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Abstract

Model selection is often implicit: when performing an ANOVA, one assumes that the normal distribution is a
good model of the data; fitting a tuning curve implies that an additive and a multiplicative scaler describes the
behavior of the neuron; even calculating an average implicitly assumes that the data were sampled from a dis-
tribution that has a finite first statistical moment: the mean. Model selection may be explicit, when the aim is
to test whether one model provides a better description of the data than a competing one. As a special case,
clustering algorithms identify groups with similar properties within the data. They are widely used from spike
sorting to cell type identification to gene expression analysis. We discuss model selection and clustering tech-
niques from a statistician’s point of view, revealing the assumptions behind, and the logic that governs the
various approaches. We also showcase important neuroscience applications and provide suggestions how
neuroscientists could put model selection algorithms to best use as well as what mistakes should be avoided.
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As neuroscience is becoming increasingly quantitative with “big data” approaches gaining a firm foothold in
neurophysiology, neurogenetics and animal behavior, proper statistics for neuroscience is critically impor-
tant. Nevertheless, probability theory and statistics is a dynamically evolving branch of mathematics; there-
fore, frequent cross-fertilization is required between probability theory and neuroscience. Statistical model
selection, either implicit or explicit, is an integral part of data analysis in many neuroscience studies. Here,
we review available and upcoming methods for statistical model selection, with an enhanced focus on clus-
\ter analysis as a special case and provide neuroscience examples for their application. /

ignificance Statement

Introduction

“All models are wrong, but some are useful (George
Box, 1979).”

Broadly speaking, model selection encompasses all
knowledge and assumptions about the underlying dis-
tributions for an observed sample. These assumptions
have strong relevance to subsequent statistical deci-
sions, like how to estimate central tendencies (e.g.,
mean, median), which statistical test to employ, how
to describe and visualize the data. Arguably, the model
selection trap most commonly walked into is performing
it without noticing it. For instance, pitfalls of machine
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learning-inspired dimensionality reduction approaches
have been demonstrated recently (Chari et al., 2021),
suggesting that it may be useful to treat the choice
among such algorithms as a model selection problem,
asking which approach represents the important as-
pects of the data most faithfully (mine #1).

In simple cases, beaten paths are of help. For instance,
limit theorems explain the laws that determine asymptotic
distributions of the sums of independent random varia-
bles; as a result, normal distribution may be assumed for
many types of data on the basis of the central limit theo-
rem, or the Poisson process is a good model for “random”
spiking of neurons, because of the Poisson limit theorem.
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Nevertheless, we suggest that conscious evaluation of
such assumptions is not a futile exercise even in seem-
ingly simple situations.

In less straightforward scenarios, one might have to
resort to a statistical model selection approach, that is,
to choose from possible models underlying a set of ob-
servations based on statistical principles (Konishi and
Kitagawa, 2008). However, this is an inherently hard
mathematical problem: the “true” model may or may
not be among the investigated choices, and it is far
from trivial to assess whether a model is better than a
competing one. The probability of the observations is
evaluated in face of a given underlying model, called
the “likelihood,” providing a goodness-of-fit (GOF)
measure with firm probability theory basis (for recent
review on Bayesian model comparison, see Keysers et
al., 2020). However, models of increasing complexity
typically fit better (mine #2). This is easily illustrated by
polynomial fitting: if we intend to fit n data points, a
polynomial of degree n-1 (or higher) will provide a per-
fect fit. However, this is a poor argument to propose it
as the “true” or even the “best” model. More likely, the
data may be generated from a distribution with some
level of stochasticity, better captured by a lower de-
gree model.

Problems of this sort are frequently encountered in neu-
roscience. Generally, the GOF is discounted by measures
of complexity; however, there is no single recipe for this
equation, and as often happens, the multitude of pro-
posed solutions demonstrates that none of them is per-
fect (Konishi and Kitagawa, 2008; James et al., 2013).
While covering all important aspects of model selection
would fill volumes, we focus on model selection prob-
lems especially relevant for neuroscience, emphasizing
dos and don’ts, in the following (for the list of common
“mines” of model selection discussed, see Table 1).

Model Selection Based on Akaike

Information Criterion

Is it one bump or two bumps in my plot? More formally,
does the mixture of two Gaussians provide a better
model than a single one? Is the dependence between
the measurements linear, logarithmic, exponential or
best described by a quadratic equation? At this point,
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we hit a roadblock: how to arbitrate between models of
disparate complexity?

The most often-used statistical tools for model selec-
tion in neuroscience are so-called information criteria,
stemming from the maximum likelihood concept (Akaike,
1969, 1973; Banks and Joyner, 2017). Generalized from
autoregressive (AR) models, Akaike introduced “an infor-
mation criterion” (AIC; known today as Akaike informa-
tion criterion) to compare statistical models of different
complexity (Akaike, 1974). The AIC stands on solid sta-
tistical basis, rooted in the Kullback-Leibler divergence
(KL) of information theory (Seghouane and Amari, 2007;
Seghouane, 2010). The KL divergence quantifies the dif-
ference of the true distribution of the data compared with
that derived from the tested model. In other words, it can
be thought of as the “information loss” (in bits) or the
“coding penalty” associated with the imperfect approxi-
mation of the true distribution. If we can measure an
unbiased empirical distribution, like the frequency of
heads and tails when tossing a coin, in the limit of infi-
nite coin flipping, its KL divergence from the true distri-
bution, 0.5 probability for each outcome for a fair coin,
will tend to zero (Shlens, 2014; Cavanaugh and Neath,
2019). Formally, the KL divergence of the distribution
P from the distribution (model) Q is defined by

00

D (P]|Q) = / p(x)log ’%dx.

—00

Important to the derivation of AIC, the KL divergence
can be decomposed into entropy (information content) of
P, denoted by H(P) and cross-entropy of P and Q, de-
noted by H(P,Q):

Di.(P1Q) = / p(x)logp(x)dx — / p(x)logq(x)dx
= H(P,Q) — H(P).

The model that minimizes this quantity (minimal AIC
estimator; MAICE) is accepted (Akaike, 1974, 1978).
Thus, AIC relies on comparing competing models by
the difference of their KL divergencies with respect to
the “true model” (here denoted by P). It is easy to see
that this optimization problem only depends on the
cross-entropy term, as the entropy of P is cancelled in
the difference. The cross-entropy is mathematically
tractable and relatively easy to estimate (Rao and
Nayak, 1985); however, the commonly used maximum
likelihood estimation (MLE) is not unbiased in this
case, hence it has to be corrected by subtracting the
estimated bias. The core of deriving AIC is the bias
estimation procedure by approximating the cross-en-
tropy with its Taylor series to the quadratic term, rely-
ing also on the central limit theorem and the strong law
of large numbers (Akaike, 1973; Cavanaugh, 1997;
Konishi and Kitagawa, 2008). This results in the formal
definition of AIC as follows:
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Table 1: List of common “mines” of model selection and clustering discussed in the paper
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Example

Be aware of the assumptions behind analysis meth-
ods; treat the choice among different algorithms
as a model selection problem

Use statistical model selection tools which penalize
too many parameters

Simulate data from each of the tested models multi-
ple times and test whether the real data are suffi-
cient to distinguish across the competing models

Consider the strengths and limitations of the differ-
ent approaches (Table 2); simulated data can be
used to test which model selection method is the
most reliable for the given problem

Avoid model classes that are too restrictive to ac-
count for data heterogeneity

A data splitting approach was proposed by Genkin
and Engel in which optimal model complexity is
determined by calculating KL divergence

Consider divisive methods

Repeat several times from different starting centroid

Issue Suggestion

Mine #1  Selecting models without noticing it
Mine #2  Overfitting with overly complex

models
Mine #3  Selecting from a pool of poorly fitting

models might lead to false

confidence
Mine #4  Different information criteria might

favor different models
Mine #5 Model selection might be sensitive to

parameters ignored by the tested

models
Mine #6 Cross-validation techniques are

prone to overfitting
Mine #7  Agglomerative hierarchical clustering

is sensitive to outliers
Mine #8 K-means clustering might converge

to local minima locations
Mine #9  Number of clusters not known

Use the elbow method, gap statistics, or model se-

Chari et al. (2021)

Polynomial fitting

Figure 1b

Figure 1c (AIC favors over-
fitting), e (BIC chooses an
oversimplified model), f;
Evans (2019)

Chandrasekaran et al.
(2018)

Genkin and Engel (2020)

Figure 2c; Varshavsky et
al. (2008)

Figure 2e, right

Figure 2e, left

lection approaches

AIC = —2In(L) + 2k,

where L is the maximum likelihood of the model and k is
the number of free parameters (Akaike, 1973, 1974,
1978).

We demonstrate a use case of MAICE in Figure 1a by
fitting different models to capture the essence of a tun-
ing curve change. In sensory systems, neurons are
often characterized by their tuning properties, which
describe their responsiveness to external stimuli along
different dimensions (Butts and Goldman, 2006). In the
visual system, neurons of the primary visual cortex or
the visual thalamus are investigated in terms of their ori-
entation tuning, describing the angles of visual stimuli
they prefer (Hubel and Wiesel, 1959; Atallah et al.,
2012; Hillier et al., 2017). Auditory neurons can be cate-
gorized by their frequency-intensity tuning, revealing
tonotopical organization of auditory cortices (Kilgard
and Merzenich, 1998; Froemke et al., 2007; Hromadka
et al., 2008). More broadly, “tuning” refers to the exter-
nal or internal variables that drive neuronal firing, e.g.,
the tuning of hippocampal pyramidal neurons can be
defined in terms of physical Euclidean coordinates
(Muller et al., 1987; O’Keefe, 1993; Dupret et al., 2010)
and the tuning within face patches of the inferotemporal
cortex is defined by shape and appearance features of
standardized images of faces as stimuli (Chang and
Tsao, 2017). Tuning curves change during learning re-
vealing rules of plasticity (Kilgard and Merzenich, 1998;
Froemke et al., 2007), as a function of attentional modu-
lation (Maunsell and Treue, 2006; Disney et al., 2007;
Lee and Maunsell, 2009; Krueger and Disney, 2019) or
in response to optogenetic modulation of different neu-
ron types (Adesnik et al., 2012; Atallah et al., 2012; S.H.
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Lee et al., 2012; Pi et al., 2013; Wilson et al., 2012).
Therefore, they have become important tools to help
understand cortical information processing (Seriés et
al., 2004; Butts and Goldman, 2006; Lee and Maunsell,
2009). Tuning curve changes are often captured by ad-
ditive or multiplicative gain modulation models, in
which selecting the best linear gain model occurs as a
typical model selection problem (Atallah et al., 2012; Pi
et al., 2013; Hangya et al., 2014). In our example, we si-
mulated a gain change by multiplying a baseline tuning
curve with a scalar factor. The MAICE method correctly
indicated that the simulated data were better explained
by a multiplicative gain model. Moreover, repeating the
simulation a hundred times revealed statistical superi-
ority of the correct model.

Limitations of AIC

Although MAICE is a strong tool, some caution should
be raised. First, when the true model is not among the
tested ones, comparing poorly fitting models with AIC
may lead to a false confidence in a model that is margin-
ally better than some others. In Figure 1b, we simulated a
tuning curve by combining an additive and a multiplicative
gain; both the purely additive and purely multiplicative
model showed poor fit, still, AIC chose a “winner” (mine
#3). A related caveat is that AIC, in itself, does not provide
error bars; in other words, one might not have enough
data to draw conclusions on two similar models, despite
AIC being nominally smaller for one of them. When this
might be the case, it is recommended to statistically test
whether the data are sufficient to distinguish across the
competing models. This can be done by simulating data
points from each of the tested models with a sample size

eNeuro.org
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Figure 1. Examples of model selection problems in neuroscience. a, Using MAICE to choose between competing models. Left, We
used a bell curve to simulate neural responses as a function of stimulus features, generally referred to as a “tuning curve” (gray) and
used a multiplicative gain model (v = ax(s) + &;, where y=x(s) is the baseline tuning curve, a is a scalar and ¢; is a Gaussian noise
term) to simulate a tuning curve change (black crosses). Next, an additive (light green) and a multiplicative model (dark green) was
fitted on the simulated data. Smaller AIC value indicated that the multiplicative model fitted better (inset), as expected based on the
simulation. Right, We performed n =100 data simulations and calculated the difference between the AIC values of the competing fit-
ted models. The histogram (and the mean values in the inset) demonstrates that in every case the multiplicative model outperformed
the additive one. Error bars show standard deviation from the mean; **p < 0.01; two-sided bootstrap test. b, A gain model with both
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continued

additive and multiplicative components (y = ax(s) + b + &, where y =x(s) is the baseline tuning curve, a and b are scalars and ¢; is a
Gaussian noise term) was used to stimulate a tuning curve change (black crosses) relative to a baseline tuning curve (gray). Next, an
additive (light green) and a multiplicative model (dark green) was fitted on the simulated data. While the best fit curves visible devi-
ated from the simulated tuning curve, a smaller AIC value indicated that the additive model fitted somewhat better. ¢, Using BIC to
choose the best fitting ARMA model. Left, An ARMA (p =2, g=1) process was used to simulate LFP time series data (gray), where p
denotes the order of the AR and q the order of the moving average component. Next, we fitted ARMA models on the data with dif-
ferent p and q values in the range 1-4. Blue trace shows the predicted data based on the best fitting p =2, g=1 model. Middle, BIC
was calculated for each model, and the model with the lowest value (p =2, g=1) was chosen. Top, ARMA (p,q) model, where ¢; are
AR parameters, 6; are moving average parameters, ¢; are Gaussian noise terms, and u is constant. Right, AIC was calculated for
each model. AIC favored the more complex p =2, g=4 model over the expected p=2, =1 model. d, Demonstration of the use of
information criteria and the parametric bootstrap technique for choosing the number of modes in a distribution. We simulated phase
preference data of neuronal firing (n=250) referenced to an LFP oscillation as the combination of three wrapped normal distribu-
tions (top left, D = 7/2 refers to the phase difference between the mean of the two closest wrapped normal distributions). Next, mix-
ture models of 1-4 von Mises distributions (circular analog of the normal distribution that closely approximates the wrapped normal
distribution) was fitted on the distributions (right) using an expectation maximization algorithm for circular data (Czurko et al., 2011).
Minimal AIC and BIC, as well as maximal bootstrap p value correctly suggest that the model of three modes is the best fitting one.
BIC is penalizing the higher mode models more than AIC (bottom left). e, Same as panel d (left), but with D=0.85 7/2 phase differ-
ence parameter. While minimal AIC and maximal bootstrap p value still suggest that the model of three modes is the best fitting
one, BIC favored a simpler model with two modes. f, Information criterion difference between the two-mode and three-mode mod-
els as a function of the phase difference parameter D (left, n=2000) and the sample size (n, at D=0.85 7/2). Color coding of the y-
axis reflects the favored model (orange: 2 modes; red: 3 modes). If the modes are well-separated and the sample size is sufficient,
both AIC and BIC choose the correct three-mode model, while they can fail for low sample size or less distinguishable modes. At
parameters where the information criterion differences are closer to zero, BIC might favor the two-mode model while AIC might cor-
rectly identify three modes.

of the original dataset multiple times, and evaluating
whether the difference in AIC is consistent across those
simulations (Fig. 1a).

Second, as noted above, the heart of the derivation of
AIC is a correction that eliminates the bias introduced by
the specific mode of MLE employed for the formula.
However, this bias estimation only works asymptotically;
it is therefore not recommended to use AIC on small sam-
ple sizes. A “corrected” AIC (AICc) was proposed for
these cases; it is worth noting, however, that AICc relies
on more specific assumptions on the distribution of the
underlying data (Cavanaugh, 1997; Brewer et al., 2016).

Third, AIC is based on MLE, which is widely used and
has strongly established, favorable statistical properties.
Nevertheless, it may yield unstable parameter estimates
for complex models, and therefore, a range of “regular-
ized” (or “penalized”) MLE methods are available (Konishi
and Kitagawa, 2008; Jang et al., 2016; Chamroukhi and
Huynh, 2019). Since AIC formulation does not provide a
straightforward way to incorporate these more robust
MLE techniques, the generalized information criterion
(GIC) has been introduced, which provides a recipe for
constructing novel information criteria (Konishi and
Kitagawa, 2008). However, it will take further theoretical
work to determine how to derive suitable information cri-
teria for neuroscience based on GIC.

Bayesian Model Selection

The Bayesian approach to model selection is rooted in
calculating the posterior probability of a candidate model,
that is, how probable a given model is, provided the ob-
served data (Kass and Raftery, 1995; Wasserman, 2000).
Then, competing models are compared by their posterior
probabilities, and the one that maximizes this quantity is
selected.

July/August 2022, 9(4) ENEURO.0066-22.2022

In practical applications, the Bayes factor is often used,
comparing the relative strength of evidence for two mod-
els M; and M»:

_ Pr(Data|My)
~ Pr(Data|M,) "

Of note, the Bayes factor becomes the ratio of posterior
probabilities of the models in case their prior probabilities
are the same (the case of “uniform priors”), used for in-
stance in hypothesis testing, where an equally plausible
null and alternate hypothesis are compared (Keysers et
al., 2020). Although the interpretation of actual Bayes fac-
tor values remains somewhat subjective, Jeffrey sug-
gested in his classic work that a value over 10 should be
regarded as “strong evidence” (Jeffrey, 1961), which no-
tion is still generally accepted (Keysers et al., 2020).

In 1978, Schwarz introduced the Bayesian informa-
tion criterion (BIC; also called Schwarz-Bayesian in-
formation criterion; Schwarz, 1978), formally defined
by the following:

BIC = —2In(L) +kIn (n),

where L is the maximum likelihood of the model (like in
AIC), n is the sample size, and k is the number of free pa-
rameters. It has been shown that the BIC is an approxima-
tion of the logarithm of the Bayes factor; therefore, the
BIC provides an easy-to-use tool for Bayesian model se-
lection (Kass and Raftery, 1995).

To demonstrate a good use of BIC in a neuroscience
context, we first go back to our example of polynomial fit-
ting. MLE estimates trivially indicate better fits at higher
degrees, because the class of n degree polynomials in-
clude all <n degree ones. As a counterbalance, informa-
tion criteria penalize high number of parameters. AIC has
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a penalty of 2k (where k is the number of parameters),
whereas BIC has a term In(n)k (where n is the sample size),
thus BIC implies a stronger penalty and hence tends to
select simpler models (Brewer et al., 2016; Fig. 1c-e).
Relatedly, AIC is often pictured as a method for selecting
models for good “predictive accuracy” by penalizing sensi-
tivity to spurious features of the data also known as overfit-
ting, whereas BIC attempts to provide a good description
of the fitted data as it penalizes for model complexity more
broadly (Kass and Raftery, 1995; Evans, 2019; but also see
Rouder and Morey, 2019). Mathematically, AIC is “asymp-
totically efficient,” minimizing prediction error as sample
size tends to infinity, while BIC is “asymptotically consist-
ent,” selecting the correct model, if it is in the tested pool,
as sample size increases. They can also be seen as repre-
senting two different world views: in a complex world
where the true generating model is unknown and may be
unknowable, as suggested by the quote by Box we cited,
one must resort to efficiency, where AIC wins. When one
believes that a relatively simple model, included in the set of
tested candidates, generates the data, BIC can pick the true
model, while AIC does not come with such guarantees (Aho
et al., 2014; Chandrasekaran et al., 2018).

A good use case of BIC is determining the optimal
model order, for instance, when fitting AR models. The
order of AR models determines the time scale at which
previous information influences the “present” of a time se-
ries signal. In this case, competing models tend to be sim-
ple and we have an a priori bias toward smaller, more
parsimonious models (Fig. 1¢). Such analyses are typical
in predictive time series analysis of EEG and fMRI traces
(Muthuswamy and Thakor, 1998; Baajour et al., 2020). For
instance, pathologic synchrony during epileptic activity
can be detected and measured by analyzing the residual
covariance matrix of an AR model fitted on multichannel
scalp EEG recordings (Franaszczuk and Bergey, 1999).
Similarly, cross-area interactions can also be quantified
by multivariate AR models in fMRI recordings (Harrison et
al., 2003; Stephan et al., 2004; Ting et al., 2015). Epileptic
patients also show interictal spikes in EEG recordings,
which can be efficiently detected using AR models esti-
mated with a Kalman filter (Oikonomou et al., 2007).
Figure 1c demonstrates the application of BIC to choose
the best fitting AR-moving-average (ARMA) model for si-
mulated local field potential (LFP) data. As indicated
above, in such problems AIC may not pick the true model;
indeed, in our example AIC favored a more complex
model (mine #4; Fig. 1c, right).

More Information Criteria

We may view the information criteria as methods for es-
timating the correct number of model parameters by find-
ing their minimum. The BIC has the advantage over AIC
that in the infinite limit of sample size, it yields a parameter
estimate that converges to the true number of parameters
with a probability of 1, called a “strongly consistent” esti-
mate in statistics. Another strongly consistent information
criterion was introduced by Hannan and Quinn (Hannan
and Quinn, 1979), inheriting its favorable properties from
the law of the iterated logarithm (Erd8s, 1942):

July/August 2022, 9(4) ENEURO.0066-22.2022
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HQC = —2In(L) + 2k In (In(n)).

The penalty term grows very slowly as a function of
sample size, which was suggested to lend the Hannan—
Quinn Information Criterion better convergence proper-
ties compared with the BIC (Miche and Lendasse, 2009).
Therefore, it is often used for determining the order of AR
models (Sin and White, 1996; Miche and Lendasse,
2009), suggesting that it may have a yet unexploited place
in the EEG and fMRI data analysis armament.

The deviance information criterion (DIC) is an extension
of AIC, penalizing similarly for model parameters, but ap-
plying a different GOF measure, defined as the likelihood
of the data averaged over the entire posterior distribution
(Spiegelhalter et al., 2002; Celeux et al., 2006; Evans,
2019). By departing from the MLE-based GOF ap-
proach, it gained popularity in Bayesian model selection,
when dealing with cases where maximum likelihood esti-
mation is difficult (Celeux et al., 2006; Evans, 2019; Y. Li et
al., 2020). While DIC assumes approximate normality of the
posterior distribution (Spiegelhalter et al., 2014), Watanabe
proposed a “widely applicable” (or Watanabe-Akaike) in-
formation criterion (WAIC) that does not rely on such
assumptions (Watanabe, 2010a,b, 2013). Newest in this
family, the “leave one out” information criterion (LOOIC) is
similar to WAIC (Watanabe, 2010b; Gelman et al., 2014;
Vehtari et al., 2017; Yong, 2018), but it has been proposed
to yield more robust results in the finite case with weak pri-
ors or influential observations (Vehtari et al., 2017). Although
these measures incorporate Bayesian notions, they can still
be interpreted in terms of predictive accuracy, thus being
advanced alternatives of AIC (Evans, 2019). Watanabe has
made an attempt to generalize BIC as well, which resulted in
the “widely applicable Bayesian” information criterion
(WBIC) that seeks for the true model instead of minimizing
predictive loss (Watanabe, 2013). Neural dynamics is usually
best modelled by latent variable models, assuming a set of
interacting hidden and observable variables (Sahani, 1999;
Churchland et al., 2012; Vértes and Sahani, 2018; Pei et al.,
2021), and doubly stochastic processes, where the dynam-
ics is described by a random point process with varying in-
tensity (Cunningham et al., 2008; Latimer et al., 2015). In
these cases, one needs to apply the abovementioned infor-
mation criteria relying on Bayesian GOF estimations
(Latimer et al., 2015); therefore, we expect that these novel
approaches will soon gain popularity in neuronal modeling
and complex data analyses.

It is still debated among statisticians which information
criterion is better and when (Konishi and Kitagawa, 2008;
Mainassara and Kokonendji, 2016). Since choosing the
penalizing term will remain somewhat arbitrary, there
likely will not be “one information criterion to rule them
all.” Indeed, it is possible that different information criteria
will favor different models, without a clear argument on
which particular criterion suits the statistical problem at
hand best (mine #4). For instance, Evans conducted a
systematic comparison of a number of information criteria
for a specific class of evidence accumulation models of
decision-making processes and found that while model
selection approaches typically agreed when effect sizes
were moderate to large, they could diverge in their
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conclusions for small or nonexistent effects (Evans,
2019). He concluded that one should opt for “predictive
accuracy” approaches like AIC when the primary goal is
to avoid overfitting and thus select a model with strong
predictive value, whereas BIC performs better if the goal
is to provide the best account of the present data
(Shmueli, 2010; Evans, 2019). Going one step further, one
might adopt a simulation approach to test which model
selection approach is the most reliable for the problem at
hand, much the same as in the Evans study.

When complex systems, like those that determine the
exact firing activity of neurons, are considered, it is un-
likely that our models will capture all aspects of the true
generating model. However, model selection approaches
will always announce a winner, which raises a set of is-
sues (Chandrasekaran et al., 2018). First, it is conceivable
that all of the tested models fall far from the generating
process, in which case model selection will yield a mis-
leading conclusion about the data (mine #3). Second,
model selection may be sensitive to parameters of the
generating model not captured by the tested models. In
such cases, model selection will suggest a model that is
closer to the data in statistical or information theoretical
terms, but not necessarily conceptually (mine #5). This
is detailed in an elegant paper revealing model selection
pitfalls when arbitrating between ramp-like and step-
like changes in firing rates of single cortical neurons
(Chandrasekaran et al., 2018). As a suggestion, one
should take multiple close looks at the data, and avoid
model classes that are too restrictive to account for
data heterogeneity (Chandrasekaran et al., 2018;
Genkin and Engel, 2020).

As a take-home message, information criteria are
strong tools to contrast competing models, but research-
ers should always ask “Is my data sufficient and appropri-
ate to discriminate these models?” (for details, see above,
Limitations of AIC), and if the answer is yes, cautiously
conclude that “this particular information criterion pro-
vides a statistical argument for model A describing the
data better than model B.”

Model Selection Using Resampling
Techniques

Resampling techniques are strong tools of modern sta-
tistics with firm mathematical foundations while having
minimal assumptions on the statistics of underlying data.
On the flip side, they require substantial, sometimes pro-
hibitively large, CPU-power.

In cross-validation methods, originating from machine
learning, the data are split into a “training” and a “test”
set. A model can be validated by fitting on the training set
and obtaining GOF statistics on the test set. In neuro-
science, the leave-one-out cross-validation algorithm is
often applied: the model is fitted on n-1 data points, and
tested on the remaining one, repeated for all data points
as the “test set” (Kohavi, 1995; Browne, 2000; Hastie et
al., 2009; J.R. Cohen et al., 2010). A generalization is the
leave-p-out; however, more CPU-intensive with increas-
ing p. To reduce CPU-load, the k-fold cross-validation
may be applied: instead of testing all combinations of
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p-sized subsamples, the data are split into k groups to
obtain the GOF distribution. Of note, the law of total
probability, characterizing the relationship of condi-
tional and marginal probabilities, reveals a deep link
between cross-validation techniques and the Bayesian
concept of likelihood. Specifically, decomposing the
marginalized log likelihood function by the chain rule
provides a formula equivalent to the sum of leave-p-out
Bayesian cross-validation errors (Sadtler et al., 2014; Fong
and Holmes, 2020).

It should nevertheless be noted that cross-validation
techniques have some often overlooked, unfavorable sta-
tistical properties. Namely, they are prone to overfitting,
giving undue credit to more complex models (Gronau and
Wagenmakers, 2019). Indeed, when complex, flexible
models are applied to broadly capture data heterogeneity,
cross-validation techniques at realistic data amounts may
not be able to prevent overfitting (mine #6). To overcome
this, a novel data splitting approach was proposed re-
cently, in which the data are divided into two halves, and
the optimal model complexity is determined by calcu-
lating KL divergence between the distributions corre-
sponding to models of the same complexity fitted on
the two datasets (Genkin and Engel, 2020). A caveat of
this proposal is that the KL divergence rises more or
less monotonically with model complexity; thus, an em-
pirical threshold is suggested to determine the “optimal
point” the robustness of which has to be determined by
future studies.

Neuroscience applications include a wide range of
classification problems, from linking fMRI or fNIRS data
to human behavior (J.R. Cohen et al., 2010; Jiang et al.,
2012) to categorizing stimulus responses of cortical neurons
(de Vries et al., 2020). Recently, cross-validation techniques
have gained additional momentum as machine learning
techniques revitalize many areas of neuroscience (Savage,
2019; Yang and Wang, 2020), since they are considered
the first choice model selection tools when fitting artificial
intelligence (Al) models. In this regard, it is important to
highlight the attempts to automate classification of neurons
based on their morphologic (m-types), electrophysiological
(e-types) and transcriptomic (t-types) characteristics
(Armafanzas and Ascoli, 2015; Saunders et al., 2018;
Gouwens et al., 2019, 2020; Que et al., 2021).

Of the resampling approaches, parametric bootstrap is
a particularly useful technique, often overlooked in neuro-
science. When testing models that can be described with
a relatively small number of parameters (e.g., a mixture of
Gaussians), one can generate a bootstrap set of simu-
lated data from these models, and use a GOF measure to
describe the relationship of the model and the simulated
data. A bootstrap distribution of such GOFs can then be
used to estimate the probability of the original data violat-
ing the tested model (Fisher, 1993; Czurko et al., 2011).
Thus, unlike information criteria only providing a relative
score, one obtains a p value. The model with the highest p
value (least rejected model) wins. A practical application
of parametric bootstrap is arbitrating the number of
modes in an empirical distribution, using a mixture of un-
imodal distributions described by few parameters (e.g.,
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Table 2: Advantages and limitations of model selection and clustering algorithms
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Method

Advantages

Limitations

Suggestions

Statistical model selection
Akaike information cri-
terion (AIC)

Bayesian information
criterion (BIC)

Resampling methods

Clustering
Hierarchical clustering,
agglomerative

Hierarchical clustering,
divisive
K-means clustering

Strong mathematical basis (KL-
divergence)
Easy to calculate

Suitable for comparing models of

different complexity
Strong mathematical basis
(Bayesian statistics)

Easy to calculate
No assumptions on data
distributions

Provides a p value for each
tested model

Simple

Easy to interpret

Includes more robust and CPU-
efficient options

CPU-efficient

Does not rely on many
parameters

May lead to false confidence
in marginally better models

Difficult to test whether differ-
ences are significant

Not suitable for low sample
sizes

Asymptotic properties may
not hold for complex (multi-
parameter) models

Difficult to test whether differ-
ences are significant
CPU-intensive

Does not always converge to
the true model (statistically
inconsistent in the M-
closed case)

CPU-intensive for large
datasets

Sensitive to outliers and
choices of algorithms and
parameters

Sensitive to choices of algo-
rithms and parameters

Requires a priori estimate of
number of clusters

May converge to local minima
and not find the global
optimum

If critical, perform simulations to as-
certain true differences among the
tested models

Consider AlCc if its assumptions are
met

BIC is more recommended for sim-
pler models, especially when over-
fitting is a concern, e.g., deciding
the order of an AR process

Consider simulations, as for AIC

Parametric bootstrap and cross-vali-
dation are often the best choice for
testing models with few
parameters

With careful consideration of choos-
ing similarity measure, clustering
rule and other parameters, the flex-
ibility of hierarchical clustering can
be used to its advantage; test the
robustness of the results by explor-
ing the parameter space

Ideal choice if number of expected
clusters is known; explore robust-
ness of results by starting the algo-
rithm from different sets of
centroids

The last column provides suggestions on how to use.

Gaussians). For instance, hippocampal neurons are often
characterized by the systematic relationship between
their action potentials and the dominant ongoing local
population activity, the theta rhythm (Buzsaki, 2002;
Klausberger and Somogyi, 2008; Czurkd et al., 2011;
Buzsaki and Moser, 2013). Neurons are active at multiple
phases of this oscillation (Klausberger and Somogyi,
2008; Czurko et al., 2011), but is the observed circular
phase histogram of hippocampal activity truly multimo-
dal? We demonstrate the power of parametric bootstrap
approaches on this example in Figure 1d. Of note, while
AIC and BIC work well for sufficient sample sizes and
well-separated modes, they can both fail for low sample
sizes or if the modes of the generating model are less dis-
tinguishable (Fig. 1e,f).

Bootstrap techniques also differ from information cri-
teria in their capabilities to evaluate standalone models,
while AIC, BIC, and related methods can only perform
comparison of competing models. As a middle ground,
one may ask the question whether a given model is bet-
ter than a minimalistic model that still captures selected
features of the data. Bayesian decoding can be used to
extract relevant features of the data in a model-free par-
adigm (Koyama et al., 2010; Kloosterman et al., 2014).
In neuroscience, this approach may relate neuronal ac-
tivity to external variables as a generalization of the
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concept of tuning (see above; Okun et al., 2012;
Kloosterman et al., 2014), or aim at understanding in-
terdependences within populations of neurons (Okun
et al., 2012; Banyai et al., 2019). Maximum entropy
models (Tkacik et al., 2013) are powerful tools to gen-
erate “minimal” models with appropriate constraints,
reviewed elsewhere (Savin and Tkacik, 2017). We pro-
vide an overview of the model selection techniques
most commonly used in neuroscience in Table 2.

Clustering Problems

Clustering problems form a special class of model se-
lection that deserves attention because of its broad use-
fulness in neuroscience. Neuroscientists often aim to
identify groups with similar properties: action potentials
that likely belong to the same neuron based on similar
spike shape (spike sorting; Quiroga, 2012; Yger et al.,
2018; Magland et al., 2020), neurons that likely belong to
the same cell type based on similar gene expression pro-
files (Saunders et al., 2018; Gouwens et al., 2020) and
cells that represent the same behavioral variable based
on similar response patterns in task-performing animals
(J.Y.Cohen et al., 2012; Hangya et al., 2014).

Clustering problems typically require solving a series of
model selection problems (Konishi and Kitagawa, 2008;
James et al., 2013). First, multidimensional data should
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Figure 2. Examples of clustering problems in neuroscience. a, Examples of simplified quantitative measures of waveforms often
used in spike sorting. b, Examples of distance measures used for quantifying similarity between data points and clusters often used
in spike sorting. The Mahalanobis distance normalizes the standard deviation across dimensions, while template matching ap-
proaches are based on waveform correlations with predefined waveform templates. ¢, Hierarchical clustering of simulated neuronal
activity (peri-event time histograms) of n =50 neurons with 3 (seemingly) very well separated groups (left). First, principal component
analysis (PCA) was used to reduce dimensionality of the time series data. Second, agglomerative and divisive hierarchical clustering
was performed in the space spanned by the first two principal components (right). Agglomerative clustering separated a single out-
lier cell (magenta arrow) in an earlier step (second) than the three main clusters, in contrast with divisive clustering. The two methods
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continued

also differed in the clustering of a cell similar to more than one main groups (black arrow). d, Clustering of human cells from
multiple cortical areas based on RNA-sequencing data (n=50,281 genes, publicly available at https://portal.brain-map.org/
atlases-and-data/rnaseg/human-multiple-cortical-areas-smart-seq). Top, Trimmed mean expression of n=20 marker genes.
Middle, Agglomerative hierarchical clustering was performed based on the first 20 principal components, revealing the hierar-
chy of cell types (branches of the dendrogram were identified based on marker gene expression). Bottom, Soft K-means (k=2)
clustering was performed to assign probabilities to all cells of belonging to each of two main cell types, identified as excitatory
and inhibitory based on marker gene expression. e, Spike sorting of simulated action potentials (n=221) using K-means clus-
tering. Left, We applied the elbow method on the average intercluster squared Euclidean distance of all points to find the opti-
mal number of clusters (k=4, black arrow), based on 100 repetitions of K-means clustering for each k in the range of 1-10.
Right, K-means clustering (k=4) was performed with three different initial centroid locations (black crosses, 3 of which were

kept at fix positions while one was changed), leading to surprisingly different clusters.

be modeled by simplified quantitative measures that
capture important variance from the neuroscience point
of view, like action potential amplitude for spike sorting
(Schmitzer-Torbert et al., 2005; Fig. 2a). Second, “simi-
larity” of data points needs to be defined by an appropri-
ate distance measure, most often the Euclidean distance
between points in the space defined by this model
(Schmitzer-Torbert et al., 2005; Fig. 2b, left). However,
this may not be straightforward, for example in time se-
ries analysis dealing with time-resolved membrane po-
tential, spike trains, LFP, EEG, ECoG, or fMRI, where
linear or information theory-based correlation measures
(Fig. 2b, right), potentially combined with dimensionality
reduction techniques like principal component analysis,
may be considered (Fig. 2c,d; Goutte et al., 1999; J.Y.
Cohen et al., 2012; Thirion et al., 2014). Third, alternatives
to “hard/complete” clustering, allowing cluster overlaps or
probabilistic cluster assignments may be contemplated (Fig.
2d; Yang, 1993; Goutte et al., 1999).

There are two fundamental approaches to create the
clusters (James et al., 2013). In hierarchical clustering,
clusters are defined by merging data-points bottom-up in
agglomerative, or splitting groups top-down in divisive
clustering, either way creating a dendrogram of clusters
(Fig. 2c). Agglomerative clustering is a popular choice,
owing to its simplicity and ease of interpretation (Ward,
1963). However, agglomerative techniques are computa-
tionally heavy for large datasets, and particularly sensitive
to outliers, since local properties determine their amalga-
mation rules (mine #7). These pitfalls can be overcome by
special divisive methods that reduce such noise sensitiv-
ity by taking the global data distribution into account and
have the computationally efficient option to stop once the
required number of clusters is reached (Varshavsky et al.,
2008). We demonstrate this on a simulated example of
hierarchical clustering of peri-event time histograms of
averaged neuronal responses (J.Y. Cohen et al., 2012;
Hangya et al., 2015; Sadacca et al., 2016; Takahashi et
al., 2016). We represented the peri-event time histograms
by their first and second principal components to reduce
data dimensionality and compared the results of agglom-
erative and divisive hierarchical clustering in Figure 2c.
Another neuroscience application of hierarchical cluster-
ing considers groups or types of neurons based on tran-
scriptomic information (C.L. Li et al., 2016; Faure et al.,
2020). We demonstrate agglomerative hierarchical clus-
tering of human cortical cells based on publicly available
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RNA-sequencing data (https://portal.brain-map.org/atlases-
and-data/rnaseq/human-multiple-cortical-areas-smart-seq)
in Figure 2d. In course of analyzing single cell transcriptomic
data, the recently developed t-distributed stochastic neighbor
embedding (t-SNE; van der Maaten and Hinton, 2008; Kobak
and Berens, 2019) is often applied for dimensionality re-
duction (Harris et al., 2018; Saunders et al., 2018;
Kobak and Berens, 2019). Although t-SNE faithfully re-
flects local structure, i.e., within-cluster distances, it
does not preserve global structure (between-cluster
distances), which renders it suboptimal for clustering.
In 2018, Mclnnes proposed a novel dimension reduc-
tion algorithm he coined uniform manifold approxima-
tion and projection (UMAP), which, by a better choice
for the cost function, based on KL divergence in t-SNE
and cross-entropy in UMAP, results in better preserva-
tion of global data structure (Mclnnes et al., 2018).
Therefore, while both t-SNE and UMAP are excellent
visualization tools for high-dimension datasets, UMAP
is more recommended for subsequent cluster analysis
(Mclnnes et al., 2018; Diaz-Papkovich et al., 2021). The
advantage of using nonlinear dimensionality reduction
algorithms like UMAP for solving neuroscience prob-
lems is demonstrated by a novel UMAP-based spike
sorting approach that can successfully sort cerebellar
Purkinje cell recordings, a notoriously hard problem
due the high degree of variability of simple and complex
Purkinje cell spikes (Sedaghat-Nejad et al., 2021).

In contrast to hierarchical algorithms, a number of arbi-
trary cluster centers are assigned in K-means clustering,
updated repeatedly based on proximity of data points to
these centroids (Hastie et al., 2009). With a priori informa-
tion on the number of groups and well-separated clusters,
K-means is fast, efficient, and does not rely on a large
number of potentially ambiguous choices. Nevertheless,
these assumptions often remain unmet, when the flexibil-
ity of hierarchical clustering (choice of similarity measure
and clustering rules), used wisely and cautiously, may
provide better results. Furthermore, hierarchical cluster-
ing is deterministic, unlike K-means, which depends on
the initial choice of centroids and might converge to local
minima that can give rise to incorrect interpretations (mine
#8). To avoid this, it is recommended to repeat K-means
clustering several times using different initial centroid po-
sitions. We showcase K-means clustering on a spike sort-
ing example (Fig. 2e). We simulated action potentials and
sorted them into clusters corresponding to putative single
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neurons, mimicking a typical spike sorting problem in ex-
tracellular electrophysiology (Schmitzer-Torbert et al.,
2005; Quiroga, 2012). Starting the algorithm from different
centroid locations shows the sensitivity of K-means clus-
tering to initialization (mine #8).

More robust results may be achieved by a relatively
new technique called “spectral clustering” that com-
bines K-means clustering with dimensionality reduc-
tion, however, at the price of losing the appealing
simplicity of K-means clustering lauded above (Shi and
Malik, 2000; Hirokawa et al., 2019). Additionally, fitting
a mixture of Gaussians by expectation maximization
(Jung et al., 2014) or other algorithms (Kantor et al.,
2015) can be considered as an alternative to K-means
clustering that allows operating with likelihood by pro-
posing a statistical model (Fig. 1d).

An interesting algorithm based on physical properties
of an inhomogeneous ferromagnetic model, called
superparamagnetic clustering gained considerable pop-
ularity in neuroscience owing to its unsupervised nature
that does not pose assumptions on the underlying data
(Blatt et al., 1996; Domany, 1999). It has been used in a
wide range of applications from spike sorting combined
with wavelet spectral decomposition (Quiroga et al.,
2004; Townsend et al., 2011) to morphologic classifica-
tion of neurons (Zawadzki et al., 2010) to analyzing visual
stimulus processing (Jasa et al., 2008).

In graph-like data structures where data points (“nodes”)
are connected with links (“edges”), graph theory-based
methods can be applied to detect clusters (“communities”)
of the network. In such methods, a “modularity” measure is
optimized that compares the link density inside versus out-
side the communities (Blondel et al., 2008). Lee and
colleagues applied the graph-based Louvain commu-
nity detection on spike waveforms of the macaque pre-
motor cortex after nonlinear UMAP embedding (see
above) and demonstrated the usefulness of this approach
in revealing functional cell type diversities (Blondel et al.,
2008; E.K. Lee et al., 2021). Of note, while the Louvain
approach was developed to deal with extremely large
graphs in a computationally efficient manner, its two-phase
algorithm of finding high modularity partitions leaves
the question open whether the order of considering the
nodes throughout the algorithm can have a substantial
effect on the results (Blondel et al., 2008). Nevertheless,
Lee et al., showed that their approach resulted in stable
clusters and outperformed Gaussian mixture model clus-
tering applied on specific waveform features (E.K. Lee
etal., 2021).

There is an important model selection problem often at
the heart of clustering: how many clusters are there (mine
#9)? A number of tools have been developed to aid this
decision. The ratio of the between-cluster variance to the
total variance monotonically increases as a function of the
number of clusters, but typically flattens significantly at
a point, called the “elbow” (Fig. 2e). The location of this
bend is generally considered as an indicator of the appro-
priate number of clusters. A statistical approach to formal-
ize this heuristic is the gap statistic (Tibshirani et al., 2001),
based on comparing the total within-cluster variation with
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its expected value under the null hypothesis of no clusters
present in the data. The optimal number of clusters is the
one that maximizes this difference (the “gap”; Tibshirani et
al., 2001). The gap statistics has been employed in spike
sorting (Nguyen et al., 2014) and other clustering problems
in neuroscience (Ito et al., 2018; Gwo et al., 2019), including
fMRI-based connectivity analyses (Hahamy et al., 2015).
As an alternative, most model selection approaches dis-
cussed above, including information criteria and parametric
bootstrap for different number of clusters as competing
models may be recruited for clustering problems.

Conclusion

We showcased widely used model selection and clus-
tering approaches especially relevant to neuroscience
problems, also pointing to promising “up-and-coming”
methods. Nevertheless, an exhaustive overview would
stretch beyond the limits of this review. Most impor-
tantly, we would like to stress that model selection is a
scientific field on its own right and urge neuroscientists
to take conscious decisions about selecting the appro-
priate techniques and parameters, very much the same
way as deciding on experimental design. The bad news
is there is no free lunch or rules of thumbs that solve it
all; however, the overwhelming good news is that a
whole, exciting, and dynamically evolving world waits
out there to be discovered and used to the full benefit of
neuroscience.

Data availability statement
No original data were generated.

Code availability statement

We generated code in MATLAB 2016b (MathWorks) for
the simulations presented in the figures, available at
https://github.com/kiralyb/model_selection_mines.
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