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Abstract: Atrazine (ATR) is a herbicide globally used to eliminate undesired weeds. Herbicide
usage leads to various adverse effects on human health and the environment. The primary source of
herbicides in humans is the food laced with the herbicides. The ATR binding to trypsin (TYP) was
investigated in this study to explore its binding potential and toxicity. In vitro interaction of ATR
with TYP was studied using multi-spectroscopic methods, molecular docking, and enzyme kinetics to
explore the mechanism of binding for the TYP-ATR system. The TYP-ATR complex revealed binding
constants (103 M−1), suggesting a moderate binding. The free energy for the TYP-ATR complexes
was negative, suggesting a spontaneous interaction. Thermodynamic parameters enthalpy (∆H) and
entropy (∆S) obtained positive values for the TYP-ATR system suggesting hydrophobic interactions
in the binding process. Micro-environmental and conformational changes in TYP molecules were
induced on interaction with ATR. Reduced catalytic activity of TYP was observed after interaction
with ATR owing to the changes in the secondary structure of the TYP.

Keywords: atrazine; trypsin; activity; fluorescence; quenching; docking

1. Introduction

Herbicide usage is widely practiced in crops to eliminate unwanted plants and weeds,
thus essential in food production sustainability [1,2]. However, herbicides are highly toxic
chemicals to all organisms, resulting in adverse effects on humans and the environment
since they persist in nature for more extended periods [3–6]. Chemically atrazine (ATR) is
2-chloro-4-ethylamine-6-isopropylamine-1,3,5-triazine (Figure 1) and belongs to the triazine
family. An estimated 5.6 billion pounds of herbicides are used worldwide annually [7].
The ATR usage increases production by controlling broadleaf and grassy weeds [8,9]. ATR
is highly persistent in the environment and has a half-life of 100 days in surface water. It
is commonly detected in contaminated groundwater and waterways [10,11]. Therefore,
long-term exposure to ATR can cause adverse effects on human health [12]. Several
animal studies confirm that ATZ has endocrine-disrupting ability across multiple animal
classes [13,14]. However, few studies reported that ATR inhibits the specific binding of
various types of protein receptors (estrogens and progesterone) and therefore interferes
with the reproductive health of animals [15,16]. ATZ exposure is also reported to cause
epigenetic alterations in DNA methylation and microRNA activity [17,18].
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also reported to cause epigenetic alterations in DNA methylation and microRNA activity 
[17,18]. 

 
Figure 1. Chemical Structure of ATR. 

In recent years, proteins have been the main investigational target to study the tox-
icity of environmental pollutants, especially pesticides, which induce changes in the pro-
tein’s structural (conformation) and biological function [19–21]. Proteases are essential 
proteins that play various roles (catalytic ability during physiological and pathological 
processes) in different biologically relevant processes [22–25]. Trypsin (TYP), a 23.3 kDa 
protein containing 223 amino acids, 4-tryptophan, 10-tyrosine, and 6-phenylalanine, is a 
vital protease (serine-endopeptidase) in the digestive system (pancreas of all vertebrates). 
Trypsin is essential for multifarious biological functions, including digestion and decon-
struction of food proteins and other essential physiological processes [22–24]. The catalytic 
activity and conformational changes of TYP are affected by exogenous environmental pol-
lutants that cause pathological alterations in humans [26,27]. Since no study has been con-
ducted on TYP interaction with ATR, we investigated the interaction mechanism between 
them and evaluated the conformational changes in TYP. This study provided an insight 
into the toxicity mechanism of ATR at the molecular level. The influence of ATR on the 
conformations and catalytic activities of TYP was also explored in this study. Spectro-
scopic techniques, molecular modeling, and TYP enzyme activity experiments were con-
ducted to comprehend the toxicity mechanism of ATR on the TYP. 

2. Materials and Methods 
2.1. Materials 

Trypsin (bovine pancreas) ATR, N-α-Benzoyl-D, L-arginine-P-nitroanilide hydro-
chloride in (BApNA) were all obtained from Sigma-Aldric Co. (St. Louis, MO, USA). An-
alytical grade solvent and chemicals purchased locally were used in the study. 

Figure 1. Chemical Structure of ATR.

In recent years, proteins have been the main investigational target to study the toxicity
of environmental pollutants, especially pesticides, which induce changes in the protein’s
structural (conformation) and biological function [19–21]. Proteases are essential proteins
that play various roles (catalytic ability during physiological and pathological processes)
in different biologically relevant processes [22–25]. Trypsin (TYP), a 23.3 kDa protein con-
taining 223 amino acids, 4-tryptophan, 10-tyrosine, and 6-phenylalanine, is a vital protease
(serine-endopeptidase) in the digestive system (pancreas of all vertebrates). Trypsin is
essential for multifarious biological functions, including digestion and deconstruction of
food proteins and other essential physiological processes [22–24]. The catalytic activity
and conformational changes of TYP are affected by exogenous environmental pollutants
that cause pathological alterations in humans [26,27]. Since no study has been conducted
on TYP interaction with ATR, we investigated the interaction mechanism between them
and evaluated the conformational changes in TYP. This study provided an insight into
the toxicity mechanism of ATR at the molecular level. The influence of ATR on the con-
formations and catalytic activities of TYP was also explored in this study. Spectroscopic
techniques, molecular modeling, and TYP enzyme activity experiments were conducted to
comprehend the toxicity mechanism of ATR on the TYP.

2. Materials and Methods
2.1. Materials

Trypsin (bovine pancreas) ATR, N-α-Benzoyl-D, L-arginine-P-nitroanilide hydrochlo-
ride in (BApNA) were all obtained from Sigma-Aldric Co. (St. Louis, MO, USA). Analytical
grade solvent and chemicals purchased locally were used in the study.
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2.2. Sample Preparation

The TYP solution (0.25 mM) was prepared in phosphate-buffered saline (0.1 M contain-
ing dibasic (Na2HPO4), monobasic (NaH2PO4), and NaCl) stock solution of ATR (0.5 mM)
in anhydrous methanol and BApNA (3 mM) was prepared in DMSO. All the reagents were
stored at 2–8 ◦C until use. Buffers were prepared in ultra-pure water.

2.3. Instrumentations

The UV-vis absorption spectra were recorded with a UV-1800 double beam spec-
trophotometer (Shimadzu, Kyoto, Japan). The fluorescence measurements were recorded
with an RF-5301PC spectrofluorometer (Shimadzu, Kyoto, Japan). The circular dichro-
ism (CD) measurements were recorded on a JASCO J-1500CD spectrophotometer. FT-
IR measurements were carried out on Avatar 360 E.S.P. FT-IR spectrometer (Thermo,
Montral-Est, QC, Canada)

2.4. Methods
2.4.1. UV-Vis Spectral Measurements

The UV-vis spectra of TYP were recorded in the presence of ATR (0–30 µM). Experi-
ments were performed at fixed TYP concentration (10 µM).

2.4.2. Steady-State Fluorescence Spectroscopy

Fluorescence emission spectra of TYP (10 µM) titrated against ATR (0–45 µM) at 298,
303, and 308 K were recorded. The emission wavelength range was set to 300–500 nm after
excitation at 280 nm.

2.4.3. Synchronous Fluorescence Spectroscopy (SFS) Experiments

Synchronous fluorescence spectra measurements of TYP (10 µM) titrated with in-
creasing concentrations of ATR (0–45 µM) were recorded in separate experiments by
setting wavelength interval (∆λ) at 15 nm (for tyrosine residues (Y)) and 60 nm (for trypto-
phan residues (w)) in the same experimental conditions as the steady-state fluorescence
emission spectra.

2.4.4. Circular Dichroism (CD) Spectroscopy Measurements

The CD spectra of TYP (5 µM) with ATR (0 and 10 µM) were recorded from 190–260 nm
with a scan speed of 20 nm min−1 and 1 nm bandwidth. The recorded spectrum was
analyzed by the web-based software package tool, CAPITO-CD Analysis and Plotting Tool
(uni-jena.de, accessed on 10 April 2022), to evaluate different secondary structures of TYP
after being treated with ATR.

2.4.5. Fourier Transform Infrared Spectroscopic (FTIR) Analysis

The FTIR spectra for TYP were recorded with ATR. The FTIR spectroscopy of free TYP
(20 µM) and TYP (20 µM)-ATR (100 µM) were recorded in the range of 1800–1400 cm−1. The
corresponding absorbance of buffer and ATR solutions recorded under similar conditions
was subtracted from the spectra.

2.4.6. Computational Analysis

The molecular structure of TYP (PDB ID: 2ZQ1) was obtained from Protein Data Bank
(RCSB), http://www.rcsb.org/pdb, accessed on 3 March 2022). Molecular modeling of
the ATR−TYP complexation was performed using AutoDock Vina. For docking purposes,
water, metal ions, and the initially bound ligand were removed, and hydrogen atoms were
added during protein preparation. The pdb structure of ATR was obtained from Pubchem
(ID: 2256), and its energy-minimized conformation was analyzed using Chem3D Pro14.0.
During the docking study, a grid box defined to enclose the entire binding site of trypsin
with dimensions of 40 Å × 40 Å × 40 Å and a grid spacing of 0.375 Å was used. The grid

http://www.rcsb.org/pdb
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center of the TYP-ATR system was set at −26.319, 1.973, and 16.726. The docked structure
of the TYP-ATR system was analyzed with Discovery studio 4.5.

2.4.7. Measurement of Trypsin Activity

The activity of TYP was measured using BApNA as a substrate according to the
reported literature [28–30]. The absorbance at 400 nm was recorded to evaluate the TYP
activity. The relative activity of TYP was expressed as the ratio of activity with and without
ATR. The kinetic parameters were determined using a fixed concentration of TYP (5 µM),
and the ratios for TYP: ATR were (1:0, 1:5, 1:10, 1:15, and 1:20), BApNA (0–3000 µM), The
Michaelis-Menten equation was used in the determination of enzyme reaction velocity [29].

V = Vmax
[S]

Km + [S]

Kcat =
Vmax

[E]
(1)

The above equations, V and Vmax, denote the initial and final reaction velocities,
Km is Michaelis Constant, and Kcat is the catalytic rate constant. Whereas [E] represents
enzyme concentration and [S]: substrate concentration (BApNA). Lineweaver-Burk plots
for 1/V vs. 1/[S] at different BApNA concentrations in the absence and presence of ATR.

1
V

=
Km

Vmax + [S]
+

1
Vmax

3. Results and Discussion
3.1. UV-Vis Absorption Spectroscopy Investigations

UV-vis absorption spectroscopy is a simple and versatile technique for studying the
conformational and structural changes in a protein and also explores the protein-ligand
complex formation [31]. The UV-vis absorption spectra of TYP and TYP-ATR are given in
Figure 2. The TYP usually shows two absorption bands, at around 205 nm, and 275 nm. The
peak at 205 nm corresponds to peptide bond absorption (secondary structures), and the one
at 275 nm represents aromatic amino acids, respectively [32]. A sharp decline in the peak at
205 nm suggests that ATR and TYP interaction might influence the conformation of TYP.
The peak at (205 nm) is mainly due to π-π* transitions and corresponds to the polypeptide
backbone structure (C=O) of the TYP [33]. Further, a shift in the peak at 205 nm suggests a
new complex formation between TYP and ATR. A decline in the absorption at 275 nm also
suggests a complex formation occurred between TYP and ATR.

Moreover, the absorbance intensity at 275 nm also decreased, which confirms that the
polarity of the microenvironment around the aromatic amino acid residues was affected
by the ATR presence [33]. Therefore, the change in absorption peaks and red-shift suggest
a conformation change in TYP and complex formation between TYP-ATR and hence a
change in the protein structure.
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Figure 2. UV-vis absorbance spectra of TYP (10 µM) in presence of increasing concentrations of ATR
(0–30 µM).

3.2. Fluorescence Emission Spectroscopy of TYP-ATR Complex

Fluorescence emission spectroscopy is a technique to study the protein-ligand interac-
tions and conformational alterations [34,35]. In the steady-state fluorescence measurements
(Figure 3A), TYP exhibited a strong emission peak at 337 nm after excitation at 280 nm. The
intrinsic fluorescence of TYP reduced progressively with the addition and increase in ATR
concentration. This perception demonstrated a strong binding in the TYP-ATR system and
microenvironmental changes in TYP on treatment with ATR [33].
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Figure 3. (A) Fluorescence emission spectra of TYP (10 µM) in the presence ATR (0–45 µM). (B) Stern-
Volmer plot for TYP with ATR (0–45 µM) at different temperatures. (C) The double-logarithmic plot
of [log (F0 − F)/F] versus log[C] for TYP-ATR system. (D) van’t Hoff plots for TYP-ATR system at
different temperatures.
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3.2.1. Fluorescence Quenching Mechanism

The fluorescence quenching mechanisms of protein are classified into three mecha-
nisms: static, dynamic, and mixed (static and dynamic) quenching [36]. The quenching
mechanism is identified based on their temperature dependence. The fluorescence spectra
for the TYP-ATR system were obtained at 295, 305, and 315 K, and the fluorescence data
were analyzed with Stern-Volmer equation [37,38]:

F0

F
= 1 + Ksv[Q] = 1 + kqτ0[Q]

where F0 represents the steady-state fluorescence intensity of TYP, F fluorescence intensity
of TYP in the presence of ATR, KSV is the Stern-Volmer quenching constant, and [Q] is the
quencher concentration.

The Stern-Volmer plot (Figure 3B) for the TYP-ATR system at (295, 305, and 315 K)
shows a decline in the (Table 1) for the TYP-ATR system with temperature rise. This
behavior of the KSV values with respect to temperature represents the static quenching
mechanism for the TYP-ATR system [37,39].

Table 1. The values of Stern-Volmer constant and quenching rate constant for the TYP-ATR system.

pH Temp (K) Ksv (×103 M−1) kq (×1011 M−1 s−1) R2

7.4
295 4.24 4.24 0.998
305 3.28 3.28 0.996
315 2.49 2.89 0.990

The bimolecular quenching constant (kq) also helps to confirm the quenching mecha-
nism. The kq was determined by [37,40]:

kq = Ksv/τ0

where KSV is the Stern-Volmer constant; τ0 represents the lifetime (average) of fluorophore
without the quencher and has a value of 10−8 s [37]. The kq for the TYP-ATR system at
different temperatures is presented in Table 1. The values of kq were found higher than
the value of the collision quenching constant (2 × 1010 M−1 s−1), suggestive of a static
quenching mechanism in the TYP-ATR system [41,42].

3.2.2. Binding Constant Evaluation

The binding parameters of the TYP-ATR complex, binding constant (Kb), and binding
stoichiometry (n) were evaluated by the equation:

log
(F0 − F)

F
= log Kb + n log[Q]

where F0 and F are the fluorescence intensities of TYP in the absence and presence of ATR,
respectively. The Kb and n were determined from the plot between the log (F0 − F)/F
versus log[Q] (Figure 3C, Table 2). The binding stoichiometry n = 1 suggests a single class of
available binding sites. The binding constants of >103 present a moderate binding between
TYP and ATR. Further, the binding constants decreased with a temperature rise.

Table 2. The values of the binding constant and the number of binding sites for the interaction of
ATR with TYP.

pH Temp (K) Kb (×103 M−1) n R2

7.4
295 2.192 0.93 0.995
305 1.974 0.95 0.980
315 1.887 0.98 0.996



Int. J. Mol. Sci. 2022, 23, 5636 7 of 15

3.2.3. Determination of the Binding Forces between TYP and ATR

The intermolecular acting forces, such as hydrophobic, electrostatic interactions, hydro-
gen bonds, and van der Waals interactions, exist between ligands and macromolecules [43].
The thermodynamic analysis provides evidence about the binding force involved in the in-
teraction. The enthalpy (∆H◦) and entropy (∆S◦) are obtained from the slope and intercept
of the va not Hoff plot (Figure 3D) using va not Hoff Equation [39]:

lnKb = −∆H
◦

RT
+

∆S
◦

R

∆G
◦
= ∆H

◦ − T∆S
◦

where ∆G◦ is the binding free energy, R is the gas constant (8.314 Jmol−1K−1), T represents
different temperatures in ◦K (295, 305, and 315 K), and Kb is the binding constant. The
calculated values for ∆H◦, ∆S◦, and ∆G◦ of the TYP-ATR system are given in Table 3.
Further, the negative value for ∆G◦ confirms the interaction to be spontaneous, and the
positive ∆H◦ and ∆S◦ values indicate hydrophobic interactions exist in the ATR-TYP
system [43,44].

Table 3. Various thermodynamic parameters for TYP-ATR complex formation at various temperatures.

Temp (K) ∆H (KJ mol−1) ∆S (Jmol−1 k−1) ∆G (KJ mol−1) R2

295
5.8 44.21

−7.2 0.9954
305 −7.6 0.9988
315 −8.1 0.9986

3.2.4. Synchronous Fluorescence Spectroscopy (SFS) Experiment

Synchronous fluorescence spectroscopy (SFS) is used to monitor alteration in the
microenvironment of fluorophore amino acid residues [45]. The synchronous fluorescence
spectra were obtained at ∆λ = 15 nm and ∆λ = 60 nm [46]. The SFS emission spectra of
TYP (10 µM) in the presence of ATR (0–45 µM) are given in Figure 4A,B for tyrosine and
tryptophan residues, respectively.

The intensity of fluorescence of TYP (around tyrosine residue) decreased in the pres-
ence of ATR, and no shift in emission wavelength, confirming no change in the microenvi-
ronment around tyrosine residue (Figure 4A). Further, the fluorescence intensity of TYP
(around tryptophan residues) decreased significantly in the presence of ATR with a red-
shift of 1 nm in the emission wavelength. The redshift is suggestive of an alteration in
the microenvironment of tryptophan residues. It is also apparent from Figure 4C that
the synchronous fluorescence spectra for both tyrosine and tryptophan are significantly
different. Further, the ratios of synchronous fluorescence quenching (RSFQ) were estimated
by Equation:

RSFQ(%) = 1− F
F0

where F0 and F are fluorescence intensities of TYP in the absence and presence of ATR,
respectively. To confirm the binding position of the ATR on the surface of TYP, the RSFQ
ratio for the TYP-ATR system at tyrosine (∆λ = 15 nm) and tryptophan (∆λ = 60 nm),
respectively, were determined according to the above equation (Figure 4D). As a result,
the synchronous fluorescence of tryptophan residue is strongly quenched (82% reduction),
whereas, in the case of tyrosine residue, the quenching was about 63% in the presence of
ATR. Thus, SFS results suggest that ATR affects the microenvironment of the tryptophan
residue more than tyrosine on interaction with TYP [47,48].
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(D) Comparison of the effect of ATR on the RSFQ of TYP.

3.2.5. Circular Dichroism (CD) Spectra Changes in TYP upon ATR Binding

The CD is a sensitive and powerful technique that explores the protein’s secondary
structure, stability, and conformation. It provided information about perturbations in the
secondary structure of TYP after treatment with ATR [49]. The spectra of TYP with or
without ATR at room temperature (Figure 5A) show a negative peak at 208 nm (π→ π *
transition), which represents the α-helical structure in TYP [50]. Moreover, addition of
ATR decreased the ellipticity of TYP, indicating loss of α-helical contents. The CAPITO-CD
analysis software calculated the relative percentages of the secondary structural elements
of TYP. The relative percentage of secondary structural elements of TYP (α-helix (21%),
β-sheet (11%) and random coil (62%)) and TYP-ART system α-helix (7%), β-sheet (33%)
and random coil (56%) (Figure 5B). Therefore, ATR induced changes in the secondary
structure of TYP, which may cause a change in the physiological function of TYP-like
enzyme activity [51].
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3.2.6. FT-IR Spectroscopy

FT-IR spectroscopy is an efficient technique used in detecting changes in the sec-
ondary structure of the protein [46]. Proteins exhibit several amide bands (Amide I band
(1700–1600 cm−1 for C=O) and (Amide II band (1510–1580 cm−1 for C-N/N-H vibration)),
which represents the secondary structure of TYP [46]. The FTIR spectra of TYP in the
absence and presence of ATR (Figure 6) show that the peak position of the amide band
shifted slightly from 1654 to1653 cm−1 (Amide I) and 1544 to 1543 cm−1 (Amide II) in the
ATR-TYP complexes, respectively. Thus, TYP interaction with amide I and II groups disturb
the naturally occurring conformation and secondary structure of TYP [52]. Although the
shift in the peak position is minimal, an alteration in the secondary structure of the protein
cannot be ruled out.
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3.2.7. Computational Modeling of the TYP-ATR Complex

Molecular docking is a computational approach used to determine the mechanism
of protein-ligand interactions [53]. The docking between ATR and TYP was performed
by using Autodock Vina to determine the binding sites and the binding mode of ATR on
TYP [54]. The docked structure of the TYP-ATR system is given in Figure 7A–C. The ATR
binds with TYP with the free binding energy of −4.1 Kcal mol−1. In the binding pocket
of TYP, the ATR molecule was surrounded by amino acid residues (Figure 8A,B) Ala-221,
Ser-190, Trp-215, Ser-214, Asp-189, Gly-226, Ser-195, Val-227, Gly-216, and Ser-217. The ATR
also interacted with CYS-220 and Gly-219 with hydrogen bonds. Further, the His-57 and
Cys-191 also interacted with ATR through pi-alkyl interaction. Moreover, the conformation
changes caused by ATR binding with binding pockets interact directly with catalytic amino
acid residues of the TYP. The results obtained from the docking agreed with our conclusion
in the experiments.
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3.2.8. Effect of ATR on TYP Activity

The spectroscopic and docking experiment results suggest an interaction between ATR
and TYP. The relative activity (RA%) of the TYP was evaluated at different concentrations
of ATR, and it was observed that the TYP activity decreased with the addition of ATR
(Figure 9A). The TYP has three primary catalytic triads (His-57, Asp-102, and Ser-195)
and a substrate-binding pocket (Asp-194, Gly-217, and Gly-227) which play a vital role
in the binding of substrate to TYP [55,56]. The molecular docking confirmed that ATR
interacts with the catalytic triad (His-57) and hence affects the enzymatic activity TYP.
Furthermore, these results affirm that ATR interaction may lead to conformational changes
in the structure of TYP, reducing its activity.

However, Michaelis-Menten curves (Figure 9B) of TYP suggest a decrease in the
enzymatic activity of TYP in the presence of ATR. Additionally, the activity declined further
with an increase in ATR concentration. The decreased enzymatic activity is attributed to
conformational structure change and the catalytic ability of TYP [57]. The Lineweaver-
Burk plots of TYP and TYP-ATR also confirmed the inhibition mode of ATR (Figure 9C).
Moreover, it is clear from Table 4 that the Vmax value decreased while the Km values
almost remained unchanged on interaction with higher concentrations of ATR. Further,
the TYP-ATR complex formation shows a non-competitive inhibition. In addition, the
catalytic constant kcat and kcat/Km values decreased gradually at higher concentrations
of ATR [57]. Thus, the results suggest that ATR inhibits the enzymatic activity of TYP in a
concentration-dependent manner.
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Table 4. Michaelis-Menten kinetic parameters of TYP in the presence of ATR concentrations.

TYP/ATR Vmax (µM s−1) Km (µM) Kcat (s−1) Kcat/Km (µM−1s−1)

1:0 5.44 × 10−4 3.89 × 10−3 3.62 × 10−5 9.33 × 10−3

1:5 4.05 × 10−4 3.02 × 10−3 2.70 × 10−5 8.93 × 10−3

1:10 4.14 × 10−4 4.71 × 10−3 2.76 × 10−5 5.84 × 10−3

1:15 3.08 × 10−4 3.81 × 10−3 2.05 × 10−5 5.40 × 10−3

1:20 2.59 × 10−4 4.36 × 10−3 1.72 × 10−5 3.96 × 10−3

4. Conclusions

This study provides a detailed binding mechanism of the TYP-ATR system and its
effects on the structure conformations and the influence of these conformational changes on
the enzymatic activities of the TYP. The results suggest a moderate binding interaction be-
tween TYP and ATR, and the binding strength was temperature-dependent. The molecular
docking and thermodynamic results suggest the involvement of hydrophobic interaction
and hydrogen bonds between TYP and ATR and a single binding site for ATR on TYP. In the
TYP-ATR system, the TYP activity was inhibited with ATR in a concentration-dependent
manner since ATR was bound to the catalytic site. This study provides a deeper under-
standing of the mechanism of binding of ATR with the digestive proteases from the point
of view of toxicological effects.
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