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Perceptual learning, which improves stimulus
discrimination, typically results from training with a
single stimulus condition. Two major learning
mechanisms, early cortical neural plasticity and
response reweighting, have been proposed. Here we
report a new format of perceptual learning that by
design may have bypassed these mechanisms. Instead, it
is more likely based on abstracted stimulus evidence
from multiple stimulus conditions. Specifically, we had
observers practice orientation discrimination with
Gabors or symmetric dot patterns at up to 47 random or
rotating location × orientation conditions. Although
each condition received sparse trials (12 trials/session),
the practice produced significant orientation learning.
Learning also transferred to a Gabor at a single
untrained condition with two- to three-times lower
orientation thresholds. Moreover, practicing a single
stimulus condition with matched trial frequency (12
trials/session) failed to produce significant learning.
These results suggest that learning with multiple
stimulus conditions may not come from early cortical
plasticity or response reweighting with each particular
condition. Rather, it may materialize through a new
format of perceptual learning, in which orientation
evidence invariant to particular orientations and
locations is first abstracted from multiple stimulus
conditions and then reweighted by later learning
mechanisms. The coarse-to-fine transfer of orientation
learning from multiple Gabors or symmetric dot
patterns to a single Gabor also suggest the involvement
of orientation concept learning by the learning
mechanisms.

Introduction

Training improves the sensitivity of humans to fine
differences of basic visual features. Typically, these

perceptual learning experiments are performed with a
specific stimulus condition (e.g., a specific orientation
or retinal location), and learning is often specific to
this condition. The specificity has prompted many
perceptual learning researchers to propose that the
observed sensitivity improvements may result from
tuning changes in early visual neurons (Karni &
Sagi, 1991; Schoups, Vogels, & Orban, 1995; Teich &
Qian, 2003) or reweighting of the responses of these
neurons that respond to the specific stimulus condition
(Mollon & Danilova, 1996; Dosher & Lu, 1998, 1999;
Yu, Klein, & Levi, 2004; Dosher, Jeter, Liu, & Lu,
2013). More recent evidence indicates that even specific
perceptual learning can be rendered significantly
and often completely transferrable to new stimulus
conditions with double training (Xiao et al., 2008;
Zhang et al., 2010; Zhang, Cong, Klein, Levi, & Yu,
2014; Wang et al., 2016; Xiong, Zhang, & Yu, 2016),
prevention of stimulus adaption (Harris, Gliksberg, &
Sagi, 2012), or covert attention to the trained stimuli
(Donovan, Szpiro, & Carrasco, 2015). It is thus unlikely
that learning is limited to sensory neurons directly
activated by the training stimuli or reweighting of the
responses of these neurons. Rather, more general rules
for response reweighting may have been abstracted
through reweighting responses to a specific stimulus,
so that perceptual learning is transferrable in principle
(Xiao et al., 2008; Zhang et al., 2010; Wang et al., 2016).

Here we present evidence for a new format of
perceptual learning that by design may bypass
the above early plasticity or response reweighting
mechanisms of learning. Our observers practiced
orientation discrimination of a Gabor stimulus at 12
locations and 4 orientations. The stimulus location
and orientation were changed from trial to trial,
but one location/orientation combination served as
the pre-/post-training condition and was skipped;
therefore, there were 47 training conditions and
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1 pre-/post-training test condition. During training,
each condition was repeated twice per block of trials,
for a total of 12 trials per daily session. The repeats of
the same condition were separated by 4 to 5 minutes,
on average, within a session. The purpose of having
very sparse trials with very long time gaps for each
training condition was to prevent learning if each
training condition was practiced alone. Therefore,
significant perceptual learning with multiple stimulus
conditions would suggest that the learning is less likely
based on early neural plasticity or response reweighting
associated with each particular condition. Rather, it
more likely occurs on the basis of abstracted evidence
from multiple stimulus conditions that are not specific
to particular stimulus orientations and locations.

Methods

Observers and apparatus

Sixty-eight observers (17–28 years old; 32 males
and 36 females) with normal or corrected-to-normal
vision were recruited from undergraduate and graduate
students. They were new to psychophysical experiments
and were naïve to the purposes of the study. The
experiments were approved by the Peking University
institutional review board. Informed written consent
was obtained before data collection from each observer.
This work was carried out in accordance with the
Code of Ethics of the World Medical Association
(Declaration of Helsinki).

The stimuli were generated with Psychtoolbox-3
(Pelli, 1997) and presented on a 21-in. CRT monitor
(1024 × 768 pixels; pixel size, 0.39 × 0.39 mm; 120-Hz
frame rate; 46.0 cd/m2 mean luminance). The screen
luminance was linearized by an 8-bit look-up table.
Viewing was binocular at a distance of 1 m, and a chin
and head rest stabilized the head. Viewing was through
a circular opening (diameter = 17°) in black cardboard
that covered the rest of the monitor screen. Experiments
were run in a dimly lit room. An EyeLink-1000 eye
tracker (SR Research, Kanata, Ontario, Canada)
monitored eye movements. A trial where the eye
position deviated from the fixation point for >2°
would be immediately aborted and later repeated. The
mean deviation from the fixation across all trials in
all observers was 0.71°, and the mean of individual
standard deviations was 0.36°; therefore, our data were
not significantly affected by improper eye movements.

Stimuli, tasks, and procedures

The stimuli included Gabor gratings (Gaussian-
windowed sinusoidal grating) and symmetric dot

patterns. The Gabor stimulus was 3 cpd in spatial
frequency, 47% in contrast, 0.68° in standard deviation,
and random in phase for every presentation. A
symmetric dot pattern consisted of 18 pairs of
bilaterally symmetric white dots (0.1° diameter),
which were confined to an area divided into 18 ×
18 invisible square compartments (0.16° × 0.16°
each). The placement of the 18 dots on one side of
the symmetry axis (within 18 rows by 9 columns of
available compartments) was subject to the following
constraints: (1) no dot was placed in the column
of compartments nearest to the symmetry axis; (2)
for the other 8 columns, 2 of them were randomly
chosen to hold 3 dots in each column, and each of the
remaining 6 columns contained 2 dots; (3) only one
dot was allowed in each of the 18 rows by randomly
assigning row numbers to the 18 dots on one side of
the symmetric pattern; and (4) the location of each
dot was randomly jittered by 0° to 0.04° from the
compartment center. After positioning the 18 dots on
one side of the symmetry axis, the whole symmetric
pattern was generated by placing 18 mirror-imaged
dots on the other side. The dot pattern was regenerated
for each stimulus presentation. A Gabor or symmetric
dot pattern was presented on a mean luminance screen
background at 5° retinal eccentricity.

The orientation discrimination threshold was
measured with a two-interval, forced-choice staircase
procedure. In each trial, a small fixation cross preceded
the first interval by 500 ms and stayed throughout the
trial. The stimuli at the reference orientation and the
test orientation (reference + �ori) were shown in two
100-ms (for a Gabor) or 200-ms (for a dot pattern)
stimulus intervals, respectively, in a random order. The
two stimulus intervals were separated by a 500-ms
interstimulus interval. The observers judged which
stimulus interval contained the more clockwise-oriented
stimulus. In addition, the contrast discrimination
threshold (for Gabor only) was measured with a similar
procedure, except that the stimulus contrast was varied
(reference + �contrast). The observers judged which
interval had higher contrast. Auditory feedback was
given on incorrect responses in both orientation and
contrast discrimination tasks.

Thresholds were estimated following a three-
down/one-up staircase rule that converged at a 79.4%
correct response rate. The step size of the staircase
was 0.05 log units. For pre-/post-training testing, each
staircase consisted of four preliminary reversals and
six experimental reversals (approximately 50–60 trials).
The geometric mean of the experimental reversals was
taken as the threshold for each staircase run. During
training with multiple random or rotating conditions
(see Training designs, below), a single staircase varied
the orientation or contrast difference for all stimulus
conditions through 94 trials (two for each condition).
The number of training trials with the baseline group
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Figure 1. Perceptual learning of orientation discrimination with a location- and orientation-changing Gabor stimulus. (a) A Gabor
stimulus varied at 47 location/orientation conditions trial by trial during training. The red circle and arrow indicate the
pre-/post-training stimulus location/orientation that was skipped during training. (b) The session-by-session threshold changes with
the random Gabor over 47 stimulus conditions during training, as well as the pre-/post-training thresholds at an untrained condition.
(c) The same as (b) except that the Gabor rotated in location and orientation during training. (d) The threshold changes in the baseline
condition in which training and pre-/post-training testing were performed with the same stimulus condition. (e) A comparison of the
transfer and learning effects. The dashed line shows linear regression. (f) The pretest effects; this control group completed the same
pre- and post-tests but skipped the training sessions. (g) A summary of learning (and transfer when applicable) with different groups
of observers. Error bars indicate ±1 standard error of the mean.

was equal to the total number of training trials for
the groups with multiple stimulus conditions. The
geometric mean of the last six reversals was taken as the
threshold for each staircase run. A pre- or post-training
testing session consisted of five staircases. The training
consisted of five daily sessions, each consisting of six
staircases. Each session lasted approximately 1 hour.

Training designs

During multiple stimulus condition training, a
Gabor varied at 12 equally spaced locations (2.6 arcdeg
apart) and 4 equally spaced reference orientations (45°
apart: 20°, 65°, 110°, and 155°) (Figure 1a). The orders
of stimulus presentation were different between two
multiple-condition training groups. For observers in
the random group, the stimulus location and reference
orientation were randomized from trial to trial, but,
for those in the rotating group, the stimulus location
rotated in a counterclockwise order, and the reference
orientation rotated in a clockwise order. There were
47 training conditions and one pre-/post-training

condition that was skipped during training. For a
third baseline group, the training condition was the
same as the pre-/post-training condition, whereas the
number of training trials was the same as those in the
random and rotating groups. The pre-/post-training
location/orientation for each observer in the random,
rotating, and baseline groups was randomly chosen
from four location/orientation conditions, which were
a combination of two reference orientations at 20° and
110° (to avoid oblique effects), and two locations at
the 1-o’clock position and the 7-o’clock position. The
pre-/post-training conditions were roughly matched
among groups. Multiple-condition training with
symmetric dot patterns was also performed, along with
a number of control conditions, which are detailed in
the Results section.

Sample size and statistical analysis

Our previous studies indicated that when data from
two or three experiments are compared, a sample size
of eight observers is sufficient to produce strong effect
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sizes (Xiong et al., 2016; Xiong, Tan, Zhang, & Yu,
2019). We basically followed this rule of thumb to
determine the sample size (8 to 10 in all experiments).

Data were analyzed with SPSS Statistics 20.0 (IBM,
Armonk, NY). The learning effects were measured
by the percent threshold improvements from pre- to
post-test session or from first to fifth training session.
One-way analysis of variance (ANOVA) and t-tests
were used to analyze the threshold improvements. The
statistical powers were measured with Cohen’s d in
t-tests and partial eta-squared in ANOVA.

Results

We were interested in two learning effects: first and
in particular, whether training with multiple stimulus
conditions would generate significant learning; and
second, whether such learning could transfer to the
untrained pre-/post-training condition, and how much
the transfer would be when compared to the baseline
group that practiced the pre-/post-training condition
directly.

The first learning effect for the multiple stimulus
conditions was calculated as the percent threshold
improvement from the first to the fifth (last) training
session (Figures 1b and 1c). For the random group
(n = 10), the stimulus location and orientation
were randomized from trial to trial. The orientation
thresholds with multiple stimulus conditions were
about three times as high as the pre-/post-training
condition that contained a single stimulus, and
training reduced the thresholds with multiple stimulus
conditions by 37.0 ± 6.2% (t9 = 5.93; p < 0.001;
95% confidence interval [CI], 22.9–51.1; Cohen’s
d = 1.87; two-tailed paired t-test here and in later
analyses unless otherwise specified) (Figures 1b and
1g). We suspected that the higher thresholds might
have resulted from increased stimulus uncertainty due
to stimulus randomization. Therefore, we had the
rotating group (n = 8) practice the same stimuli while
the stimulus location and orientation were rotated.
Such orderly stimulus presentations would reduce
stimulus uncertainty and facilitate learning (Kuai,
Zhang, Klein, Levi, & Yu, 2005; Zhang et al., 2008).
However, the orientation thresholds with rotating
conditions were also more than twice as high as those
with the pre-/post-training condition, indicating that
the high thresholds were not much related to stimulus
uncertainty. Training reduced orientation thresholds
with rotating conditions by 46.0 ± 3.3% (t7 = 13.74;
p < 0.0001; 95% CI, 38.1–53.9; Cohen’s d = 4.86)
(Figures 1c and 1g). There was no significant difference
for learning between the random and rotating groups
(t16 = 1.17; p = 0.259; 95% CI, –7.2 to 25.1; Cohen’s
d = 0.58; two-tailed independent t-test). These

results indicate that our observers were able to learn
orientation discrimination with changing stimulus
locations and orientations, regardless of whether
the stimuli were presented in random or rotating
orders.

The second learning effect, or the transfer effect at the
untrained pre-/post-training condition, was calculated
as the percent threshold improvement from the pre-
to the post-training session. As mentioned earlier,
the pre-training orientation thresholds with multiple
random or rotating stimulus conditions were two to
three times as high as those with the single stimulus
pre-/post-training condition. Nevertheless, training
with multiple stimulus conditions improved orientation
thresholds at the untrained pre-/post-training condition
by 20.6 ± 6.3% (t9 = 3.27; p = 0.010; 95% CI, 6.3–34.8;
Cohen’s d = 1.03) for the random group (Figure 1b) and
by 36.0 ± 7.2% (t7 = 5.03; p = 0.002; 95% CI, 19.1–53.0;
Cohen’s d = 1.78) for the rotating group (Figure 1c).
The orientation thresholds for the baseline group
(n = 10), which used the same single condition for
training and pre-/post-training testing, improved
by 28.5 ± 6.6% (t9 = 4.35; p = 0.002; 95% CI,
13.6–43.3; Cohen’s d = 1.37) (Figures 1d and 1g).
One-way ANOVA found no significant difference of
improvements among the three groups (F(2, 25) = 1.29;
p = 0.293; η2 = 0.094).

Moreover, we found that the learning effects with
multiple-condition training and the transfer effects
at the untrained pre-/post-training condition were
positively correlated (Figure 1e). Pearson r = 0.50
(p = 0.037) when data from the random and rotating
groups were pooled for analysis. Therefore, orientation
learning with multiple stimulus conditions transferred
to an untrained single stimulus condition, with more
learning leading to more transfer.

We also had a control group of observers
(n = 8) repeat the same pre-/post-test sessions but skip
the training sessions to measure the pretest effects.
The orientation thresholds were changed by merely
4.0 ± 5.5% (t7 = 0.73; p = 0.491; 95% CI, –9.0 to 17.0;
Cohen’s d = 0.26) (Figure 1f). Therefore, the learning
transfer to the untrained pre-/post-training conditions
from orientation learning with multiple conditions
(Figures 1b and 1c) could not be completely accounted
for by the pretest effects.

Another control experiment ruled out two more
alternative explanations of the above learning effects
with multiple location/orientation conditions: First, the
learning effects could be task unspecific in the visual
periphery. Second, even the sparse trials at a single
training condition were sufficient to produce learning.
In the experiment, observers practiced contrast
discrimination instead of orientation discrimination,
with a Gabor stimulus rotating in locations and
orientations. Moreover, instead of skipping the
pre-/post-training test condition, the observers were
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Figure 2. The control experiment for the effects of task
unspecific learning and sparse training at a single condition. (a)
The observers practiced contrast discrimination with a Gabor
stimulus rotating at 47 training conditions. They also performed
orientation discrimination at one condition, indicated by the
red circle and arrow, when the Gabor rotated to it, as well as in
pre-/post-training testing. (b) The session-by-session contrast
threshold changes with the rotating Gabor (right y-coordinate),
as well as the pre-/post-training orientation thresholds at a
single sparsely orientation trained condition (left y-coordinate).
(c) Control of the control; the session-by-session orientation
threshold changes with the rotating Gabor over 47 stimulus
conditions during training while the contrast of the Gabor was
jittered, as well as the pre-/post-training thresholds at an
untrained condition. (d) Summary of learning and transfer
effects in (b) and (c). Error bars indicate ±1 standard error of
the mean.

pre-cued to perform orientation discrimination when
the Gabor rotated to this condition (2 trials per staircase
and 12 trials per daily session) (Figure 2a).

Training reduced contrast thresholds by
25.9 ± 5.0% (t7 = 5.15; p = 0.001; 95% CI, 14.0–37.8;
Cohen’s d = 1.82) (Figures 2b and 2d); therefore, the
observers could also learn contrast discrimination with
multiple location/orientation conditions. However,
the orientation thresholds were not significantly
changed for the sparsely orientation trained and
pre-/post-training tested condition (10.4 ± 6.3%;
t7 = 1.66; p = 0.142; 95% CI, –4.5 to 25.3; Cohen’s
d = 0.59). Here the changes of orientation thresholds
showed large individual differences, probably reflecting
various degrees of general task-unspecific learning in

individual observers. However, the orientation threshold
changes were significantly less than the transfer effects
from orientation learning of the same rotating stimuli
in Figure 1c (10.4 ± 6.3% vs. 36.0 ± 7.2%; t14 = 2.68;
p = 0.018; 95% CI, 5.1–46.0; Cohen’s d = 1.34), but
were similar to the pretest effects in Figure 1f (10.4 ±
6.3% vs. 4.0± 5.5%; t14 = 0.77; p= 0.455; 95%CI, –11.5
to 24.3; Cohen’s d = 0.38). Therefore, the observed
multiple stimulus orientation learning (Figures 1b and
1c) could not be fully accounted for by general learning.
Moreover, practice with sparse trials at a single training
condition alone was insufficient to produce learning at
that particular condition.

There was a concern that the contrast-varying
stimuli per se could prevent orientation learning, which
would invalidate the above control (Figure 2b). To
address this issue, we ran a control of the control by
having six new observers repeat the multiple-condition
orientation learning experiment in Figure 1c, but
with the stimulus contrast varied. Specifically, the
observers practiced 47 rotating orientation/location
conditions while the contrast of the Gabor was jittered
±1.2 times the average contrast thresholds in the first
training session (Figure 2b). Training improved the
orientation thresholds with 47 stimulus conditions by
34.2 ± 9.8% (t5 = 3.48; p = 0.018; 95% CI, 8.9–59.5;
Cohen’s d = 1.42) and the untrained pre-/post-training
condition by 21.5 ± 6.4% (t5 = 3.35; p = 0.020; 95% CI,
5.0–37.9; Cohen’s d = 1.37) (Figures 2c and 2d). These
data therefore validated the above control experiment
with contrast-varying stimuli.

In earlier experiments (Figure 1), the stimulus varied
at 12 equally spaced locations. The center-to-center
distance between two adjacent locations was 2.6 arcdeg.
There was a chance that some V1 neurons with larger
receptive fields could integrate stimulus evidence from
adjacent locations to facilitate learning. To minimize
this possibility, in a third control experiment we
reduced the stimulus locations in Figure 1a by half to
increase the center-to-center distance to 5 arcdeg, with
all other stimulus parameters remaining unchanged
(Figure 3a). There were now six Gabor locations and
four Gabor orientations, for a total of 24 combined
location/orientation conditions. The Gabor stimulus
randomized among 23 training conditions but skipped
the 24th pre-/post-training condition. The observers
practiced orientation discrimination at each training
condition with the same number of trials (2 trials per
staircase and 12 trials per daily session) as before.

Training improved orientation discrimination
with the random Gabor by 17.9 ± 7.6% (t8 = 2.35;
p = 0.047; 95% CI, 0.3–35.6; Cohen’s d = 0.78) (Figures
3b and 3c; the six-location Gabor learning condition).
In the earlier 12-location condition (Figure 1b), training
with the same number of trials (2.5 training sessions)
improved orientation thresholds with the random
Gabor by 22.4 ± 7.1% (t9 = 3.16; p = 0.012; 95% CI,
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Figure 3. Orientation learning with the Gabor randomized at six locations. (a) A Gabor stimulus randomly varied among 23
location/orientation conditions trial by trial during training. The red circle and arrow indicate the pre-/post-training testing location
and orientation where no training was performed. (b) The session-by-session threshold changes with the random Gabor, as well as
the pre-/post-training thresholds at the untrained condition. (c) A summary of orientation learning with the random Gabor at six
locations and its transfer to an untrained pre-/post-training condition, as well as orientation learning with matched number of trials
from the earlier 12-location training condition. Error bars indicate ±1 standard error of the mean.

6.4–38.4; Cohen’s d = 1.00) (Figure 3c; 12-location
learning condition). The improvements with matched
numbers of trials in two training conditions were similar
(t17 = 0.43; p = 0.677; 95% CI, –17.5 to 26.4; Cohen’s
d = 0.20) (Figure 3c; six-location vs. 12-location
learning conditions). These results showed that the
observers could learn orientation discrimination with
multiple stimulus conditions when the inter-stimulus
distance was nearly doubled to further reduce possible
spatial integration of stimulus evidence by V1 neurons
having relatively large receptive fields. Instead, the
amount of learning was dependent on the accumulation
of stimulus evidence (or the number of training trials)
from multiple training conditions. In addition, the
learning also transferred to the pre-/post-training
condition (12.6 ± 5.2%; t8 = 2.42; p = 0.042; 95% CI,
0.6–24.6; Cohen’s d = 0.81) (Figures 3b and 3c; single
Gabor transfer condition).

Previously, we showed that orientation learning
from single-condition training can transfer between
symmetric dot patterns and Gabor gratings that are
physically distinct (Wang et al., 2016). Here we tested
whether training with multiple symmetric dot patterns
could also improve orientation discrimination and
whether learning could transfer to a Gabor grating.

Nine new observers practiced orientation
discrimination with the symmetry axis of the dot
pattern, with the axis rotating trial by trial at 47
location/orientation conditions (Figure 4a) in a
manner identical to that with the previous rotating
Gabor training conditions (Figure 1c). Before and
after training, orientation thresholds with the Gabor
grating were measured at the untrained condition.
Training improved orientation thresholds with the
rotating symmetry axis by 33.1 ± 6.1% (t8 = 5.47;
p = 0.001; 95% CI, 19.1–47.1; Cohen’s d = 1.82)

(Figures 4b and 4c), again demonstrating orientation
learning with multiple stimulus conditions when the
trials for each condition were sparse. It also improved
Gabor orientation discrimination at the untrained
pre-/post-training condition by 25.5 ± 6.1% (t8 = 4.16;
p = 0.003; 95% CI, 11.4–39.7; Cohen’s d = 1.39)
(Figures 4b and 4c). The learning and transfer effects
were also positively correlated (r = 0.765; p = 0.016)
(Figure 4d). This transfer of orientation learning from
symmetry axis to grating, as well as the correlation
between the learning and transfer effects, indicated that
the stimulus physical properties were also detached
from current orientation learning, consistent with our
proposal that perceptual learning at its core is concept
learning (e.g., improving the conceptual representation
of orientation) (Wang et al., 2016).

Discussion

In this study, we demonstrated evidence for a new
format of perceptual learning. Superficially, what
makes this new format of learning unique is the
extreme experimental design. The observers practice
as many as 47 stimulus conditions, each of which is
repeated sparsely with long time gaps (4–5 min), and
yet significant learning is evident. Fundamentally,
learning with the current experimental design could
bypass the hypothesized early cortical plasticity and
response reweighting mechanisms that are specific
to the trained stimuli. Because practicing a single
Gabor condition with matched trial frequency failed to
produce significant learning (Figure 2), learning with
multiple stimulus conditions is less likely based on early
cortical plasticity or response reweighting associated
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Figure 4. Perceptual learning of orientation discrimination with
rotating symmetry axis. (a) Symmetric dot patterns with their
axes rotated in location and orientation among 47 training
conditions trial by trial. Each dashed red line indicates the
invisible symmetry axis of a dot pattern. The red circle and
arrow represent the location and orientation of a Gabor
stimulus used only in pre-/post-training measurements. (b) The
session-by-session threshold changes with the rotating
symmetry axis (right y-coordinate), as well as the
pre-/post-training thresholds with the Gabor at an untrained
condition (left y-coordinate). (c) A summary of orientation
learning with the rotating symmetry axis and its transfer to
Gabor orientation discrimination at the untrained condition. (d)
A comparison of the learning effects with symmetric dot
patterns and transfer effects with a Gabor. The dashed line
shows linear regression. Error bars indicate ±1 standard error
of the mean.

with each particular condition. Rather, some high-level
processes may abstract stimulus evidence from multiple
stimulus conditions (i.e., taking orientation inputs
with particular orientation and location information
discarded) before reweighting can take place to produce
learning.

What characterizes the new format of perceptual
learning is probably the greatly elevated thresholds
with multiple stimulus conditions that are two
to three times as high as those with the single
stimulus condition (Figure 1). This suggests that
the abstracted orientation evidence from multiple
stimulus conditions may be more coarsely represented
at some higher visual areas such as V4. V4 neurons

have larger receptive fields and poorer orientation
tuning than V1 neurons, so orientation evidence
represented by V4 would lead to higher orientation
discrimination thresholds. Indeed, neurophysiological
evidence has suggested the involvement of V4 in
orientation discrimination learning (Yang & Maunsell,
2004; Raiguel, Vogels, Mysore, & Orban, 2006).
Another prominent characteristic in the new learning
format is that the coarse orientation learning with
multiple stimulus conditions still transfers to fine
orientation representation with the single Gabor at
the pre-/post-training condition (Figure 1), even from
multiple symmetric dot patterns to a single Gabor
(Figure 4). This transfer may be attributed to a third,
conceptual representation of orientation. As we
proposed previously, perceptual learning can operate
at a conceptual level, so that learning is transferrable
to stimuli defined by distinct physical properties and
discriminated at different precisions or thresholds
(Wang et al., 2016).

To account for the frequently observed transfer
of perceptual learning to untrained retinal locations,
Dosher et al. (2013) updated their reweighting model by
adding a higher level, location-unspecific representation
of the stimulus feature on top of the original location-
specific representation and simultaneously modeling
learning (reweighting) at both representations. In this
context, our multiple-condition training design limits
learning to the higher level stimulus representation
while bypassing the low-level stimulus representation.

Our results may also provide important constraints
to a future version of the integrated reweighting model.
First, the model may need to allow learning transfer
across orientations, as demonstrated in our previous
double-training studies (Zhang et al., 2010; Xiong
et al., 2016). Dosher et al. (2013) emphasized that the
model predicts strict orientation specificity, which
is inconsistent with the existing orientation transfer
results. Second, the model may need to allow learning
at a higher level stimulus representation to transfer
completely to a low-level stimulus representation, as
Figure 1 indicates. Third, the model may need to allow
learning transfer between stimuli, such as the Gabor
gratings and random dot patterns used in this study,
that are physically different, are based on different
neural encoders, and have different levels of precision
(thresholds) (Wang et al., 2016; Xie & Yu, 2019)
(Figure 4). The transfer effects in the second and third
cases could be achieved by adding a more abstract
and conceptual representation of the stimulus feature,
in which the stimulus inputs could be standardized
and thus invariant to stimulus locations, orientations,
physical properties, neural encoders, and precisions
(Wang et al., 2016).

Our training paradigm and the results have important
clinical implications. For patients with central vision
loss, such as age-related macular degeneration, the
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current effort is to establish a preferred retinal locus
(PRL) as the new “fovea” for peripheral viewing
(Kwon, Nandy, & Tjan, 2013). This may not be the
best idea because long-distance saccades are required
to view the targets on the opposite side of the central
scotoma. Moreover, PRL-based saccades tend to block
the targets with the central scotoma (White & Bedell,
1990; Whittaker, Cummings, & Swieson, 1991) because
the old foveating habits cannot be abandoned easily.
Our results showed that the same number of trials can
produce similar learning effects at multiple orientation
and location conditions versus at a single condition
(Figure 1). There was also an additional benefit of
learning being unspecific. These findings suggest the
feasibility of training a preferred retinal annulus (PRA)
around the scotoma without much extra efforts. The
patients would learn to use the nearest part of the PRA
to make shorter and more precise saccades to view a
peripheral target, and the eye movements would still
be fovea based. Such a PRA training strategy may
dramatically speed up the vision training for patients
with central scotoma, as supported by our preliminary
data in observers with artificial scotoma (Xie, Liu, &
Yu, 2018).

Keywords: perceptual learning, orientation, abstraction

Acknowledgments

This research was supported by Natural Science
Foundation of China Grant 31230030.

Commercial relationships: none.
Corresponding author: Cong Yu.
Email: yucong@pku.edu.cn.
Address: School of Psychology, Peking University,
Beijing, China.

References

Donovan, I., Szpiro, S. F., & Carrasco, M. (2015).
Exogenous attention facilitates location transfer of
perceptual learning. Journal of Vision, 15, 11.

Dosher, B. A., Jeter, P., Liu, J., & Lu, Z. L. (2013).
An integrated reweighting theory of perceptual
learning. Proceedings of the National Academy of
Sciences, USA, 110, 13678–13683.

Dosher, B. A., & Lu, Z. L. (1998). Perceptual learning
reflects external noise filtering and internal noise
reduction through channel reweighting. Proceedings
of the National Academy of Sciences, USA, 95,
13988–13993.

Dosher, B. A., & Lu, Z. L. (1999). Mechanisms of
perceptual learning.Vision Research, 39, 3197–3221.

Harris, H., Gliksberg, M., & Sagi, D. (2012).
Generalized perceptual learning in the absence of
sensory adaptation.Current Biology, 22, 1813–1817.

Karni, A., & Sagi, D. (1991). Where practice makes
perfect in texture discrimination: evidence for
primary visual cortex plasticity. Proceedings of the
National Academy of Sciences, USA, 88, 4966–
4970.

Kuai, S. G., Zhang, J. Y., Klein, S. A., Levi, D. M.,
& Yu, C. (2005). The essential role of stimulus
temporal patterning in enabling perceptual learning.
Nature Neuroscience, 8, 1497–1499.

Kwon, M., Nandy, A. S., & Tjan, B. S. (2013). Rapid
and persistent adaptability of human oculomotor
control in response to simulated central vision loss.
Current Biology, 23, 1663–1669.

Mollon, J. D., & Danilova, M. V. (1996). Three remarks
on perceptual learning. Spatial Vision, 10, 51–58.

Pelli, D. G. (1997). The VideoToolbox software for
visual psychophysics: transforming numbers into
movies. Spatial Vision, 10, 437–442.

Raiguel, S., Vogels, R., Mysore, S. G., & Orban, G. A.
(2006). Learning to see the difference specifically
alters the most informative V4 neurons. Journal of
Neuroscience, 26, 6589–6602.

Schoups, A. A., Vogels, R., & Orban, G. A. (1995).
Human perceptual learning in identifying the
oblique orientation: retinotopy, orientation
specificity and monocularity. Journal of Physiology,
483, 797–810.

Teich, A. F., & Qian, N. (2003). Learning and
adaptation in a recurrent model of V1 orientation
selectivity. Journal of Neurophysiology, 89,
2086–2100.

Wang, R., Wang, J., Zhang, J. Y., Xie, X. Y., Yang, Y.
X., Luo, S. H., . . . Li, W. (2016). Perceptual learning
at a conceptual level. Journal of Neuroscience, 36,
2238–2246.

White, J. M., & Bedell, H.E. (1990). The oculomotor
reference in humans with bilateral macular disease.
Investigative Ophthalmology & Visual Science, 31,
1149–1161.

Whittaker, S. G., Cummings, R. W., & Swieson, L. R.
(1991). Saccade control without a fovea. Vision
Research, 31, 2209–2218.

Xiao, L. Q., Zhang, J. Y., Wang, R., Klein, S. A., Levi,
D. M., & Yu, C. (2008). Complete transfer of
perceptual learning across retinal locations enabled
by double training. Current Biology, 18, 1922–1926.

Xie, X. Y., Liu, L., & Yu, C. (2018). Establishing a
preferred retinal annulus (PRA): A new training



Journal of Vision (2020) 20(2):5, 1–9 Xie & Yu 9

paradigm to improve vision in patients with central
scotoma. Journal of Vision, 18, 1067.

Xie, X. Y., & Yu, C. (2019). Perceptual learning of
Vernier discrimination transfers from high to zero
noise after double training. Vision Research, 156,
39–45.

Xiong, Y. Z., Tan, D. L., Zhang, Y. X., & Yu, C.
(2019). Complete cross-frequency transfer of tone
frequency learning after double training. Journal of
Experimental Psychology: General, 149, 94–103.

Xiong, Y. Z., Zhang, J. Y., & Yu, C. (2016). Bottom-up
and top-down influences at untrained conditions
determine perceptual learning specificity and
transfer. Elife, 5, 14614.

Yang, T., & Maunsell, J.H. (2004). The effect of
perceptual learning on neuronal responses in
monkey visual area V4. Journal of Neuroscience, 24,
1617–1626.

Yu, C., Klein, S. A., & Levi, D. M. (2004). Perceptual
learning in contrast discrimination and the
(minimal) role of context. Journal of Vision, 4,
169–182.

Zhang, J. Y., Cong, L. J., Klein, S. A., Levi, D. M., &
Yu, C. (2014). Perceptual learning improves adult
amblyopic vision through rule-based cognitive
compensation. Investigative Ophthalmology &
Visual Science, 55, 2020–2030.

Zhang, J. Y., Kuai, S. G., Xiao, L. Q., Klein, S. A., Levi,
D. M., & Yu, C. (2008). Stimulus coding rules for
perceptual learning. PLoS Biology, 6, 1651–1660.

Zhang, J. Y., Zhang, G. L., Xiao, L. Q., Klein, S.
A., Levi, D. M., & Yu, C. (2010). Rule-based
learning explains visual perceptual learning and its
specificity and transfer. Journal of Neuroscience, 30,
12323–12328.


