
OPINION
published: 23 February 2021

doi: 10.3389/fphys.2021.612865

Frontiers in Physiology | www.frontiersin.org 1 February 2021 | Volume 12 | Article 612865

Edited by:

Hadley Wilson Horch,

Bowdoin College, United States

Reviewed by:

Christoph Johannes Kleineidam,

University of Konstanz, Germany

Susan Fahrbach,

Wake Forest University, United States

*Correspondence:

Zach N. Coto

zcoto@bu.edu

Specialty section:

This article was submitted to

Invertebrate Physiology,

a section of the journal

Frontiers in Physiology

Received: 30 September 2020

Accepted: 01 February 2021

Published: 23 February 2021

Citation:

Coto ZN and Traniello JFA (2021)

Brain Size, Metabolism, and Social

Evolution. Front. Physiol. 12:612865.

doi: 10.3389/fphys.2021.612865

Brain Size, Metabolism, and Social
Evolution

Zach N. Coto 1* and James F. A. Traniello 1,2

1Department of Biology, Boston University, Boston, MA, United States, 2Graduate Program in Neuroscience, Boston

University, Boston, MA, United States

Keywords: brain metabolism, metabolic scaling, cognitive demands, social brain, ants

Questions concerning the integration and scaling relationships among size, morphology,
physiology, and behavior are fundamental in evolutionary biology. The evolution of brain
size and structure and their association with behavior is typically examined through analyses
of encephalization, brain mosaicism, and allometries among functionally specialized brain
compartments. Research across diverse clades has not clarified how brain size may evolve
in response to environmental, social, and cognitive requirements. Studies of metabolic and
neuroarchitectural scaling across multiple levels of organization can advance our understanding
of the evolution of brain and behavior. However, the analysis of brain evolution has been limited by
a lack of data on brain metabolism and its relation to brain and body size, and behavior. Using ants
as eusocial insect exemplars, we propose an analysis of brain evolution encompassing metabolism,
brain size, and neuroarchitecture to understand how these traits scale with body size and correlate
with social behavior.

BRAIN SIZE, MOSAICISM, AND SOCIAL BEHAVIOR

Variation in brain size and structure is correlated with ecology (Liao et al., 2015; Hoops et al., 2017;
DeCasien and Higham, 2019) and sociality (Kolb et al., 2013; Kotrschal et al., 2014; Dunbar and
Shultz, 2017). Significant associations among brain size, structure and social behavior have been
found in insects (Ott and Rogers, 2010; Eberhard andWcislo, 2011; Muscedere and Traniello, 2012;
Feinerman and Traniello, 2015; Gordon et al., 2017). Limitations of volumetric correlations have
been noted (Healy and Rowe, 2007; Logan et al., 2018). Studies of the structure and number of cells,
synapses, and circuits may provide important neuroethological detail (Godfrey and Gronenberg,
2019), although comparative studies of individual neurons (Giraldo et al., 2013) and synaptic
processing capability (Falibene et al., 2015; Gordon and Traniello, 2018; Gordon et al., 2019; Groh
and Rössler, 2020) vary in degree of linkage with behavior. Volume (or mass) data are indeed
required to understand scaling of cellular metrics such as synaptic density (Yilmaz et al., 2016) or
neuromodulator titer, and can provide insight into sex-specific brain differentiation (Kiesow et al.,
2020) and regional investment associated with social network size (Noonan et al., 2018). Metrics
of brain size and mosaicism will continue to contribute to understanding brain architecture in
sociobiological contexts.

Ranging in size from microscopic wasps to goliath beetles, insects provide diverse models
for studying relationships among brain size, metabolism, and behavior (Rittschof et al., 2015;
Rittschof and Schirmeier, 2017). Ants exhibit robust behavioral performance at miniature size
and remarkable cognition as individuals (Giurfa, 2019) and groups (Sasaki and Pratt, 2018).
Colonies may be composed of polymorphic workers that divide labor according to size and/or
exhibit complex collective behaviors. The impact of worker cognitive demands and colony-
level capabilities on brain size and metabolism has only begun to be investigated. Variation in
ant worker size—from minute Carebara atoma to “huge” Dinoponera—and colony complexity
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provides outstanding opportunities to examine brain metabolism
in relation to individual and group behavior.

Clade-specific brain scaling relationships, and their relation to
behavior, require explanation. For example, diphasic allometry
of brain mass to body mass indicates a significant increase in
slope below a particular body size in some species; this may
reflect limitations of investment in neural tissue in small bodies
(Seid et al., 2011; van der Woude et al., 2013; Groothius and
Schmid, 2017; Polilov and Makarova, 2017). Fungus-growing
ants, whose workersmay have task specializations associated with
their agrarian habits, show a reduced allometric slope of brain
mass to body mass relative to other ants and a higher body mass
at which diphasic allometry occurs (Seid et al., 2011). Relative
antennal lobe volume is positively correlated with colony size, but
decreases in species with strong worker polymorphism and task
specialization (Riveros et al., 2012). In the desert ant Cataglyphis,
species forming large colonies have workers with significantly
larger brains than those with small colonies (Wehner et al., 2007).
These studies suggest that brain size, body size, behavior, colony
size, and social complexity are related.

METABOLIC SCALING AND BRAIN

OPERATION COSTS

Metabolism is considered highly significant to brain evolution
because brains are energetically expensive (Aiello and Wheeler,
1995; Isler and van Schaik, 2009). Larger brains may allow
increased information processing; therefore, the increased cost
of larger brain size implies selection for cognition in vertebrates
(Pontzer et al., 2016; Dunbar and Shultz, 2017; DeCasien
and Higham, 2019) and insects (Niven and Laughlin, 2008).
However, there are few studies on brain metabolic scaling
(West et al., 2002; Prothero, 2015) that relate brain size and
metabolism. Furthermore, it is unclear whether theories of brain
metabolic scaling apply to insects, whose brain structure, neuron
physiology, and small size may differ in information-processing
ability from vertebrates (Laughlin et al., 1998; Faisal et al., 2005;
Niven and Farris, 2012; Sengupta et al., 2013). Analyses of size-
related constraints onmetabolism (Darveau et al., 2002;West and
Brown, 2005; Fonseca-Azevedo and Herculano-Houzel, 2012),
life-history traits (Harrison, 2017), and brain size evolution
(Harrison et al., 2002; Isler and van Schaik, 2006, 2009; Niven
and Laughlin, 2008; Navarrete et al., 2011) will benefit from
the integrative study of brain size, neuron structure and brain
metabolism in insects.

Brain metabolism may relate to social complexity. Kamhi
et al. (2016) used cytochrome oxidase (COX) activity, a proxy
for neuron metabolism (Déglise et al., 2003), to contrast
brain evolution and social evolution in the weaver ant
Oecophylla smaragdina and the garden ant Formica subsericea,
two sister clades whose workers are equivalent in body
size but differ strongly in social organization and collective
intelligence. Increased social complexity in weaver ants—
reflected in division of labor by worker physical castes, large
colony size, and remarkable group action—was associated with
larger mushroom bodies (centers of higher-order information

processing) exhibiting reduced COX activity. Increased brain size
in a socially complex ant may thus be associated with reduced
metabolic cost, contrasting with the assumption that increased
brain size increases metabolic costs (Isler and van Schaik, 2009).
Data on brain size and metabolism are therefore required to
understand brain evolution.

BRAIN METABOLISM, SYNAPTIC

PLASTICITY, AND DIVISION OF LABOR

Subcaste-specific metabolic scaling patterns that correlate with
division of labor (Shik, 2010) and worker age can offer
insight into metabolic costs of behavior and synaptic structure.
Minor workers of the dimorphic ant Pheidole dentata show
an increase in the size and number of synapses and vesicles
of individual presynaptic boutons without synaptic number
change in the mushroom body lip over the first 3 weeks of
adult life (Seid et al., 2005) when their task diversity (Seid
and Traniello, 2006) and efficiency (Muscedere et al., 2009)
increase. In contrast, Pheidole major workers exhibit a limited
behavioral repertoire even at maturity (Mertl and Traniello,
2009). In both subcastes, age is associated with increased brain
volume (Muscedere and Traniello, 2012) and declines in the
density of mushroom body lip microglomeruli (Gordon et al.,
2018)—synaptic structures that underlie plasticity in sensory
processing capability and behavior (Groh and Rössler, 2011,
2020; Groh et al., 2014; Rössler, 2019). These changes are
greater in minor workers. Synaptic transmission and plasticity
are metabolically costly (Attwell and Laughlin, 2001; Harris
et al., 2012; Todorova and Blokland, 2017). Therefore, increased
brain metabolic rate during maturity due to increased brain
size may be more pronounced in minors in association with
synaptic changes underpinning their greater task diversity.
Additionally, brain serotonergic immunoreactivity (Seid et al.,
2008) and serotonin titers (Seid and Traniello, 2005; Muscedere
et al., 2012) increase with age. Brain metabolic rate may
decrease in response to increased serotonin activity (New
et al., 2004; Rittschof et al., 2019) and decline with age in
P. dentata. Recording brain and mushroom body metabolism
in young and old minor and major workers can provide data
to enhance our understanding of how synaptic energy costs
relate to variation in neuropil volume, synaptic remodeling, and
behavioral pluripotency.

FUTURE RESEARCH

Technical advances have increased the accuracy and sensitivity
of metabolic research. Neville et al. (2017) recorded metabolism
in intact Drosophila larval brains similar in volume (Cardona
et al., 2010) to those of minute ant brains or large mushroom
bodies (Arganda et al., 2020). Pooled samples may be needed
for small compartments or, for example, to measure dissociated
mitochondria activity (Rittschof et al., 2019). Additional
methods can be applied. Barros et al. (2018) describe the use
of 2-deoxyglucose and transgenic production of fluorescent
metabolites to study brain metabolite fluxes, and at the
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organismal level, whole-body respirometry (Waters et al.,
2017; Lighton, 2019) enables measurement of the metabolic
rates of workers and colonies. Computational neuroimaging
(Arganda-Carreras et al., 2017) accelerates collateral volumetric
data collection for scaling studies. Proof of concept is clear,
and a strong methodological foundation supports empirical
studies on brain metabolism, size, and structure in ants.
Variation in social complexity, worker body size, species richness,
and ecology, as well as the availability of robust molecular
phylogenies, allow patterns of metabolic scaling to be examined
in evolutionary context.

We next identify three research areas predicated on the
quantification of brain metabolism.

Metabolic Tradeoffs
The expensive tissue hypothesis predicts a tradeoff in investment
in the brain and other tissues (Aiello and Wheeler, 1995) and
according to selfish brain theory, the brain exhibits resilience
to metabolic stress by demanding energy from other systems
(Peters et al., 2013). The immune system is also considered
to be energetically costly and may exhibit energetic tradeoffs
with the brain (Yamagata et al., 2017). These theories overlap
conceptually, but have yet to be fully integrated. Insect brains
may trade the cost of neural tissue with energetically costly flight
muscles (Suarez, 2000; Schippers et al., 2010) or mandibular
muscles (Roces and Lighten, 1995). Diversity in diet and
sociality may affect systems tradeoffs: carbohydrate diets and
predation are associated with alimentary tract adaptations
for food exchange and alloparenting. Diet can affect energy
availability, and cognitive needs may affect brain size and
metabolism. Comparative studies will offer insights into energetic
constraints on brain investment relative to nutritional ecology
and sociality.

Multilevel Scaling Analyses
Metabolic scaling should be considered for whole brains,
functionally specialized brain compartments, workers, and
colonies. Compartmental allometries can reflect variation in
cognitive demands associated with division of labor (Muscedere
and Traniello, 2012; Gordon et al., 2017, 2019), but the energy
needs of brain compartments associated with task specialization
are unknown. Hypometric metabolic scaling at the colony level
has been demonstrated: workers in larger colonies with lower
mass-specific metabolic rates may perform tasks that have lower
costs (Shik, 2010; Fewell and Harrison, 2016; Waters et al.,
2017). Data on how brain metabolism scales with colony size,
combined with studies on colony size-related shifts in task

distributions, can reveal the role of behavior in colony-level
metabolic scaling.

Genetic and Genomic Approaches to

Metabolism
Neurons meet energy demands primarily through oxidative
phosphorylation, and cytochrome oxidase (COX) has been used
as a proxy for neuronal metabolism (Wong-Riley, 1989; Déglise
et al., 2003). COX subunit isoforms may influence cellular
metabolism (Taanman et al., 1994; Kadenbach, 2017; Chicherin
et al., 2019, Reguera et al., 2020). Ants and other insects exhibit
genetic diversity in COX (Liu and Beckenbach, 1992; Lunt et al.,
1996) that may affect metabolic efficiency (Sabir et al., 2019).

CONCLUSION

Despite the importance of brain metabolism, the relationship
between brain metabolic scaling and sociality is not well
understood. Hypometric scaling of metabolism to body size
and colony size in ants may be due to energy efficiency
associated with social complexity. However, the impact of social
complexity on worker and colony-level metabolism is unclear.
Additionally, synaptic plasticity is associated with age-related
changes in brain size and behavioral repertoire, but associated
metabolic costs are unknown. The striking variation in body
size, brain size, and individual worker and collective behavior
in ants can facilitate metabolic analysis at multiple levels to test
theories of brain evolution. Metabolic variation—from genes and
proteins to workers and colonies—can be assessed in relation to
social organization.
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