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Abstract: Altered metabolism is a hallmark of cancer cells. Tumor cells rewire their metabolism
to support their uncontrolled proliferation by taking up nutrients from the microenvironment.
The amino acid glutamine is a key nutrient that fuels biosynthetic processes including ATP generation,
redox homeostasis, nucleotide, protein, and lipid synthesis. Glutamine as a precursor for the
neurotransmitter glutamate, and plays a critical role in the normal functioning of the brain. Brain
tumors that grow in this glutamine/glutamate rich microenvironment can make synaptic connections
with glutamatergic neurons and reprogram glutamine metabolism to enable their growth. In this
review, we examine the functions of glutamate/glutamine in the brain and how brain tumor cells
reprogram glutamine metabolism. Altered glutamine metabolism can be leveraged to develop
non-invasive imaging strategies and we review these imaging modalities. Finally, we examine if
targeting glutamine metabolism could serve as a therapeutic strategy in brain tumors.
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1. Introduction

Brain tumors in adults and children are challenging tumors to treat. Aggressive gliomas including
glioblastomas (GBM) and high-grade gliomas have very poor outcomes, emphasizing the need
to better understand their pathogenesis. The field of neuro-oncology has seen significant strides
from the perspective of identifying genetic drivers of these cancers. Next generation sequencing
has revealed distinct mutations in adult and childhood gliomas. Many of these genetic mutations,
including alterations in receptor kinase signaling (including epidermal growth factor receptor (EGFR)
amplifications and mutations), mammalian target of rapamycin (mTOR) [through both receptor tyrosine
kinase mutations and PTEN (phosphatase and tensin homolog) deletion], MYC activation and isocitrate
dehydrogenase (IDH) mutations directly impact metabolic pathways, including glutamine metabolism.
Cancer cells can use nutrients such as glucose and the amino acid glutamine to support continuous
proliferation and macromolecule biosynthesis. These metabolic needs can be regulated by cell-intrinsic
mechanisms as well as nutrient availability in the tumor microenvironment [1]. In this context, the
microenvironment of the brain is unique because of its glutamine and glutamate rich environments.
The brain tumor microenvironment consists of neurons, glial cells including microglia, astrocytes,
oligodendrocytes, endothelial cells, infiltrating T-cells, and tumor associated macrophages. While it is
known that tumor cells in general can be metabolically coupled to cells in the microenvironment, it is
not known if and how brain tumor cells are metabolically linked to each of these cells.

The brain accounts for approximately 25% of glucose consumed by the human body [2]. Important
cerebral functions like maintaining ion gradients and synaptic excitability necessitate such high energy
demands. While glucose serves as an obligatory energy substrate of the brain, blood-derived substrates
like ketone bodies and glutamine can also be utilized by the brain in varying capacities. Glutamine is
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the most abundantly available amino acid in the blood, with extracellular fluid concentrations reaching
up to 472 ± 38 µM in the brain [3]. Along with glucose, glutamine serves as the primary precursor
for synthesis of glutamate, a critical excitatory neurotransmitter. From the perspective of glutamine
metabolism and the brain tumor microenvironment, the normal functions of neurons and glial cells is
critical to understand. In this review, we focus on how brain tumor cells utilize glutamine in the context
of this unique microenvironment, and some of the limitations we encounter in studying glutamine
metabolism. From a translational point of view, non-invasive glutamine imaging can be used as
a means to monitor brain tumors. Furthermore, we examine the potential of targeting glutamine
metabolism in brain tumors as novel therapeutic avenues to treat these tumors.

2. Glutamate/Glutamine Metabolism in the Central Nervous System

2.1. Synaptic Glutamate/Glutamine Cycle is Critical for Brain Function

The amino acid glutamate serves as an important excitatory neurotransmitter, and neurons that
release synaptic glutamate are termed glutamatergic neurons. Main glutamatergic pathways connecting
various brain regions include glutamatergic projections from the cortex to the brainstem, from the
prefrontal cortex to the striatal part of the basal ganglia (corticostriatal pathway), and projections to and
from the thalamus to the cortex. Additionally, pyramidal neurons within the cortex can communicate
with each other through glutamatergic connections. Similarly, glutamatergic neurons in the cerebellum
can communicate with other cerebellar neurons. Because of the nature of these specific projections,
glutamate and subsequently glutamine concentrations can vary depending on the brain region, with
cortical and cerebellar regions having the highest concentrations. These inter-regional differences in
the milieu have implications for the amount of glutamine available for tumor cells.

Glutamatergic neurons release glutamate into the synaptic cleft through vesicular exocytosis.
This glutamate is essential for synaptic function to regulate memory formation and normal cognitive
function. Subsequently, glutamate is taken up by astrocytes by astrocytic glutamate transporters and is
synthesized to glutamine [2,3]. Glutamine is then transported to neurons, where it is converted back to
glutamate for synaptic transmission [4–6]. This is termed the glutamine-glutamate cycle (Figure 1).
While it is known that glutamate is essential for several critical functions in the central nervous system
(CNS), excess accumulation of glutamate can be detrimental to normal brain function, resulting in
neuronal excitotoxicity and cell death [7]. Excitotoxicity plays an important role in the pathogenesis of
seizures, stroke, and neurodegeneration [8,9]. Astrocytes play a key role in maintaining glutamate
homeostasis by regulating its synthesis from glucose as well as its recycling from the synapse. They are
one of the principle components of the brain cytoarchitecture, and mitigate glutamate toxicity by the
glutamate/glutamine neuroglial cycle [5], along with other critical functions. Indeed, more than 70%
of synaptic glutamate is derived from the glutamate/glutamine cycle [10,11]. Astrocytes accomplish
this by increasing glutamate uptake from the synapse and converting it back into glutamine through
the astrocyte-specific enzyme glutamine synthetase (GS). Glutamine is then recycled back to neurons.
Glutamate uptake in astrocytes is mediated through different classes of glutamate transporters that are
functionally distinct.

2.2. Neurons Express Glutamatergic Receptors That Mediate Synaptic Signaling

Once glutamate is released into the synaptic cleft, it interacts with specific glutamatergic receptors
expressed in postsynaptic neurons. Post synaptic glutamate receptors are classified into three different
families, with each serving a distinct purpose [12]. These include N-methyl-D-aspartate (NMDA),
α-amino-3-hydroxy-5methyl-4-isoxazole propionic acid (AMPA), and metabotropic glutamatergic
receptors. NMDA receptors are tetrameric assemblies of ionotropic receptor subunits. They are
directly involved in synaptic transmission and plasticity, and are essential for learning and formation
of memory [13]. NMDA receptors are ligand-gated ion channels which become permeable to Na+ and
Ca2+ ions upon glutamate binding. They consist of five receptor subunits (GluN1 and GluN2A-D)
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and a pair of GluN3 subunits (GluN3A and GluN3B), wherein each subunit has a specific function
depending on their composition [14,15]. All receptors consist of two copies of GluN1 along with two
of GluN2 and/or GluN3 subunits. The composition of subunits impacts the receptor’s biophysical,
pharmacological, and signaling attributes. For example, the NR1 subunit is essential for formation of a
functional receptor and mediates binding of glycine [16]. Whereas, NR2 receptors increase the influx
of Ca2+ ions upon glutamate binding, which in turn activates downstream signaling mechanisms
involving protein kinase A (PKA) and CAMKII [17]. It is noteworthy that this interaction of GluN2B
and CAMKII is critical for regulation of neuronal survival, synapse formation, and plasticity [18,19].Cancers 2019, 11, x FOR PEER REVIEW 3 of 20 

 
Figure 1. Glutamine/Glutamate neuroglial cycle and glutamate-induced excitotoxicity. (A) Pre-
synaptic glutamatergic neurons utilize glutamine to synthesize the excitatory neurotransmitter, 
glutamate, which is then released during synaptic transmission. Glutamate then interacts with post-
synaptic glutamatergic receptors. Excess glutamate however, leads to oxidative stress and neuronal 
injury, termed as excitotoxicity. (B) Astrocytes help mitigate glutamate-induced excitotoxicity by 
removing glutamate from the synapse. Glutamate is then converted to glutamine by the enzyme 
glutamine synthetase, an enzyme that is present in astrocytes but not in neurons. Glutamine is 
recycled to neurons to enable glutamate synthesis. Abbreviations: ROS, reactive oxygen species. 
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Figure 1. Glutamine/Glutamate neuroglial cycle and glutamate-induced excitotoxicity. (A) Pre-synaptic
glutamatergic neurons utilize glutamine to synthesize the excitatory neurotransmitter, glutamate,
which is then released during synaptic transmission. Glutamate then interacts with post-synaptic
glutamatergic receptors. Excess glutamate however, leads to oxidative stress and neuronal injury,
termed as excitotoxicity. (B) Astrocytes help mitigate glutamate-induced excitotoxicity by removing
glutamate from the synapse. Glutamate is then converted to glutamine by the enzyme glutamine
synthetase, an enzyme that is present in astrocytes but not in neurons. Glutamine is recycled to neurons
to enable glutamate synthesis. Abbreviations: ROS, reactive oxygen species.

The AMPA receptor family consists of four subunits (GluR1-4) with various combinations necessary
to form a functional ionotropic channel [20]. They activate and desensitize more rapidly than NMDA
receptors, thus facilitating faster synaptic transmission [21]. The cation permeability of the channel is
determined by AMPA receptor subunit, mainly, GluR2. AMPARs that lack GluR2 are permeable to
both Na+ and Ca2+, whereas a channel that lacks GluR2 will be impermeable to Ca2+ [22].

Metabotropic glutamatergic (mGluRs) receptors are G-protein-coupled receptors that mediate
slower glutamatergic responses. These receptors are expressed in both pre- and post-synaptic terminals,
and are primarily involved in regulation of synaptic transmission [23]. They modulate NMDA
and AMPA receptors by regulating glutamate release into the synapse, thereby affecting synaptic
plasticity [24,25]. These receptors have eight subtypes (mGluR 1–8) and are often coupled to the
phospholipase C/inositol triphosphate/diacylglycerol pathway. The function of these receptors can be
negatively regulated by the adenylate cyclase pathway [23].

2.3. Astrocytes Take Up Glutamate through Excitatory Amino Acid Transporters (EAATs)

Astrocyte processes extending into the synaptic cleft abundantly express glutamate transporters,
which serve to rapidly remove glutamate from the synapse. Sodium dependent excitatory amino
acid transporters (EAATs) are the primary class of glutamate transporters involved in glutamate
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homeostasis. There are five main subtypes of high affinity Na+ -dependent EAATs: EAAT1/GLAST,
EAAT2/GLT1, EAAT3/EAAC1, EAAT4, and EAAT5. These transporters are Na+ and K+- dependent
and co-transport L- and D- aspartate along with L-glutamate. EAAT3 and EAAT4 are particularly
expressed in certain Purkinje cells, while EAAT5 is expressed in retinal cells [26,27]. EAAT1 and EAAT2
are primarily astrocytic, with EAAT2 abundantly expressed glutamate transporter accounting for 95%
of forebrain glutamate uptake activity [28,29].

2.4. System Xc- and Sodium-Coupled Neutral Amino Acid Transporters (SNATs) can Regulate the Glutamine
Glutamate Cycle

Extracellular glutamate levels are also influenced by the Na+ -independent, cystine/glutamate
exchanger, system xc (SXC). SXC is a Cl−- dependent glutamate transporter that is expressed
predominantly in astrocytes, oligodendrocytes, and some cortical neurons [30,31]. It belongs to
the heteromeric amino acid transporter (HAT) family, with a heavy subunit CD98 and lighter subunit
coupled through disulfide bridges. SXC plays an important role in regulating redox balance within the
cell as it exchanges glutamate for cystine, which in turn is converted to cysteine. This is the rate-limiting
step for the synthesis of intracellular glutathione (GSH), the primary intracellular anti-oxidant in the
CNS. High levels of glutamate can result in production of reactive oxygen species (ROS) that causes
protein carbonylation and lipid peroxidation, resulting in cell death. Oxidative stress or electrophiles
induce expression of SXC to synthesize GSH, which in turn scavenges ROS.

Astrocytes recycle glutamate and convert it into glutamine, which is then released into the
extracellular space through the system N or sodium-coupled amino acid transporters (SNATs).
SNAT3/SLC38A3 and SNAT5/SLC38A5 play key roles in mediating bidirectional, electroneutral
transport of glutamine in astrocytes [32,33]. They are also involved in co-transport of other amino acids
like alanine, histidine, asparagine, and glycine [34]. The importance of maintaining a balance between
extracellular levels of glutamate and glutamine necessitate coordination in glutamate uptake and
glutamine release by astrocytes. Indeed, there is evidence for physical coupling between EAAT1 and
SNAT3/SLC38A3 in astrocytes [35]. This suggests that astrocytes are dependent on these transporters
to sense extracellular release of glutamate and respond by recycling it to release glutamine.

2.5. Brain Tumor Cells can Promote Their Growth Via Glutamine/Glutamate Transporters

Brain tumors act as ‘glutamine traps’ by successfully competing for the glutamine recycled by
astrocytes in the brain tumor microenvironment. Tumor cells achieve this by upregulating expression
of glutamine and glutamate importers. Several human glioma cell lines are shown to upregulate
expression of ASCT2 (SLC1A5), the principal glutamine importer, which drives rapid glutamine
uptake in tumor cells [36,37]. Gliomas that are unable to synthesize glutamine de novo can express
sodium-coupled amino acid transporters like SNAT3 and SNAT-5 [38–40]. These transporters can
mediate bi-directional transport of glutamine. Indeed, higher expression of SNAT-3 in some GBMs
is associated with increased malignancy [38]. Similarly, brain tumors upregulate expression of
NMDA, AMPA, and mGluRs [41,42]. Electrophysiological studies have shown that these tumor cell
glutamatergic receptors are functionally similar to those in neurons [43]. Activation of these receptors
in glioma cells results in an influx of Ca2+ ions, which supports tumor growth and invasion [41].
Interestingly, recent studies report that glioma cells form functional, excitatory synapses with neurons
(Figure 2) [44–46]. They show that glioma cells, like neurons, express genes encoding glutamate
receptors and establish a synaptic network using microtubes. Indeed, stimulation of neurons proximal
to these tumor cells produced a depolarizing current in some glioma cells, which increased their
proliferation and invasiveness [44,45]. Crucially, this phenomenon is shown to be mediated by a distinct
class of AMPA glutamate receptors and pharmacological blockade of these receptors inhibited tumor
growth, invasion, and enhanced the susceptibility of gliomas to chemotherapeutic agents [41,42,44].
Rapidly proliferating glioma cells produce high levels of reactive oxygen species (ROS), which leads to
increased oxidative stress. As a defense mechanism, brain tumor cells can increase GSH synthesis
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by upregulating SXC activity [47,48]. Glutathione prevents ROS-mediated cell death and therefore
promotes tumor cell survival [49]. Importantly, high levels of GSH also correlate with treatment
resistance in gliomas and other cancers [50,51]. Thus, brain tumor cells can hijack glutamine and
glutamate transporters to meet their increased metabolic needs to sustain proliferation.
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Figure 2. Glioma—Neuron crosstalk. (A) Glioma cells form synaptic connections with neurons
at glutamatergic synapses. (B) Brain tumor cells upregulate glutamate receptor (including AMPA
family of receptors) and post-synaptic structural genes (including neuroligin-3) to establish synaptic
connections. Electrochemical stimulation of neurons results in release of glutamate in the synaptic
cleft, which rapidly depolarizes glioma. This drives an influx of Ca2+ ions, which promotes tumor cell
proliferation and increases invasiveness and metastatic colonization of glioma cells. Abbreviations:
AMPA, α-amino-3-hydroxy-5methyl-4-isoxazole propionic acid; NMDA, N-methyl-D-aspartate;
NLGN-3, Neuroligin-3.

Transcriptional Control of Glutamine Metabolism

Several tumor-driving oncogenes, signaling pathways, and tumor suppressors have been
implicated to transcriptionally regulate glutamine metabolism in cancer. c-MYC is one such principal
regulator. It binds to the promoters of high-affinity glutamine importers, such as ASCT2 (SLC1A5) and
SN2 (SLC38A5), resulting in increased expression and a subsequent increase in glutamine uptake [52].
Additionally, c-MYC is also shown to promote transcription of glutaminase by repressing mir23a and
mir23b in prostate cancer cells [53]. While in melanomas, it is shown to enhance glutamine-derived
nucleotide biosynthesis by upregulating expression of rate-limiting enzymes in deoxyribonucleotide
(dNTP) metabolism [54]. Mutations in the PTEN gene results in activation of the phosphatidyl
inositol kinase/protein kinase B (PI3K)/Akt/mTOR) pathway and is universally associated with poor
prognosis in glioma patients [55,56]. PTEN is shown to regulate glutamine metabolism by modulating
expression of glutaminase (GLS) in a PI3K/Akt pathway-dependent manner [57]. Interestingly, the
PI3K/Akt axis is also shown to drive production of glutathione (GSH) by promoting stability of nuclear
factor-like 2 (NRF2, a key regulator of redox homeostasis ) in breast cancers [58,59]. The mTORC1
complex, downstream of PI3K/Akt pathway, drives expression of glutamate dehydrogenase (GDH)
by transcriptionally repressing sirtuin-4 (SIRT-4) [60]. Notably, tumor suppressors such as p53
and the retinoblastoma (Rb) protein are shown to promote glutaminolysis by driving expression of
glutaminase–2 (GLS2) and ASCT2, respectively [61,62]. Under nutrient-limiting conditions, p53 is
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shown to upregulate expression of the glutamate/aspartate transporter (SLC1A3) in colorectal cancer
cells, which supports utilization of aspartate in the absence of glutamine [63]. Interestingly, restoring
p53 function in pancreatic cancer cells resulted in accumulation of α-ketoglutarate (α-KG), which
further lead to activation of tumor cell differentiation programs [64]. Thus, these studies highlight key
mechanisms underlying the transcriptional control of glutamine metabolism.

3. Functional Roles of Glutamine

3.1. Glutamine-Derived α-Ketoglutarate can Function as a TCA Cycle Anaplerotic Substrate and Regulate
the Epigenome

Glutamine-derived α-ketoglutarate can serve as a TCA cycle anaplerotic substrate in many cancer
cells through oxidative carboxylation. Glutamine oxidation can result in production of three NADH
molecules and one FADH2 (flavin adenine dinucleotide) molecule which creates the electrochemical
gradient needed for ATP production. Cancer cells predominantly utilize glucose as the principal source
of carbon for lipid and fatty acid synthesis, and its disruption is shown to hinder tumor formation [65,66].
Glucose-derived carbons can be directed to synthesize citrate, which is then metabolized by ACLY
into the acetyl-coA pool needed for lipid biosynthesis. However, cells under hypoxia or cells with
mitochondrial defects begin to utilize glutamine as the source of carbon for making acetyl-coA [67,68].
However, it is noteworthy that some GBMs with a mesenchymal phenotype (negative for CD133) exhibit
higher glutamine utilization, and inhibiting glutamine metabolism delayed tumor growth in vivo [69].
Glutamine-derived α-ketoglutarate is converted to citrate by isocitrate dehydrogenase (IDH) coupled
with NADPH consumption in a reverse process called reductive carboxylation [70]. A shift in the ratio
of intracellular α-ketoglutarate to citrate levels can trigger reductive carboxylation [71,72].

Metabolic pathways can directly regulate the epigenetic state of the cell. For example, glucose
derived acetyl-CoA serves as an acetyl donor for histone acetyl transferases to acetylate histones.
Similarly, glutamine-derived α-ketoglutarate can also regulate the epigenome, as evidenced in IDH1/2
mutant gliomas, as it serves as a co-substrate for a class of dioxygenase enzymes. This includes Jumonji
C domain-containing histone demethylases and TET family DNA demethylases, all of which are crucial
for regulating gene expression. Indeed, the ratio of α-KG and succinate, a by-product of α-KG-mediated
demethylation, dictates pluripotency in embryonic stem cells [73]. IDH1/2 mutations are observed
in >70% of grade II and grade III gliomas and more than 90% of secondary glioblastomas [74,75].
Mutant IDH1/2 catalyze the generation of the oncometabolite D-2-hydroxyglutarate (D-2HG) from
α-ketoglutarate [68,76]. Notably, in vivo tracing studies using hyperpolarized glutamine have shown
that glutamine carbons gives rise to D-2HG in IDH1/2 tumor cells [77]. D-2HG is structurally
similar to α-ketoglutarate and inhibits α-KG-dependent enzymes, including histone and DNA
demethylases [78,79]. Inhibition of these enzymes by D-2HG results in genome-wide epigenetic
alterations [68,76], including high H3K9 trimethylation and CpG island methylation [80–82].

3.2. Glutamine can Serve as a Nitrogen Donor for Nucleotide Synthesis

In addition to serving as a major carbon source for driving TCA cycle anaplerosis and
macromolecule synthesis, glutamine is a critical nitrogen donor for de novo nucleotide biosynthesis.
The amide group (containing γ-nitrogen), resulting from the deamination of glutamine to glutamate,
enables production of nucleotides, amino sugars, and NAD+ co-factors. Cancer cells utilize the
activity of different enzymes to mediate nucleotide synthesis from glutamine. Purine synthesis
involves utilization of two glutamine nitrogens for production of inosine monophosphate (IMP),
which further gives rise to adenosine and guanosine monophosphate (AMP and GMP) [83,84].
5-phoshoribosyl α-pyrophosphate, a product of the pentose phosphate pathway, is converted
into phosphoribosyl-β-amine with addition of amide group from glutamine by phosphoribosyl
pyrophosphate amidotransferase (PPAT). This serves as an important intermediate in purine
synthesis [85]. Likewise, initiation of pyrimidine synthesis involves the condensation of
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glutamine-derived nitrogen with bicarbonate and ATP [83,84]. Carbamoyl phosphate synthetase II
(CPSII) drives this rate limiting step to generate carbamoyl phosphate. Finally, cytidine triphosphate
synthetase (CTPS) utilizes another glutamine-derived amide group for conversion of uridine
triphosphate (UTP) into cytidine triphosphate (CTP). It is noteworthy that expression of enzymes that
mediate nucleotide synthesis from glutamine, such as CPSII, PPAT etc., are facilitated by oncogenic
drivers like c-Myc and mutant p53 [86,87]. Indeed, a higher expression of these enzymes positively
correlates with increased proliferation in tumors [53,88]. The importance of glutamine-derived
nucleobases is underscored by the ability of exogenous nucleotides to rescue glutamine-deprived
cancer cells from undergoing cell cycle arrest [89–91]. More importantly, primary lung tumors are
shown to utilize glutamine for nucleotide synthesis when cultured ex vivo [92].

3.3. Glutamine as a Source of Non-Essential Amino Acids

Cancer cells have greater energy needs to sustain continuous proliferation. Their high metabolic
demands make them dependent on glutamine as a source of non-essential amino acids (NEAAs) [93].
They rely on the activity of GLS to maintain a high ratio of glutamate toα-ketoglutarate, which is essential
for production of NEAAs. Interestingly, proliferating cells are shown to be metabolically distinct when
compared to quiescent cells in their capacity to catabolize glutamate for NEAA synthesis [94,95]. To this
end, the nitrogen at the α-position on the glutamate carbon chain is transferred to different α-ketoacids
by aminotransferase enzymes. Aspartate, alanine, ornithine, and phosphoserine function as nitrogen
acceptors. Importantly, the inherent inefficiency of the aspartate transporter necessitates the production
of a majority of intracellular aspartate from glutaminolysis [96–98]. Indeed, it has been shown that
cytosolic aspartate is a key determinant of cancer cell survival under glutamine-deprived conditions [99].
Moreover, expression of SLC1A3 (glutamate-aspartate transporter) induced by p53 and YAP/TAZ is
also shown to promote tumor growth under glutamine-limiting conditions [63,100,101]. Collectively,
these studies highlight the role of glutamine-derived aspartate in tumor growth and survival.

Additionally, alanine and phosphoserine can also be synthesized from glutamine-derived
nitrogens by the enzymes alanine aminotransferase (GPT) and Phosphoserine aminotransferase (PSAT).
Intracellular alanine concentration measured from prostate cancer biopsies showed a positive correlation
with patient survival [102]. Notably, these glutamine-utilizing transaminases serve as metabolic
vulnerabilities in YAP/TAZ activated breast cancers, as they utilize PSAT1 and glutamic-oxaloacetic
transaminase (GOT1) to promote glutamine dependence and drive tumor growth [103]. Repression
of PSAT1 decouples glutamine-driven anaplerosis from NEAA synthesis, resulting in growth arrest
in vitro and in vivo. Similar to alanine and phosphoserine, asparagine is important for tumor cell
survival [95,104]. Asparagine synthetase (ASNS) catalyzes synthesis of asparagine from glutamine
and aspartate. Glutamine deprivation leads to an accumulation of uncharged t-RNAs, which induces
endoplasmic reticulum (ER) stress. Asparagine is shown to have a protective effect on glioblastoma
(GBM) tumor cells under such glutamine-limiting conditions by mediating ATF (AMP-dependent
transcription factor)-dependent stress responses, which prevents cell death [105]. Further, glutamine is
an important source for synthesis of polyamines and glycopolymers, and can also serve as a precursor
for NAD synthesis [106,107].

3.4. Role of Glutamine in Maintaining Redox Homeostasis

Oxidation of glutamine in the TCA cycle results in production of NADH and FADH2 molecules,
which generate an electrochemical gradient to produce ATP. Transfer of electrons through the
mitochondrial electron transport chain (ETC) by NADH produces reactive oxygen species (ROS). ROS
comprises of superoxide (O2

−) anions, hydrogen peroxide (H2O2), and hydroxyl free radicals. While
physiological levels of ROS can be pro-tumorigenic [108], excess ROS results in DNA damage, lipid
peroxidation, and protein denaturation [109]. Tumor cells mitigate excess ROS and maintain redox
homeostasis principally by glutathione synthesis [110,111]. Glutathione is a tripeptide synthesized
from glutamate, cysteine, and glycine that actively scavenges ROS. Glutamine-derived glutamate and
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cysteine (imported by SXC) is converted into γ-glutamyl cysteine by the enzyme glutamate-cysteine
ligase (GCLC) and subsequently into glutathione by glutathione synthetase (GSS). High glutathione
levels correlate positively with drug resistance in tumors [112]. Additionally, glutathione serves as
a checkpoint for amino acid biosynthesis, and its supplementation can partially overcome effects of
amino acid deprivation [113]. Thus, glutamine directly contributes to glutathione biosynthesis by
acting as the donor of glutamate, from the GLS reaction, and by enabling uptake of cystine through
SXC. Additionally, glutamine produces reducing equivalents by mediating NADPH synthesis through
GLUD, oxoglutarate dehydrogenase (OGDH), and malate dehydrogenase (MDH).

3.5. Understanding Glutamine Metabolic Heterogeneity in Cancers

Several factors related to heterogeneity in glutamine utilization need to be considered in
understanding glutamine metabolism in brain tumors and cancers in general. These include in vitro
cell culture conditions, tumor subtype, driver oncogenes, and the tumor microenvironment. One of the
major challenges lies in understanding metabolic adaptations when tumor cells are cultured in vitro.
For example, there is a shift from oxidative glutamine metabolism to reductive carboxylation when
non-small cell lung cancer (NSCLC) cells transition from a monolayer cultures to spheroids [114].
Under monolayer culture, these cells showed abundant glutamine uptake to drive TCA cycle anaplerosis,
which is lost under anchorage-independent growth. This shift in glutamine utilization is mediated
by cytosolic IDH1 that converts glutamine-derived α-ketoglutarate to citrate along with NADPH
in order to mitigate mitochondrial ROS levels. A similar discrepancy in glutamine catabolism was
observed when NSCLC cells were transitioned from ex vivo culture to an in vivo environment [92,115].
When cultured in vitro, KRAS-driven NSCLC cells exhibited a strong glutamine dependence for
their bioenergetic needs and were susceptible to GLS inhibition. However, this phenotype was lost
completely in vivo, as the tumors primarily utilized glucose to drive TCA cycle through upregulation
of the enzyme pyruvate carboxylase (PC). Indeed, expression of PC in tumors is a key determinant of
glutamine-independent growth [116–118]. Similarly, some tumors can utilize glucose to synthesize
glutamate de novo, which can then be converted to glutamine by the enzyme glutamine synthetase
(GLUL). Such tumors have high GLUL expression and do not depend on exogenous glutamine for
their nutrient needs. This is true in some GBM cell lines where it is shown that high GLUL activity
drives de novo glutamine synthesis [119,120]. These tumor cells utilize glucose-derived glutamate
to synthesize glutamine in a GLS-independent manner, and hence do not respond to glutaminase
inhibition. Contrastingly, tumors with low GLUL expression rely exclusively on the exogenous supply
of glutamine. They upregulate expression of GLS to effectively drive glutaminolysis [121]. Differences
in GLUL expression are also observed in human GBMs where up to 25% patients showed minimal
expression (comparable to neurons) and 15% patients showed very high expression (comparable
to astrocytes) [120]. Thus, the expression levels of enzymes like GLUL, GLS, and PC can regulate
heterogeneity in glutamine metabolism in tumors and could possibly predict response to treatments
like glutaminase inhibition.

The metabolic phenotype of the tumors is also influenced by the tissue of origin. This is because
different tissues exhibit varying extents of glutamine metabolism in the body, thus determining the
levels of exogenous glutamine available for use by tumor cells. For example, kidneys primarily use
glutamine to drive anaplerosis and maintain pH balance [122], whereas muscles and adipose tissue
largely promote de novo glutamine synthesis [122,123]. Notably, it is also shown that environmental
cystine can dictate glutamine dependence and anaplerosis in A549 NSCLC cells [124,125]. Here,
cystine in the environment upregulates expression of the xCT, a critical component of SXC, which
controls glutamate efflux. The glutamate derived from glutamine is exchanged for cystine through xCT,
which decouples glutaminolysis from TCA cycle anaplerosis, resulting in resistance to glutaminase
inhibition. Indeed, expression of xCT in human haploid cells favored glucose addiction and antagonized
glutamine-driven anaplerosis [126].
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An important consideration in understanding glutamine metabolism is in taking into account the
tumor microenvironment. Indeed, recent studies have leveraged techniques like mass spectrometry
and nuclear magnetic resonance (NMR) to quantitatively measure metabolites in murine pancreatic
and lung tumors, and to accurately measure the flux of lactate between tumor cells and the
interstitium [127,128]. These techniques can serve as important tools in dissecting the impact of
brain tumor microenvironment on glutamine metabolism. In addition to neurons and astrocytes that
regulate the synaptic glutamate/glutamine cycle, the brain tumor microenvironment also contains
immune cells. Macrophages and microglia constitute the majority of the immune cells in brain tumors,
comprising ~30% of the tumor mass [129]. TAMs mediate an immune-suppressive response by secretion
of anti-inflammatory cytokines like Interleukins (IL)-4, IL-10, and IL-13 [129]. These secreted cytokines
can affect glutamine metabolism, as evidenced in breast cancer cells, where IL-4 secreted from immune
cells increased expression of the glutamine transporter, SLC1A5 [130]. Macrophages themselves
rely on glutamine to produce cytokines like Tumor Necrosis Factor (TNF), IL-1, and IL-6, and for
N-glycosylation of cell surface receptors [131]. Interestingly, TAMs are shown to upregulate enzymes
like transaminase (GPT) and GLUL, suggesting a possible tumor promoting role by driving glutamine
metabolism [132]. It is important to note that tumor-infiltrating immune cells and proliferating cancer
cells can share similar energy demands. For example, T-cells upregulate glycolysis and glutaminolysis
to support their energy needs upon immune activation. CD8+ T-cells also actively use glutamine
to mediate an anti-tumor, cytotoxic response [133,134]. Overall, glutamine metabolism in tumors is
regulated by multiple factors that need to be considered before therapeutic targeting of glutamine
metabolism including in vitro experimental conditions, driver oncogenes, cell-of-origin, and the
tumor microenvironment.

4. Metabolic Imaging and Therapeutic Targeting of Glutamine Metabolism

4.1. Imaging Glutamine Uptake and Metabolism

Positron emission tomography (PET) imaging is a highly sensitive clinical tool used to assess
tumor metabolism in vivo. Labelled radionuclides such as 11C or 18F undergo a process known as
annihilation, resulting in the emission of positrons which can then be detected using a PET scanner.
A radiolabeled analog of glucose, 2-[18F] fluoro-2-deoxy-D-glucose (FDG) is used extensively in clinical
settings, as a surrogate for the Warburg effect, to evaluate tumor metabolism in vivo. FDG import into
cancer cells is facilitated by glucose transporters, like GLUT1, where it undergoes phosphorylation
by hexokinase to form FDG-6-phosphate (FDG-6-P). However, FDG-6-P can neither be metabolized
further nor diffuse out of the cell, resulting in its accumulation inside cancer cells [135]. Thus, FDG-PET
is an important tool used in tumor detection and monitoring. FDG-PET can also serve as a clinical
readout for treatment response. However, despite its widespread clinical use, FDG-PET has limitations
in evaluating brain tumors, largely because of high background from the normal glucose uptake in the
brain resulting in a low tumor-to-background ratio [136,137].

Use of radiolabeled glutamine circumvents this problem, as brain tumors show preferential uptake
of glutamine compared to surrounding brain tissue. This can be achieved by using radionuclides like
18F or 11C [138–140]. 11C-glutamine is actively transported and incorporated into cellular protein after
incubation for 30 min by 9L and SF-188 glioma cells [141]. However, it has a very short half-life of
~20 min [141]. 18F-labeled glutamine has a much longer half-life of 110 min, making it an ideal PET agent.
Tumor cells that overexpressed SLC1A5 displayed higher uptake and retention of the 18F-labeled [2S,4R]
stereoisomer of glutamine [45,46]. Animal glioma models and human glioma patients show high uptake
of 18F-FGln compared to normal brain tissue in vivo, resulting in distinct tumor delineation [142,143].
18F-FGln has a high tumor-to-background signal ratio ranging from 4:1 to 6:1 compared to 18F-FDG
(~1:1). Furthermore, disruption in the blood brain barrier (BBB) following neuro-inflammation did not
increase 18F-FGln uptake in the brain, underscoring its specificity to tumors. Interestingly, 18F-FGln
uptake is reduced in gliomas treated with chemotherapy or radiation, highlighting the potential of
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18F-FGln-based PET imaging as a tool to monitor treatment response in patients. The recently completed
clinical trial (NCT01697930) measuring tumor glutamine uptake using 18F-FGln demonstrates its
feasibility as a radiological probe with no adverse effects in patients [144]. 18F-FGln is able to successfully
image several cancers with glutamine hypermetabolism, thus validating its use as a potential tool
for targeted radiotracer imaging [145–147]. (S)-4-(3-[18F]Fluoropropyl)-L-glutamic acid (18F-FSPG)
is a glutamate analogue that can be used as a radiopharmaceutical to measure the activity of the
glutamate/cystine antiporter, xCT [145,146]. 18F-FSPG is specifically transported by xCT and provides
excellent tumor visualization with high contrast (tumor/brain signal ratio: 32.7) in glioblastoma (GS9L)
animal models [145]. More importantly, a completed clinical trial (NCT01186601) for evaluation of
18F-FSPG-based PET imaging in brain tumor patients successfully validated the use of the tracer as an
imaging tool [145].

Magnetic resonance spectroscopy (MRS) is a modality that measures metabolite concentrations
in vivo. MRS utilizes specific radio-frequency signals emitted from the nuclear spins of 1H, 31P, and 13C
to detect cellular metabolites in tumors and the microenvironment [148]. 1H-MRS imaging is clinically
used to detect various metabolic spectra within human tumors with high levels of sensitivity [149].
Both glutamine and glutamate have similar spectra and are evaluated collectively as Glx. MRS is
an important tool utilized for assessing Glx levels in both animal models and in patients with brain
tumors [150]. It has been successfully used in gliomas, meningiomas, and medulloblastomas, and can
inform tumor subtype, grade, and invasion [151–153].

Glutamine-based PET imaging and 1H-MRS imaging are both excellent tools to evaluate
glutamine hypermetabolism and estimate global levels of metabolites in tumors. However, these
tools are limited by their inability to delineate the metabolic fate of glutamine in tumor cells.
This limitation can be overcome by isotope labeling of glutamine, which enables detection of the
tracer in tumor tissues along specific metabolic pathways [154]. 13C labelling aids in tracing the fate
of glutamine-derived carbons, and 15N labeling helps follow glutamine nitrogens along metabolic
pathways. Tracing the fate of glutamine in vivo involves exogenously injecting labeled glutamine
using isotopic labeling followed by harvesting tumor tissues to assess isotope incorporation in
various metabolites. The sensitivity of 13C/15N labeling in vivo can be enhanced 10,000-fold through
hyperpolarization [155]. In this technique, the tracer is exposed to microwaves at low temperatures prior
to administration and scanning. This enables real-time detection of metabolic fluxes with enhanced
sensitivity [156]. Hyperpolarized 13C-labeling of glutamine has shown great promise in certain liver
cancer models [157–159]. This technique has proven to be particularly useful in mutant IDH1-driven
tumors, where it issued to quantify production of the oncometabolite D2-HG in vivo [77]. Furthermore,
isotope labeling can be used to demonstrate the heterogeneity in glutamine metabolism under different
conditions. However, it is noteworthy that hyperpolarization is limited by the shorter half-life of the
imaging agent, thereby drastically reducing the time window for imaging. Hyperpolarized 13C spectra
has a lower gyrometric ratio than a proton, which results in lesser artifacts, but it requires higher
imaging gradient amplitudes to achieve similar spatial resolution [160].

Currently, magnetic resonance imaging (MRI) and 18F-FDG-based PET and computed tomography
(CT) are routine imaging modalities for the clinical management of brain tumors. However, as
highlighted earlier, these techniques show limited sensitivity and specificity to tumor tissue. Thus,
glutamine metabolism-based modalities can potentially define a new paradigm of brain-tumor imaging.

4.2. Therapeutic Targeting of Glutamine Metabolism in Cancer

The pleiotropic role of glutamine in regulating critical cellular functions such as energy production,
macromolecular biosynthesis, cell signaling, and redox homeostasis has made it an attractive
and druggable therapeutic target (Table 1). Tumor cells achieve high intracellular concentrations
of glutamine primarily through upregulation of glutamine transporters including SLC1A5 and
SLC7A5 [161]. Known inhibitors of SLC1A5 such as 6-diazo-5-oxo-l-norleucine (DON), Benzylserine,
and L-γ-glutamyl-p-nitroanilide (GPNA) have been shown to effectively suppress tumor growth
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in vitro and in vivo [161,162]. Pharmacological blockade of SLC1A5 and SLC7A5 using a newly
designed small molecule antagonist, V-9302, elicited a marked anti-tumor response in pre-clinical
tumor models [163]. An analog of DON with masked carboxylate and amine functionalities,
JHU-083, was recently shown to have increased bioavailability, resulting in higher cell kill and
decreased growth of Myc-driven medulloblastomas in vivo [164]. Further, inhibitors such as
bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES), CB-839, and compound 968
represent a unique class of drugs developed to target tumor-specific isoforms of glutaminase
(GLS) [165–167]. Compound 968 specifically inhibits GAC, a shorter kidney-type isoform of GLS, by
repressing Rho GTPases [166]. In contrast, BPTES and CB-839 both allosterically inhibit tetramerization
of GLS [165,167,168], and have shown great promise as targeted therapies for glutamine-addicted
tumors [165,169]. CB-839, an improved derivative of BPTES with an IC50 < 50 nM against human
GLS, is currently in Phase I clinical trials. The initial results of these trials for hematological
malignancies (NCT02071927 and NCT02071888) report a high tolerance for CB-839 in patients,
along with robust inhibition of GLS and subsequent reduction in blast counts [170]. However, it is
important to note that inhibition of glutaminase in tumors may result in development of compensatory
metabolic networks [171]. This may necessitate the design of rational combinatorial strategies that can
target multiple metabolic nodes. Similarly, inhibitors of glutamate dehydrogenase (GLUD) such as
Epigallocatechin gallate (EGCG) and R162 are shown to be effective in hindering tumor proliferation by
disrupting the anaplerotic use of glutamine in the TCA cycle [172,173]. It is noteworthy that glutamine
metabolism is essential for endothelial cell function [174] in tumors and glutamine deprivation or
disruption of glutaminase impairs angiogenesis in vivo [175]. This suggests that inhibition of glutamine
metabolism in vivo can disrupt blood supply to tumors and potentially augment treatment response.
These promising findings strongly emphasize that targeting glutamine metabolism can be an attractive
therapeutic strategy.

Table 1. Therapeutic strategies targeting glutamine metabolism in tumors.

Class Drug Status

Glutamine mimics

DON
JHU–083 [164]

Azaserine
Acivicin

Limited by off target toxicity

Glutaminase (GLS) inhibitors
Compound 968 [166]

CB-839 [167]
BPTES [165,168]

Preclinical tool
Successful in Phase I clinical trials

[NCT02071927, NCT02071888]
Preclinical tool

SLC1A5 inhibition

V-9302 [163]
Benzylserine

GPNA
γ-FBP

Effective, preclinical tools

Glutamine depletion L–Asparginase Clinically used for hematological malignancies
Limited by toxicity

Glutamate dehydrogenase
(GLUD) inhibitors

EGCG
R162 Preclinical tool compounds

Aminotransferase inhibitors AOA Used for tinnitus treatment
Limited by toxicity

SLC7A11 or xCT inhibitors Sulfasalazine
Erastin

Pre-clinical tools
Potent inducers of ferroptosis

5. Conclusions

Glutamine metabolism can regulate multiple pathways including macromolecule synthesis, energy
production, epigenetic regulation, and redox homeostasis in brain cancer cells (Figure 3), making it an
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attractive therapeutic target. However, it is important to note that glutamine metabolism depends on a
multitude of factors that can give rise to heterogeneity including cells-of-origin, tumor-intrinsic genetic
aberrations, and the tumor microenvironment, all of which can influence glutamine requirements
of brain tumor cells in vivo. Variation in the tumor metabolic state, influenced by experimental
systems, constitutes an additional layer of complexity. Further research to improve cell culture systems
that can better reflect the in vivo state would be critical to better understand glutamine metabolism.
Nevertheless, with the advancing technologies, including understanding the tumor microenvironment
and newer tools to assess glutamine metabolism in vivo, bear promise to inform brain tumor monitoring
and treatment.
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Glutamate dehydrogenase (GDH) converts glutamate to α-ketoglutarate (α-KG), which drives TCA
cycle anaplerosis. Glutamine metabolism can influence the tumor cell epigenome and methylome
by modulating the levels of α-KG, which is an important co-factor for DNA (TET) and histone
demethylases (JHDM). Additionally, glutamine plays a key role in mediating synthesis of nucleotides
and other non-essential amino acids. Abbreviations: TCA, tricarboxylic acid; TET, Tet methyl cytosine
dioxygenase; JHDM, Jumonji domain-containing histone demethylase.
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