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Abstract: We report a novel graphene transfer technique for fabricating graphene field-effect tran-
sistors (FETs) that avoids detrimental organic contamination on a graphene surface. Instead of
using an organic supporting film like poly(methyl methacrylate) (PMMA) for graphene transfer,
Au film is directly deposited on the as-grown graphene substrate. Graphene FETs fabricated using the
established organic film transfer method are easily contaminated by organic residues, while Au film
protects graphene channels from these contaminants. In addition, this method can also simplify the
device fabrication process, as the Au film acts as an electrode. We successfully fabricated graphene
FETs with a clean surface and improved electrical properties using this Au-assisted transfer method.

Keywords: graphene; field-effect transistor; graphene transfer; electrical property

1. Introduction

Since graphene was mechanically exfoliated from graphite in 2004, the material’s
attractive mechanical, optical, and electrical properties have stimulated a great deal of
related research [1–4]. The mechanical exfoliation using highly oriented pyrolytic graphite
(HOPG) was widely used in the early stages of graphene research. The exfoliated graphene
demonstrates nearly ideal characteristics, and its maximum electron mobility has been
reported to be as high as 230,000 cm2/V·s [5]. Utilizing the electrical properties of graphene
with high mobility, it can be used for applications such as high-speed optical sensors [6,7],
gas and chemical sensors [8,9], and transparent conducting electrodes [10,11]. Unfortu-
nately, however, graphene cannot be obtained in large-area with the method, which posed
a serious barrier to realizing practical applications of graphene. To resolve this problem, a
number of methods capable of producing large-area graphene were developed, including
high-temperature epitaxy growth [12,13], chemical reduction [14], and chemical vapor
deposition (CVD) [15,16]. While synthesis via CVD is capable of producing large-area
monolayer graphene at a lower price and of higher quality than the alternatives [15],
the electrical properties of CVD graphene include relatively low mobility, a high Dirac
point, and high carrier density, all of which make it inferior to exfoliated graphene [17,18].
These shortcomings of CVD graphene are due to a partially generated overlapped multi-
layer and a higher density of defects, both of which result from the synthesis process and
catalysts [18,19].

More recently, the incorporation of new catalysts and optimizations into the CVD pro-
cess has allowed for the synthesis of single-crystal graphene that does not suffer from these
problems [20,21]. However, extrinsic factors remain degrading the electrical performance
of graphene, the most critical of which is the organic contamination generated during
the transfer process. Most commonly, an organic supporting film such as poly(methyl
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methacrylate) (PMMA) is used to transfer graphene. Unfortunately, it is almost impossible
to completely remove the organic film residue, which results in the absorption of H2O and
O2 and consequently p-doping of graphene [22–24].

Various processes are employed to eliminate this extrinsic factor. The most widely used
method is vacuum thermal annealing at 300~400 ◦C in ambient H2/Ar [25–28]. A number
of researchers have tested this method and confirmed a reduction of PMMA residues and
an associated improvement in the resulting grapheme’s electrical properties [22,28–30].
Other researchers have employed alternative polymer films in the transfer process, such
as polycarbonate [23,29] or photoresist (PR) [31]. However, as these methods still do not
completely remove all of the organic residues, a more reliable solution is needed. Recently,
a novel method of separating catalyzed metal and graphene by inducing an electric charge
has been reported [32]. While this method makes it possible to transfer a relatively large
area of graphene without the risk of contaminant residues, it is limited in how it can be
applied to a conducting substrate or a roll-to-roll process.

In this study, we propose a novel transfer method that resolves the drawbacks as-
sociated with conventional approaches. We completely avoid organic contamination by
transferring graphene after a thin Au film was deposited on the graphene as-grown on
a Cu substrate. As a noble metal, Au prevents any property changes to the graphene
and can be easily etched using an ionic solvent. We transferred graphene onto the target
substrate via this method and then analyzed its surface using Raman spectroscopy and
X-ray photoelectron spectroscopy (XPS). We confirmed the removal of organic residues by
evaluating the electrical properties of a graphene field-effect transistor (GFET) fabricated
using the proposed method. Ultimately, we report the fabrication of a GFET with enhanced
electrical properties and a clean graphene surface.

2. Materials and Methods
2.1. Graphene Synthesis and Transfer Process

Graphene was grown on Cu foils by CVD. After annealing a Cu foil at 1000 ◦C for
15 min, graphene was synthesized for 30 min with CH4 (25 sccm) and H2 (10 sccm) gas at
1000 ◦C. After growth, the as-grown graphene layer on Cu foil was cut into two parts and
used for following PMMA- and Au-assisted transfer. Au film (30 nm) was deposited on
the as-grown graphene substrate by thermal evaporator or PMMA (0.01%, Sigma-Aldrich,
Burlington, MA, USA) was coated by spin coater for comparison. The backside graphene
of Cu foil was removed by oxygen plasma treatment for 10 s at a power of 10 W. The Cu
foil underlying the graphene layer was removed by floating on an aqueous solution of
(NH4)2S2O8 for 1 h. Graphene supported on Au or PMMA layer was cleaned three times
by floating on DI water for 30 min.

2.2. GFET Fabrication Process

Figure 1 schematically shows two GFET fabrication processes using the proposed Au-
assisted transfer and conventional PMMA-assisted transfer methods [33]. The conventional
wet transfer method includes the coating of graphene with organic PMMA film, transfer
of the PMMA coated graphene layer onto an arbitrary substrate after Cu foil is removed
with a Cu etchant, and removal of the PMMA film on graphene (Figure 1a,e,f). In this
approach, primary surface contamination will occur in the form of residues from the
organic supporting film. In contrast, the proposed method uses Au as a supporting film
instead of an organic film (Figure 1b,c). The Au film blocks all organic residues induced
in the graphene transfer process and can be easily removed later with an Au etchant
solution. In addition, the use of Au dramatically reduces processing time and eliminates
contamination during the GFET fabrication.
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Figure 1. Schematic of graphene FET fabrication. (a) Growth of graphene on Cu film, (b) Thermal 
evaporation of Au (30 nm) on the graphene/Cu, (c) Transfer of Au/graphene on SiO2/Si substrate 
after chemical etching of underlying Cu film, (d) Photolithographic patterning of the Au/graphene 
with 4-terminal Hall-bar structure, (e) PMMA coating on the graphene/Cu, (f) Transfer of 
PMMA/graphene after Cu etching and subsequent PMMA removal (g) Photolithographic 
patterning of the graphene with 4-terminal Hall-bar structure, (h) Etching of the unpatterned 
graphene by O2 RIE, and (i) Fabrication of GFET with exposed graphene channel. For graphene 
transferred by Au assisted method, the Au layer on the channel was selectively etched. For graphene 
transferred by PMMA assisted method, Cr/Au (5/30 nm) were deposited on the electrode area. 

The process of GFET fabrication using PMMA assisted transfer includes device 
patterning on the graphene by photo-lithography processes and O2 plasma etching and 
finally depositing a metal electrode (Figure 1g–i). Here again, photoresist (PR) and solvent 
may contaminate the graphene, and the organic residues will increase the contact 
resistance between the electrode and graphene [34]. However, our Au-assisted graphene 
transfer method enables a comparatively simple fabrication process, and more 
importantly, prevents organic contamination at the Au-graphene interface. The 
fabrication process using Au-assisted transfer involves patterning the device structure on 
the transferred Au/graphene, removal of unpatterned Au film by a dip in Au etchant 
(1:4:40 I2/KI/H2O), and O2 reactive ion etching (RIE) to etch unwanted graphene. Finally, 
residue-free GFETs are fabricated through the chemical etching of Au film at the channel 
area Au film (Figure 1d,i). 

2.3. Measurement Equipment and Condition 
Scanning electron microscopy (SEM) images were acquired with a JEOL JSM-6701F 

field emission scanning electron microscope (FESEM). Raman spectroscopy (Renishaw, 
RM-1000 Invia) with the wavelength of 532 nm (Ar-ion laser) was used to characterize the 
graphene on 300 nm SiO2 substrates. XPS spectra were collected using a monochromatic 
Al Kα X-ray source and Omicron EA125 hemispherical analyzer. The graph fitting method 
is Lorentz-Gaussian fitting. Atomic force microscopy (AFM) images were acquired with a 
Park System NX10 using non-contact mode.  

3. Results and Discussion 
Figure 2 presents the XPS results for the graphene layers transferred onto SiO2/Si 

substrates using the Au-assisted and the PMMA-assisted methods. XPS in a wide area 
(beam diameter ~8 mm) can detect not only the C-C sp2 hybridized carbon of graphene 
layer but also sp3 carbon peaks caused by organic contamination on the graphene′s 
surface. Through this XPS analysis, the effects of the supporting film and the etchant used 
to remove the supporting film on the graphene surface were compared (Figure 2a). Since 
iodine, the main component of Au etchant, can act as a p-type surface dopant of graphene 

Figure 1. Schematic of graphene FET fabrication. (a) Growth of graphene on Cu film, (b) Ther-
mal evaporation of Au (30 nm) on the graphene/Cu, (c) Transfer of Au/graphene on SiO2/Si
substrate after chemical etching of underlying Cu film, (d) Photolithographic patterning of the
Au/graphene with 4-terminal Hall-bar structure, (e) PMMA coating on the graphene/Cu, (f) Transfer
of PMMA/graphene after Cu etching and subsequent PMMA removal (g) Photolithographic pattern-
ing of the graphene with 4-terminal Hall-bar structure, (h) Etching of the unpatterned graphene by
O2 RIE, and (i) Fabrication of GFET with exposed graphene channel. For graphene transferred by Au
assisted method, the Au layer on the channel was selectively etched. For graphene transferred by
PMMA assisted method, Cr/Au (5/30 nm) were deposited on the electrode area.

The process of GFET fabrication using PMMA assisted transfer includes device pat-
terning on the graphene by photo-lithography processes and O2 plasma etching and finally
depositing a metal electrode (Figure 1g–i). Here again, photoresist (PR) and solvent may
contaminate the graphene, and the organic residues will increase the contact resistance
between the electrode and graphene [34]. However, our Au-assisted graphene transfer
method enables a comparatively simple fabrication process, and more importantly, prevents
organic contamination at the Au-graphene interface. The fabrication process using Au-
assisted transfer involves patterning the device structure on the transferred Au/graphene,
removal of unpatterned Au film by a dip in Au etchant (1:4:40 I2/KI/H2O), and O2 reactive
ion etching (RIE) to etch unwanted graphene. Finally, residue-free GFETs are fabricated
through the chemical etching of Au film at the channel area Au film (Figure 1d,i).

2.3. Measurement Equipment and Condition

Scanning electron microscopy (SEM) images were acquired with a JEOL JSM-6701F
field emission scanning electron microscope (FESEM). Raman spectroscopy (Renishaw,
RM-1000 Invia) with the wavelength of 532 nm (Ar-ion laser) was used to characterize the
graphene on 300 nm SiO2 substrates. XPS spectra were collected using a monochromatic
Al Kα X-ray source and Omicron EA125 hemispherical analyzer. The graph fitting method
is Lorentz-Gaussian fitting. Atomic force microscopy (AFM) images were acquired with a
Park System NX10 using non-contact mode.

3. Results and Discussion

Figure 2 presents the XPS results for the graphene layers transferred onto SiO2/Si
substrates using the Au-assisted and the PMMA-assisted methods. XPS in a wide area
(beam diameter ~8 mm) can detect not only the C-C sp2 hybridized carbon of graphene
layer but also sp3 carbon peaks caused by organic contamination on the graphene′s surface.
Through this XPS analysis, the effects of the supporting film and the etchant used to
remove the supporting film on the graphene surface were compared (Figure 2a). Since
iodine, the main component of Au etchant, can act as a p-type surface dopant of graphene
layer [35], and the effects of the Au etchant on graphene were analyzed (Figure 2b). XPS
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spectra of the graphene layers, whether transferred using PMMA or Au film, showed
no peaks related to iodine or Cu, suggesting that Cu film and iodine molecules were
completely removed and did not affect the graphene layer (Figure S1 in Supplementary
Material). Figure 2c,d are the enlarged and fitted graphs of the C1 region in Figure 2a; the
carbon bonds of graphene or other functional groups are shown in the inset [28]. These
two graphs illustrate that Au-transferred graphene exhibits a larger sp2 carbon peak than
PMMA-transferred graphene and that contamination from organic residue was lower in
Au-transferred graphene. In particular, the peak related to the carboxyl functional group
was only observed in PMMA-transferred graphene, not Au-transferred graphene. The
carboxyl group PMMA-transferred graphene was probably generated either in the acetone
used to remove the PMMA or in the PMMA itself. We also note that the carboxyl group
degrades graphene’s electrical properties and leads to p-doping and a decrease in carrier
mobility of the graphene layer [36,37].
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Figure 2. (a) XPS data for graphene transferred using PMMA and graphene transferred using Au
film. (b) The I3d region in (a). (c) C1s region in graphene transferred using PMMA. (d) C1s region in
graphene transferred graphene using Au film.

To highlight the performance improvements by our proposed approach, we fabricated
back-gated GFETs using PMMA-assisted and Au-assisted transfer methods. Previously,
improvement of the contact resistance of graphene using Au assisted transfer similar to our
approach [34]. However, we directly measured the sheet resistance by Hall-bar structure
with gate bias. As a result, it can show more information about the GFETs. A Hall-bar
structure device was used to measure the carrier mobility of the graphene [38]. Sheet
resistance (Rsh) was also calculated using the following Equation (1):

Rsh =
(Vx2 −Vx1)w

I · d (1)

where w is the width of the Hall-bar-channel, d is the distance between the voltage leads
x2 and x1, I is the current flowing between x2 and x1. Carrier density (ns) values can be
obtained from Equation (2):

ns =
Cox(Vg −Vdirac)

q
(2)
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where Cox is gate oxide capacitance, and q is Coulomb unit charge. Based on these values,
mobility can be obtained using Equation (3):

µ = − 1
nseRsh

(3)

The channel width (w) of our Hall-bar device was 5 µm, and the length between
x2 and x1 was 20 µm. Devices were measured at room temperature with a high vac-
uum condition of 1 × 10−6 Torr. Figure 3a shows the sheet resistances of the GFETs
calculated using Equation (1). GFETs fabricated using PMMA-assisted transfer had a
Dirac point at a higher positive voltage than GFETs using Au-assisted transfer. Figure 3b
presents carrier mobility vs. carrier density curve, which was calculated using Equation (3)
based on the sheet resistance of Au-transferred graphene in Figure 3a. Using 32 GFETs
simultaneously fabricated on a SiO2/Si substrate for each of PMMA and Au-transfer
graphenes, we determined the distribution of sheet resistance at the Dirac point and the
mobility distribution at ns = 3 × 1011 cm−2. While the average sheet resistance of the
Au-transferred GFETs was 4300 ± 400 Ω/sq., PMMA-transferred GFETs had a higher
sheet resistance of 8400 ± 3300 Ω/sq. (Figure 3c). With respect to mobility, Au-transferred
GFETs had a value of 4600 ± 400 cm2/V·s, while PMMA-transferred GFETs had a value of
2800 ± 1300 cm2/V·s (Figure 3d). In addition, sheet resistance and mobility were uniform
throughout the Au-transferred graphene but uneven in PMMA-transferred graphene.
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Figure 3. (a) Gate voltage (Vg) vs. sheet resistance (Rsh) curves at GFETs with a Hall-bar structure,
(b) A calculated carrier density (ns) vs. carrier mobility (µ) curve of the GFET fabricated by Au-
assisted transfer method, (c) The distribution of measured sheet resistance at Vdirac and (d) The
distribution graph of mobility at ns = 3 × 1011 cm−2.

Direct comparison of the channel was possible in our GFET measurement process,
as the value of contact resistance was similar to that of sheet resistance [39]. In other
words, XPS observations confirmed the presence of a large amount of residue, includ-
ing the carboxyl group, on the PMMA-transferred graphene surface but no residues on
the Au-transferred graphene. SEM, AFM, and optical images of the device′s channels
further confirm that the graphene channel fabricated using Au-based process is clean,
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but the channels fabricated with PMMA assisted transfer had many organic residues
(Figures S2 and S3 in Supplementary Material). As is known, the organic residue of PMMA
causes p-type doping, and the Dirac point is located at a positive gate voltage, but when
PMMA is not used, the Dirac point shifts toward 12 V to 3 V (Figure 3a) [22,40]. These
residues are dispersed around the graphene irregularly and have an electro-scattering
effect, resulting in lower average value and non-uniform distribution of carrier mobility
of PMMA-transferred graphene devices. The electrical characteristics of the GFETs con-
firm that the Au-assisted graphene transfer enables the graphene device without organic
residues, pointing a way for the fabrication of a graphene device with superior electrical
properties and a cleaner surface.

Raman mapping of the graphene channels of the GFETs provided the most detailed
analysis. The distribution of organic residue on the graphene surface can be characterized
by the intensity ratio of D band (~1350 cm−1) and G band (~1580 cm−1) in the Raman
mapping image (Figure S4 in Supplementary Materials). In general, a higher I(D)/I(G)
value indicates a higher defect density in the graphene area [41]. PMMA-transferred
graphene often has high D band intensity of amorphous carbon [28], and the ratio of D and
G peaks varies depending on the organic residue on the graphene [42]. Figure 4a,b presents
Raman maps of the I(D)/I(G) of our GFETs. Compared with the mapping image of the
GFET transferred with Au, I(D)/I(G) values are non-uniform in the GFET transferred to
PMMA. In addition, a distribution graph of I(D)/I(G) on graphene shows that the average
I(D)/I(G) value is also larger in the GFET transferred with PMMA (Figure 4c).
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Figure 4. The I(D)/I(G) Raman mapped image of (a) graphene transferred using PMMA and
(b) graphene transferred using Au film. (c) The I(D)/I(G) ratio distribution graph. The 2D Raman
mapped image of (d) graphene transferred using PMMA and (e) graphene transferred using Au.
(f) The 2D position distribution graph. Scale bars, 5 µm.

The channel map of the GFET fabricated using PMMA reflects a broad distribu-
tion of 2D position, while the channel map of the Au-using GFET is relatively uniform
(Figure 4d–f). Additionally, Figure 4f shows that the average 2D peak position of graphene
transferred with PMMA is blue-shifted than that of graphene transferred with Au, in-
dicating non-uniform p-type doping of GFET fabricated with PMMA (Figure S4c,f in
supplementary material). These results confirm that graphene transferred with Au film
maintains a higher degree of surface reliability throughout the whole fabrication process.
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4. Conclusions

In this paper, we compared graphene transferred using Au and PMMA via XPS
and Raman mapping. We also examined the electrical properties of back-gated GFETs
fabricated with both methods. As a result, it was confirmed that the graphene transferred
by the Au-assisted transfer has a cleaner and more uniform surface than the graphene
transferred using the conventional organic supporting film. The electrical characteristics of
the graphene transferred with PMMA and Au film were measured by fabricating Hall-bar
type back-gated GFETs. The GFET fabricated using Au-transferred graphene exhibited
an average sheet resistance of 4000 Ω/sq and average mobility of 4500 cm2/V·s, which
are much improved values than the characteristics of devices fabricated from PMMA-
transferred graphene. This proposed Au-assisted approach for fabricating GFETs may have
significant practical value in the development of graphene-based device applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21217262/s1, Equation S1: Calculation of Electronic property, Figure S1: XPS spectra of trans-
ferred graphenes, Figure S2: Optical and SEM images of graphene channels, Figure S3: AFM images
of graphene channels in the fabricated GFETs, Figure S4: Raman result of the graphene channels.
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