Statistical 
analysis showed no significant pairwise comparisons among the three fracture groups over time (Fig. 8G, 
F(2,25) = 2.891, p = 0.074, η2  = 0.188, power = 0.514).

Discussion
Irrespective of the tissue damaged, traumatic injuries typically follow a similar healing cascade that begins with 
mechanical damage to the tissue and activation of a pro-inflammatory response that enables a subsequent repara-
tive phase. Generally speaking, the level and extent of repair are a function of the presence of local tissue resident 
progenitor cells that can orchestrate tissue regeneration and the ability resolve the pro-inflammatory response. 
Tissues known to have a strong regenerative capacity capable of restoring form and function to injured tissue 
include, bone, skin, muscle, liver, and intestine, among others. However, tissues such as brain, cartilage, liga-
ments/tendons, and lung, have little to no innate regenerative capacity and either fail to close a defect or repair 
with a fibrotic scar that lacks native function.

Within individual tissue types preclinical animal models have enabled significant progress in understand-
ing the cellular and molecular mechanisms that regulate the reparative process. In murine fracture healing, the 
pro-inflammatory response occurs during the first week of healing and our previous work has demonstrated that 
macrophages are critical both in the activation and resolution of inflammation that regulates bone healing15,21,38,39. 
This pro-inflammatory state sets up osteogenic differentiation and intramembranous repair along the perios-
teum between days 3–7 post-injury. Chondrogenic differentiation for endochondral repair within the fracture 
gap occurrs primarily between days 5–14, roughly correlating with the resolution of the pro-inflammatory state 
through preferential activation of an anti-inflammatory macrophage state (“M2”)11,15,17,40. In the murine TBI 
model, controlled cortical injuries causes an immediate loss of neural tissue, rapid activation of the immune sys-
tem and a temporary breakdown in the blood-brain-barrier to produces a peripheral response through the trans-
migration of pro-inflammatory leukocytes and microglia within the first week post-injury6,35. Interestingly, within 
the first week following TBI there is a simultaneous production of pro- (“M1”) and anti- (“M2”) inflammatory 
molecular mediators creating a highly complex inflammatory milieu and suggesting that microglia/macrophages 

Figure 4.  Quantification of Brain Lesions. (A–C) Representative gross lesions (left panel) and coronal sections 
through the lesion epicenters (right panel) in the right hemisphere at 10 days after the cortical contusion injury 
in each group. (D,E) Gross lesion area (D) and total lesion volume (E) relative to the whole brain was quantified 
at 5 and 10 days after injury in each group. Individual data points are indicated by red circles. Two-way ANOVA 
revealed no statistically significant time × traumatic condition effect among the groups at each time point 
(p > 0.05). Individual data points are indicated on the bar graph representing the mean ± standard error of the 
mean.
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display a mix phenotype and do not discretely polarize to a “M1-only” or “M2-only” state41,42 Consequently, the 
timepoints chosen in this study were designed to capture the early pro-inflammatory phase (day 5) of both inju-
ries and subsequent key regenerative phases in fracture healing (days 10 and 14).

Treatment of polytraumatized patients is challenging because injuries affecting multiple organ systems results 
in higher mortality and poorer prognosis22,43. Further, sustaining multiple traumatic injuries could produce recip-
rocal impacts on healing progression compared to either injury alone. Understanding the basis for changes in 
healing patterns following polytrauma therefore becomes complicated by the requirement for cross-disciplinary 
expertise. TBI and long bone fracture are two organ systems often injured in conjunction. Clinical observations 
suggest that there is an acceleration in fracture healing with TBI, but strong evidence for this correlation is still 
lacking.

In the past three decades, a total of 41 clinical and preclinical studies, as well as number comprehensive review 
articles5,22,23, have been published assessing the correlation between TBI and accelerated fracture healing. As 
of 2015, approximately half of published studies found a significant association between concomitant TBI and 
enhanced fracture repair, whereas the data from the other half of the studies are inconclusive5. To better con-
trol for clinical variation, recent preclinical studies have emerged with evidence for enhanced fracture repair 
demonstrated by earlier bridging callus formation, a two-fold shorter time to union, and increased mean callus 
thickness24,25,44. In addition to faster callus formation, fractures with TBI also present with a higher bone min-
eral density25,44 and increased torsional strength25, suggesting more robust repair. Despite a significant body of 
research, clear evidence and mechanistic data supporting this phenomenon remain unclear. It is also interesting 
to note that traumatic brain injuries have been shown to have the opposite effect on bone homeostasis, inducing 
osteoporosis and osteopenia29,45–50.

With this study, our goal was to establish a robust and comprehensive data set in the mouse model that would 
allow us to mechanistically probe the major factors underlying TBI-associated accelerated fracture repair with 
the intent of discovering potentially novel opportunities for therapeutic intervention of poor fracture healing. 
Existing research studies have typically focused on a single aspect of TBI-fracture polytrauma, such as hormones, 
growth factors, metabolism, or inflammatory cells. Cumulatively, these studies have found correlations between 
healing and specific candidate molecules, such as, leptin51–53, prolactin54, stem cell derived factor-155, or basic 
fibroblast growth factor56 that may contribute to accelerated fracture repair. Others suggest altered cytokine 

Figure 5.  White blood cell differentiation following injury. (A) White blood cells (B) Monocytes, (C) 
Lymphocytes, (D) Neutrophils. Individual data points (red dots) are indicated on the bar graph representing the 
mean ± standard error of the mean. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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expression may alter the inflammatory state57,58. And a number of in vitro studies have demonstrated that serum 
from TBI-fracture patients accelerates cell proliferation relative to fracture-only serum26–30.

Since a pro-inflammatory response is one of the initial steps in healing, we investigated both systemic cir-
culation and inflammatory condition post-injury. Previous research on murine fractures has suggested that 
hematoma formation and a robust pro-inflammatory response from 3–5 days post-injury is necessary to initiate 
bone healing, while 10–14 days post-injury is when the callus transitions from cartilage to bone and, at this 
time, inflammation needs to resolve for normal healing14,59,60. In this study, we found that the inflammatory 
state of mice with polytrauma was differentially modulated relative to either TBI or fracture only. Not only were 
the CBC profiles different from each other at a specific time point, but they also showed differential temporal 
dynamics. Using spleen tissue to access specific markers of pro- (TNFα, IL-1β) versus anti- (IL-10, Arg) inflam-
matory markers, we found the fracture only group showed up-regulation of both IL-1β and Arg relative to other 
groups immediately after injury, while the TBI only group had the strongest anti-inflammatory (Arg) response. 
Overall these data align with recent reports suggesting concurrent expression responses within both pro- and 

Figure 6.  Red blood cell differentiation following injury. (A) Red blood cells (RBC). (B) Hemoglobulin (HGB). 
(C) Hematocrit (HCT). (D) Mean corpus volume (MCV). (E) Mean Corpus Hemoglobulin (MCH). (F) Mean 
corpuscular hemoglobin concentration (MCHC); were quantified at 5, 10 and 14 days post-injury in each 
group. Individual data points (red dots) are indicated on the bar graph representing the mean ± standard error 
of the mean. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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anti-inflammatory arms and illustrate that the classic in vitro nomenclature to delineate macrophage polarity is 
overly simplistic and that in vivo mixed phenotypes are common due to the complex signaling events surround-
ing them42. These complex inflammatory responses emphasize the need to employ comprehensive approaches 
such as multivariate PCA which revealed the strongly positive relationship between measurements associated 
with hematoma formation (lymphocytes, red blood cells, hemoglobin, hematocrit) and fracture healing (PC1). 
We also found the increased bone formation with polytrauma only at the early time point, again supporting the 
importance of this initial healing response.

The other key factor we found influencing fracture response to TBI was the orientation of the injuries. If 
humoral factors drove the fracture healing response to TBI, then having the injuries ipsilateral versus contralat-
eral would not matter. However, we found accelerated bone healing occurred most significantly with contralat-
eral injuries. This suggests that some neuronal mechanism may be causing contralateral activation of fracture 
healing, possibly due to the anatomical crossing of the fibers of the corticospinal tracts from one side of the 
central nervous system to the other near the junction of the medulla and the spinal cord (“decussation of the 
pyramids”). Our data also showed that polytrauma more significantly influenced bone composition compared to 
cartilage composition. A lack of innervation in cartilage would therefore support a mechanistic role of the nerve 
in intramembranous rather than endochondral repair. The clinical impact of sidedness in bone-brain polytrauma 
has not previously been considered and recording/tracking this data may provide new insight into the complex 
and heterogenous responses currently observed. Previous studies have also postulated that TBI induces changes 
in the central and peripheral nervous system in a manner that positively impacted fracture healing32,33,44,61 and 
homeostatsis49,50,62.

One possible mechanism by which the peripheral nerve may influence fracture healing directly is through 
an interaction with the periosteum. Nerves run throughout the bone and there is a nerve situated directly under 
the periosteum. Osteochondral progenitor cells in the periosteum are established as the direct source of the cells 
that generate the fracture callus16,63, and our histomorphometry indicates increased periosteal bone formation 5 
days post-injury. It is possible that the nerve activates this more robust bone formation either through stimulating 
proliferation of the periosteal progenitor cells or increasing the concentration of a local osteogenic factor26,27,29. 
A few studies have specifically identified that TBI produces changes in the neuropeptide calcitonin gene-related 
protein, which can act as a potent vasodilator33,44. While we did not see any overall indication of changes in vascu-
larity associated with polytrauma, previous work has shown that vascular endothelial cells are a major source of 
osteogenic factors that can stimulate fracture healing and damage to the periosteal blood supply causes significant 
apoptosis in the periosteum which contributes to delayed healing18,19,64.

Figure 7.  Systemic inflammatory profiles. Gene expression from the spleen tissue for canonical pro-
inflammatory markers, (A) Tumor necrosis factor-alpha, and (B) interleukin-1 beta; and two canonical anti-
inflammatory markers (C) interleukin-10, and (D) arginase. Individual data points (red dots) are indicated on 
the bar graph representing the mean ± standard error of the mean. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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Figure 8.  Multivariate principal component analysis (PCA) of polytrauma. The comprehensive correlation 
among all outcome measures of bone fracture healing, brain injury, systemic circulation and inflammation 
over time in contralateral and ipsilateral polytrauma was compared to fracture only using PCA. (A) The 
3-dimensional multivariate syndromic space described by principal components 1–3 (PC1-3). PC scores of 
individual subjects on PC1-3 extracted from all outcome measures are shown (n = 31; 29 outcome variables). 
The PC loading pattern resulted in three subject clusters at 5 days post injury revealing a distinct syndromic 
space for each injury type. At 10 days after injury there are two subject clusters, now distinguishing only 
between polytrauma and fracture only conditions. (B–D) PC loading magnitude is indicated by arrow width 
with heat equivalent to Pearson correlations between the individual variable and the loading value (blue reflects 
negative and red reflects positive relationships). Exact loading values are shown next to each arrow. PC1 (28% 
of total variance) reflected the relationship between fracture healing and hematoma formation. PC2 (17.3% 
of total variance) reflected the relationship between brain injury and blood regeneration. Both PC1 and PC2 
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Alternative explanations revolve around the potential for TBI to generate a local change to the 
neuro-inflammatory state. In this study, our data suggest that formation of a larger hematoma with a more robust 
early activation of the pro-inflammatory cascade in contralateral polytrauma is positively correlated with bet-
ter fracture healing, validating published work demonstrating that removal of the hematoma impairs fracture 
healing60. Interestingly, another group has proposed that the underlying mechanism for ectopic bone formation 
following TBI is that the blood-brain-barrier breakdown causes peripheral nerves to release osteoprogenitor cells 
from peripheral nerves to establish new bone formation31,32,65.

The extent of brain damage also may be important to the fracture healing response. In our experimental 
design induction of the TBI was controlled using an electromagnetic device with a programmed impact; however, 
actual measurements of the severity of the CCI and size of the brain lesion were negatively associated with bone 
formation in our PCA. Increased impact velocity and depth, corresponded to increased brain lesion, and these 
factors were negatively correlated with fracture healing, indicating that accelerated fracture healing is more likely 
with smaller brain injuries. Taken together this suggests that severity of the brain injury influences the degree 
of change in bone formation and helps to explain why there is a broad spectrum of phenotypes reported in the 
clinical literature.

In conclusion, our preclinical study provides increased evidence that TBI can stimulate bone formation dur-
ing fracture healing. Importantly, our in vivo study was designed to test, for the first time, if laterality of the 
polytrauma influenced healing outcomes. We show that brain and bone injuries contralateral to each other result 
in increased bone formation suggesting that neuronal alterations from this injury pattern may mechanistically 
initiate repair. Furthermore, by taking a robust and unbiased statistical approach to analyzing our data we were 
able to look at co-variation through a principal component analysis and found that increased pro-inflammatory 
responses were also positively correlated with bone formation. Taken together, our experimental model design 
and approach to global data analysis supports that neuroinflammatory changes may establish the accelerated 
fracture response to TBI and generates a platform for investigation into the specific molecular factors underlying 
these changes. The long-term goal of this mechanistic work is to translate the basic science of naturally occurring 
accelerated fracture healing, such as seen here with brain-bone polytrauma, into novel therapeutic approaches to 
treat the estimated 3 million fractures per year that exhibit recalcitrant healing.

Materials and Methods
Traumatic brain injuries (TBI).  All murine procedures were approved by the UCSF Institutional Animal 
Care and Use Committee (IACUC) and performed in compliance with NIH guidelines. Adult male C57BL/6J 
mice (10–14 weeks old, Jackson #000664) were randomly divided four groups: (1) TBI without fracture, “TBI 
Only”; (2) TBI with ipsilateral fracture, “Ipsilateral Polytrauma”; (3) TBI with contralateral fracture, “Contralateral 
Polytrauma”; and (4) Fracture without TBI, “Fx Only”. TBI were created using an electronic cortical contusion 
impactor device (“CCI”; model 6.3, Custom Design & Fabrication Inc.) as described previously34,35. Briefly, the 
skull was secured in a stereotaxic frame (David Kopf Instruments) under isoflurane anesthesia. Craniotomies 
were centered over the right hemisphere with a calibrated manipulator arm 2.5 mm caudal to Bregma and 3.0 mm 
right of the sagittal suture, then a 5 mm diameter trephine defect was created with a high-speed rotary hand-piece 
(MH-170, Foredom Electric Co., Bethel, CT; Fig. 1B). The CCI was fitted with a 3.0 mm rounded metal impactor 
tip, angled at 21-degrees. Impactor was zeroed the brain surface with impact parameters of 2.0 mm deep, 150 ms 
dwell time, and 4 m/s velocity. Following injury, the wound was irrigated with saline and bone chips removed, 
then a Gelfoam® sponge (Pfizer) was placed over the bone defect and the skin was sutured. Mice received a 
peri-operative dose of sustained-release buprenorphine HCl (1.2 mg/kg) as an analgesic and cefazolin (50 mg/kg) 
as an antibiotic. Of note is that sustained-release buprenorphine HCl was specifically chosen for this study due to 
clinical and preclinical data suggesting non-steroidal anti-inflammatory drugs (NSAIDs) delay fracture healing66; 
however, long acting buprenorphine in the presence of traumatic injury has been reported to alter cardiovascu-
lar responses and subsequent inflammation67. Per IACUC stipulations analgesics are required for all preclinical 
studies, but by keeping the analgesic treatment consistent across groups we aimed to discern differential responses 
between treatment groups.

Fractures (Fx).  Immediately after brain injury, a mid-shaft tibia fracture was created either ipsilateral (right 
side) or contralateral (left side) to TBI. To simulate a traumatic fracture, a custom apparatus that drops a 460 g 
weight from a height of 14 cm onto the impactor head, generated a closed, transverse fracture as described 
(Fig. 1C)17,19,21. Fractures were confirmed by manual palpitation and fluoroscopy (Hologic Fluoroscan Premier 
C-Arm Imaging System, Model #QES115-036: 48 kV and 0.021 mA). Post-operatively mice were returned to 
their home cages on a heating pad and recovery closely monitored. Animals were socially housed and allowed to 
ambulate freely until experimental end-points 5, 10, or 14 days post-injury.

outcomes represented the inverse correlation of fracture callus with brain lesion. PC3 (13.3% of total variance) 
indicated the systemic circulation following injury. (E–G) The 2-dimensional PC1-3 loading patterns were 
analyzed by ANOVA with Tukey’s HSD post-hoc to test for significant differences amongst the main effects at 
each time point. There is a significant pairwise comparisons between fracture only and ipsilateral polytrauma 
at 5 days after injury on PC1 (F(2,25) = 9.896, p = 0.001, η2  = 0.442, power = 0.971). There are significant 
pairwise comparisons among each injury condition at 5 days after injury, and significant pairwise comparisons 
between fracture only and both type of polytrauma at 10 days after injury (F(2,25) = 7.247, p = 0.003, η2 = 0.367, 
power = 0.904). ANOVA on the PCA shows no significant difference between the three injury conditions over 
time (F(2,25) = 2.891, p = 0.074, η2 = 0.188, power = 0.514). *p ≤ 0.05, **p ≤ 0.01, ***p≤.
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Complete blood count (CBC).  At euthanasia, the mice were given an intraperitoneal injection of 250–
400 mg/kg tribromoethanol as terminal anesthesia, and when the animal was areflexive, an incision was made to 
expose the heart. Blood was drawn from the left ventricle via cardiac puncture with a 20-gauge needle. The blood 
was maintained on ice with ethylenediamine tetraacetic acid (K2EDTA) and transported to the UCSF Mouse 
Pathology Core facility for a complete blood count (CBC) within 24 hours using Multispecies Hematology System 
(HV950FS, Drew Scientific).

Systemic inflammation.  Spleen tissue was collected into RNAlater® (#R0901, Sigma-Aldrich), stored in 
−20 °C until transferred to TRIzolTM Reagent (#15596026, InvitrogenTM, Thermo Fisher Scientific) for mRNA 
isolation in accordance with manufacturer’s protocol. cDNA was reverse transcribed with the iSscriptTM cDNA 
Synthesis Kit (#1708890, Bio-Rad Laboratories) and treated with DNA-freeTM (#AM1906, InvitrogenTM, Thermo 
Fisher Scientific). Quantitative RT-PCR was performed using SYBR® Green Primers (Table 1) and RT2 SYBR® 
Green qPCR Mastermix (#330509, QIAGEN GmbH, Hilden, Germany) on a C1000 TouchTM Thermal Cycler 
(Bio-Rad Laboratories.) run to 40 cycles. Relative gene expression was calculated by normalizing to the house-
keeping gene GAPDH (ΔCT). Fold change was calculated as 2−ΔCT.

Quantifying area and volume of brain lesion.  Blood and spleen were collected from each animal before 
perfusion with 0.1 M phosphate-buffered saline (PBS) and 4% paraformaldehyde (PFA; pH 7.4) at 11.5 ml/min 
for 15 minutes. Brains and tibias were collected immediately after perfusion for histological analyses. Brains were 
post-fixed at 4 °C overnight and went through 3 changes of 30% sucrose in PBS over 5 days. Each brain was pho-
tographed from a top view from a fixed distance (9.15 cm) with a ruler in each frame. Brain gross lesion area was 
identified by tracing both the edge of the lesion area and the edge of the whole brain area from the brain top view 
images using Adobe Photoshop CS5. The brain gross lesion area, expressed in mm2, was calculated by dividing 
the number of pixels in the gross lesion area by the number of pixels in 1 square mm as referenced by the ruler in 
each image. The relative brain gross lesion area to the whole brain was calculated as the number of pixels in the 
gross lesion area divided by the number of pixels of the whole brain68.

Each brain was embedded in Tissue-Tek® O.C.T. compound (Sakura Finetek) and quick frozen in a dry ice 
chamber. Tissue was cut in 30 μm serial sections on a Shandon Cryotome FSE (Thermo Fisher Scientific) and 
left to dry overnight before storage at −80 °C. Brain sections were stained with thionin and the extent of the 
brain injury was quantified using histopathology to determine lesion volume. The lesion epicenter was identi-
fied as the section with the greatest amount of tissue loss. Bright-field images, beginning with every 3rd section 
away (720 μm) from the lesion epicenter until no injured tissue was present, were acquired in 2× magnification 
and analyzed by the imaging software program AnalyzerTM (BZ-9000 Generation II). Lesion and intact brain 
parenchyma were differentiated and a dividing line through the central sulcus produced ipsilateral and con-
tralateral areas. Spared brain volume, expressed in mm3, was calculated by taking the summation of each spared 
area multiplied by the distance between sections53. The total lesion volume was determined by subtracting the 
ipsilateral cortical volume from the contralateral cortical volume69. The relative total lesion volume to the whole 
brain volume was calculated by dividing the total lesion volume by the total brain volume (Fig. 9). Evaluation was 
performed blind to experimental conditions.

Housekeeping
mGAPDH Forward 5′-AGCCTCGTCCCGTAGACAAAAT-3′

mGAPDH Reverse 5′-CCGTGAGTGGAGTCATACTGGA-3′

Pro-Inflammatory

TNFα Forward 5′-TGCCTATGTCTCAGCCTCTTC-3′

TNFα Reverse 5′-GAGGCCATTTGGGAACTTCT-3′

IL-1β Forward 5′-TGTAATGAAAGACGGCACACC-3′

IL-1β Reverse 5′-TCTTCTTTGGGTATTGCTTGG-3′

Anti-Inflammatory

ARG1 Forward 5′-GAACACGGCAGTGGCTTTAAC-3′

ARG1 Reverse 5′-TGCTTAGCTCTGTCTGCTTTGC-3′

IL-10 Forward 5′-GCCAAGCCTTATCGGAAATG-3′

IL-10 Reverse 5′-CACCCAGGGAATTCAAATGC-3′

Table 1.  Primer Sequences.

Figure 9.  Schematic representation of (A) gross lesion area and (B) total lesion volume measurements made in 
the brain following controlled cortical contusion.
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Quantifying fracture healing.  Fractured tibiae were collected free of skin, washed in PBS, then fixed in 
4% PFA (pH 7.2–7.4) overnight, before decalcifying in 19% EDTA (pH 7.4) at 4 °C for 14–18 days. Samples were 
then dehydrated through a graded ethanol series and embedded in paraffin for histology. Tibiae were serially 
sectioned (10 μm) through the entire fracture callus using a microtome (Leica Microsystems), three sections 
placed per slide, and tissue was stained with Hall’s Brundt’s Quadruple (HBQ) stain to demark cartilage in blue 
and bone in red.

To determine the volume and the composition of the fracture callus, bone, cartilage, vascular tissue, and 
fibrous tissue were quantified at each time point using 40× magnification and stereology system (Olympus 
BX51 microscope and CAST stereology system) with the image analysis software (Visiopharm Integrator System 
version 6.10) as described previously25,54. Briefly, bright-field images, beginning with every 10th section away 
(300 μm) from edge to edge of the fracture callus, were acquired at 2× magnification, and the region of interest 
(ROI) was defined.by the entire outlines. Tissue composition within the ROI was quantified using automated uni-
form random sampling to meet or exceeds the established principles for deriving accurate and precise estimates 
using stereology70. Cell identity within each random sampling domain was determined at 20× magnification 
according to standard histological staining patterns and morphology25. Vascular tissue was considered as any 
portion of the fracture callus that fell within a blood vessel or marrow space of new bone. Finally, all composition 
measurement was calculated as each fracture tissue volume divided by total callus volume. Evaluation was per-
formed by reviewers blinded to experimental conditions.

Statistical analyses.  In an effort to be fully transparent and accelerate progress our data is available for 
data sharing on our website: https://scicrunch.org/odc-tbi. All bar and line graphs were made using GraphPad 
Prism version 8.01 software for Mac (GraphPad Software) to include individual data points (red circles) along 
with group bars representing the estimated marginal means and the standard error in general linear models 
(GLM), which were calculated by IBM SPSS Statistics for Windows, version 25.0 (IBM Corp., Armonk, NY, 
USA). Two-way analysis of variance (ANOVA) was used for multiple longitudinal comparisons using JMP® 
13 (SAS Institute) with the main effects of group (polytrauma combined, ipsilateral polytrauma, contralateral 
polytrauma, fracture only, TBI only) and time considered. F-ratios are reported with numerator and denominator 
degrees of freedom in subscript for all effects meeting the type I error rate of p < 0.05. One-way ANOVA with 
post-hoc analysis was used for multiple conditional comparisons followed by Tukey-Kramer Honestly Significant 
Difference (HSD) test. Principal component analysis (PCA) was performed using eigenvalue decomposition of 
the cross-correlation matrix of all outcome measures over time in SPSS for syndromic analysis of neurotrauma 
as described previously41,71–73. The outcome measurements from fracture callus in the TBI only group were input 
as a missing value rather than zero, and the brain lesion in the fracture only group were input as zero due to the 
intact brain for the validity of statistical analysis. Listwise deletion was used for missing value in the PCA. The 
syndromic outcome space was plotted using PC1-3 axes without the factor rotation using GPL code written 
within IBM SPSS v.25 syntax. Each PC reflects an orthogonal linear combination of the variables that accounts 
for the maximum amount of the total variance in all outcome measures. Number of principal components (PCs) 
were determined according to the criteria: (1) the Kaiser rule, retaining PCs with eigenvalues greater than 1; (2) 
the Cattell rule, retaining principal components above the elbow in the scree plot; (3) PC over-determination, 
retaining components with at least four PC loading values above |0.6|. PC scores were calculated using the regres-
sion method. All PC loading values above |0.3| were retained for PC interpretation. The validity of the PC loading 
pattern was assessed using GLM on the PCA derived scores for ANOVA followed by Tukey’s HSD post-hoc test. 
Effect size is reported as eta-squared and the precise observed power is reported for ANOVAs performed on 
PC scores. In all graphs, a statistically significant relationship among the groups for all outcome measures was 
indicated with a bar and an asterisk according to the following probabilities: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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