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Abstract

Motivation: Understanding the molecular mechanisms of thermal stability is a challenge in protein

biology. Indeed, knowing the temperature at which proteins are stable has important theoretical

implications, which are intimately linked with properties of the native fold, and a wide range of po-

tential applications from drug design to the optimization of enzyme activity.

Results: Here, we present a novel graph-theoretical framework to assess thermal stability based on

the structure without any a priori information. In this approach we describe proteins as energy-

weighted graphs and compare them using ensembles of interaction networks. Investigating the

position of specific interactions within the 3D native structure, we developed a parameter-free net-

work descriptor that permits to distinguish thermostable and mesostable proteins with an accuracy

of 76% and area under the receiver operating characteristic curve of 78%.

Availability and implementation: Code is available upon request to edoardo.milanetti@uniroma1.it

Contact: gian@tartaglialab.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Temperature is one of most crucial factors organisms have to deal

with in adapting to extreme environments (Rothschild and

Mancinelli, 2001) and plays a key role in many complex physio-

logical mechanisms (Chen and Shakhnovich, 2010). Indeed a funda-

mental requirement to ensure life at high temperatures is that the

organisms maintain functional and correctly folded proteins (Chen

and Shakhnovich, 2010; Mozhaev et al., 1996; Talley and Alexov,

2010). Accordingly, evolution shapes energetic and structural place-

ment of each residue–residue interaction for the whole protein to

withstand thermal stress. Studying thermostability is fundamental

for several reasons ranging from theoretical to applicative aspects

(Huang et al., 2016), such as gaining insight on the physical and

chemical principles governing protein folding (Amadei et al., 2017;
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Brinda and Vishveshwara, 2005; Robinson-Rechavi and Godzik,

2005), and improving the thermal stability of enzymes to speed up

chemical reactions in biopharmaceutical and biotechnological proc-

esses (Chen et al., 2017; Daniel, 1996).

Despite the strong interest in thermostability (Argos et al., 1979;

Bischof and He, 2005; Razvi and Scholtz, 2006), its prediction

remains an open problem. As pointed out by Pucci et al.(2014) and

Alfano et al.(2017), a complete characterization of the thermal

properties of a protein is given by the knowledge of two contribu-

tions: (i) the thermodynamic stability, defined as the difference in

free energy between the folded and unfolded states (DG) and (ii)

thermal resistance, described by the melting temperature (Tm).

Here, we focus on the thermal resistance, distinguishing high

and low thermal stable proteins on the basis of their Tm, experimen-

tally defined as the temperature at which the concentration of the

protein in its folded state equals the concentration in the unfolded

state. To date, computational approaches, both sequence- and

structure-based, have exploited statistical analysis (Amadei et al.,

2017; Pucci et al., 2016, 2017), molecular dynamics (Manjunath

and Sekar, 2013; Tavernelli et al., 2003) and machine learning (Ku

et al., 2009; Wu et al., 2009) to predict the melting temperature.

Most of the studies are based on comparative analyses between pairs

of homologs belonging to organisms of different thermophilicity

(Mozo-Vilları́as et al., 2003; Vogt et al., 1997).

Predicting the stability of a protein ab initio using a structure-

based approach has never been achieved so far. Lack of success in

this area is mostly due to limitations in our knowledge about the re-

lationship between thermal resistance and role of the interactions

that stabilize a protein structure (Folch et al., 2010). Some differen-

ces in terms of amino acid composition or spatial arrangement of

residues have been reported (Amadei et al., 2017; Vijayabaskar and

Vishveshwara, 2010; Vishveshwara et al., 2002). One of most not-

able differences involves the salt bridges: hyperthermostable proteins

have stronger electrostatic interactions than their mesostable coun-

terparts (Lee et al., 2014). Recently Folch et al.(2010, 2008)

reported that distinct salt bridges may be differently affected by the

temperature and this might influence the geometry of these interac-

tions as well as the compactness of the protein. Core packing seems

related to thermal resistance at least to some extent (Vogt and

Argos, 1997). Yet, a lower number of cavities and a higher average

relative contact order (i.e. a measure of non-adjacent amino acid

proximity within a folded protein) have been also observed while

comparing thermostable proteins with their mesostable paralogs

and orthologs (Robinson-Rechavi and Godzik, 2005). Noteworthy,

the hydrophobic effect and residue hydrophobicity seem to play a

rather marginal role on protein stabilization (Priyakumar, 2012;

Van den Burg et al., 1994), while they are considered the main

forces driving protein folding.

Here, we present a new analysis based on the graph theory that

allows us to reveal important characteristics of the energetic re-

organization of intramolecular contacts between mesostable and

thermostable proteins. In light of our results and to promote their

application, we have designed a new computational method able to

classify each protein as thermostable or as mesostable without using

other information except for the 3D structure.

2 Materials and methods

2.1 Datasets
The Tm dataset, composed of proteins with known melting tempera-

ture (Tm), was obtained from the ProTherm database (Kumar et al.,

2006). Each protein of the dataset was accurately manually checked,

in order to guarantee both the completeness of the structure and the

reliability of the associated experimental melting temperature. The

second dataset, consisting of proteins from hyperthermophilic

organisms manually collected, is referred to as the Thyper dataset.

The union of the two dataset, referred as the Twhole dataset,

accounts of 84 proteins (see Supplementary Material for details) and

constitutes the largest structural dataset, to the best of our know-

ledge, of protein with well-defined thermal resistance, experimental-

ly measured at physiological conditions.

2.2 Structural analysis
Proteins from both the Tm and Thyper datasets were analyzed for

their secondary structure content and architecture according to the

CATH Protein Structure Classification database (Sillitoe et al.,

2015). Per residue secondary structure assignment was done using

the DSSP software (Kabsch and Sander, 1983). See section in

Supplementary Material for details.

2.3 Network representation and analysis
In this work, protein structures are represented as Residue

Interaction Networks (RINs), where each node represents a single

amino acid aai. The nearest atomic distance between a given pair of

residues aai and aaj is defined as dij. Two RIN nodes are linked to-

gether if dij � 12 Å (Phillips et al., 2005; Vanommeslaeghe and

MacKerell, 2012). Furthermore links are weighted by the sum of

two energetic terms: Coulomb (C) and Lennard-Jones (LJ) potentials

(see Supplementary Material for more details). Network analysis

has been performed using the i-graph package (Csardi and Nepusz,

2006) implemented in R (Ihaka and Gentleman, 1996). For each

RIN, the Strength local parameter (Barrat et al., 2004) is defined as:

si ¼
XNi

aa

j¼1

Eij (1)

where the Strength si of the i-esime residue is calculated as the sum

of the energetic interactions (Eij) between the residue i and all the

other j residues contacting it (Ni
aa).

2.4 Network randomization
In order to distinguish mesostable from thermostable proteins, we

compare the Strength calculated in the real RIN against the same

parameter obtained from a random RINs. We defined a Ts score as:

Ts ¼ �sprotein � ð�s � rÞ (2)

to estimate how much the original RIN mean Strength value devi-

ates from the expected mean value of rRIN distribution. �sprotein is

the average of the Strength parameter for the RIN; �s and r are the

mean and standard deviation of the average values of the rRIN dis-

tribution. See Supplementary Material for details.

2.5 Performance evaluation
We evaluated the performance of the Ts score in discriminating be-

tween thermostable and mesostable proteins by a seven cross-valid-

ation. The mesostable proteins of the Tm dataset were divided in

seven groups, guaranteeing that number of residues and Tm values

were as broad distributed as possible. Details are reported in

Supplementary Material.
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2.6 Clustering and principal component analysis
We clustered the Ts descriptors using the Euclidean distance and the

Ward method as linkage function (Ward, 1963) via the ‘hclust’ func-

tion of the ‘Stats’ package of R (Ihaka and Gentleman, 1996). Principal

component analysis (PCA) was performed over eight graph-based

descriptors using ‘princomp’ function of R software and the correlation

matrix was used for the analysis (Venables and Ripley, 1997). Each de-

scriptor has been computed using a specific function available in the R

i-graph package. We refer to Supplementary Material for details.

3 Results

3.1 Uncovering the differences in energetic organization
Aiming at the comprehension of the basic mechanisms that allow

proteins to remain functional at high temperature, we focused on

the non-bonded interactions that play a stabilizing role in structural

organization (Chakrabarty and Parekh, 2016). In particular, we

considered only residue–residue interactions neglecting protein–

solvent ones since a quantitative appraisal of their role would re-

quire a dynamical approach (Chong et al., 2016).

To investigate how different thermal properties are influenced by

the energy distribution at different layers of structural organization,

we analyzed the interactions occurring in proteins of the Twhole data-

set (see Section 2). To describe the role of single residues in the com-

plex connectivity of whole protein, we adopted a graph-theory

approach describing each protein by the RIN: each residue is

represented as a node and links between residues are weighed with

non-bonded energies (as described in Section 2).

At first, we investigated the relationship between thermostability

and energy distribution of intramolecular interactions. To this end,

the Tm dataset was divided into eight groups according to protein

Tm and for each group the energy distribution was evaluated, as

shown in Figure 1a. The general shape of the density functions is al-

most identical between the eight cases, independently from the ther-

mal properties of the macromolecules, and this is clearly due to the

general folding energetic requirements.

A strong dependence between thermal stability and the percent-

age of strong interactions is evident looking at the disposition of the

density curves (Fig. 1a): the higher the thermal stability the higher

the probability of finding strong interactions. Yet, less thermostable

proteins possess a larger number of weak interactions. In particular,

as shown in Figure 1a–c, it is possible to identify three ranges of

energies that correspond to three peaks of probability density, i.e. a

very strong favorable energy region (E < �70 kcal/mol), a strong

favorable energy region between �70 and �13 kcal/mol, and a

strong unfavorable interaction region (E > 11 kcal/mol). More for-

mally, for a protein the probability of having an interaction with en-

ergy E, P(E), in the three ranges linearly depends on the protein

melting temperature with correlation coefficients of 0.90, 0.85,

0.87, respectively (Fig. 1b).

In order to have strong-signal sets, we reduced the division in

just two groups, classifying proteins as mesostable or thermostable

if their melting temperatures are, respectively, lower or higher than

Fig. 1. (a) Probability density distributions of total interaction energies for the eight subsets defined in the Tm dataset from lower (dark blue) to higher (dark red)

Tm. Each distribution is built using a group of proteins whose melting temperatures lie in the same range. The density functions exhibit a dependence with the

melting temperatures ranges and peak heights increase with the temperatures. (b) Correlation between the area of each density peak and the average Tm for

the eight groups. (c) Probability density distributions in log-scale of total interaction energies for mesostable (blue) and thermostable (red) proteins belonging to

the Twhole dataset. (d) Probability density distributions in log-scale of Strength network parameter for mesostable (blue) and thermostable (red) proteins belong-

ing to the Twhole dataset. Insets show the distributions in log-scale obtained using all proteins. (e) Schematic representation of the strong favorable and unfavor-

able interactions both for a mesostable (left) and a thermostable network (right) (Color version of this figure is available at Bioinformatics online.)
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70oC, which is the optimal reaction temperature of thermophilic

enzymes (Brock, 1985; Serre and Duguet, 2003). In this way the en-

ergy distributions in Figure 1a are calculated only for the mesostable

and thermostable distributions in Figure 1c (Twhole dataset).

The two-group division allows us to include the hyperthermophilic

proteins in our analysis, since their Tm is higher than the threshold.

The two resulting distributions, found to be significantly different

with a P-value of 4:2� 10�46 [non-parametric test of Kolmogorov–

Smirnov (Marsaglia et al., 2003)], have an expected value at

�0.5 kcal/mol and negative interactions have a probability of more

than 60% to be found. Regions below �13 kcal/mol and above

11 kcal/mol represent the 6.6 and 5.2% of the total energy for

thermostable and mesostable proteins, respectively. Typically, such

energies require the presence of at least one polar or charged amino

acid and in particular Arg, Asp, Glu and Lys are involved in more

than 90% of the interactions. Noteworthy, the small fraction of

energies centered near �120 kcal/mol (see Fig. 1a) is due to polar or

charged amino acid interactions taking place at short distance.

Next, we investigated the residue Strength, defined for each node as

the sum of the weights of its links (see Section 2). The two Strength

distributions for mesostable and thermostable proteins are shown in

Figure 1d. Even in this case, they are different according to

Kolmogorov–Smirnov test with a P-value of 1:9� 10�9.

For the first time, our analysis provides both a general intuition

on the protein folding and a specific insight on thermal stability.

Even if strong positive and strong negative peaks have a comparable

height (Fig. 1c), the rearrangement of protein side chains masks the

positive interactions, substantially preventing the condensation of

unfavorable interactions in a single residue, as testified by the small

probability of finding a residue with a positive Strength. Indeed, for

the whole dataset there is more than 97% of probability of finding a

residue with negative Strength. The most frequent value is found at

�27 kcal/mol, with a change in the slope of the density functions

around �70 and 5 kcal/mol, corresponding to the regions with nega-

tive and positive Strengths. At the Strength level of organization, a

difference between thermostable and mesostable proteins is found.

Indeed, residues belonging to the group of thermostable proteins

show a higher probability of having high negative Strength values

with respect to the mesostable ones, testifying an overall higher

compactness of thermostable protein fold.

Figure 1e shows a schematic representation of the organization

of strong energies both for mesostable proteins and thermostable

proteins. In fact, the most important finding is that thermostable

proteins have more favorable energies concentrated in a few specific

residues. In contrast, mesostable proteins tend to have a less organ-

ized negative residue–residue interactions network. Given this differ-

ent way to rearrange amino acidic side chains between proteins with

different thermal properties, we mapped the energetic interactions

between the protein secondary structures (helix–helix, helix–strand,

helix–loop, strand–strand, strand–loop and loop–loop) in order to

study how energetic allocation is reflected on a higher level of

organization.

Looking at the difference in energy of a specific class of inter-

action with respect to the average, we found that thermostable pro-

teins preferentially gather their energy through helix–loop

interactions. These results suggest a stabilizing role for this class (see

section in Supplementary Material for details).

3.2 Assessing protein thermal stability
In the light of our findings on the energetic difference between meso-

stable and thermostable proteins, we looked for a way to assess the

thermal resistance of a protein given its structure. The simplest way

to quantify the impact of energy distribution on the thermal resist-

ance is the comparison with a protein of same structure but different

energy organization, i.e. a homolog (Yang et al., 2015). Ideally, dif-

ferences between two homologous proteins with different thermal

stability are attributable only to their different thermal resistance.

The pronounced reorganization of the interactions in thermostable

proteins confirms that they undergo an evolutionary optimization

process which introduces fold-independent correlations in the spa-

tial distribution of the interactions. By contrast, mesostable proteins

do not have these correlations, thus with respect to thermal stability,

their energy organization can be considered more random.

We designed a procedure that compares a given protein with

modified versions of itself where protein structure is preserved, while

chemical interactions have energies typical of mesostable proteins and

randomly assigned in a physical way, i.e. maintaining residue–residue

distance information (see Section 2). This randomization strategy pro-

vides a way to compare each real protein network with an ensemble

of re-weighted cases, having the same number of nodes and links but

with new weights (i.e. energies). These energies are extracted from the

mesostable energy distribution using the interaction distance as con-

straint for the sampling. This procedure has the purpose of disrupting

the effects of evolutionary optimization and is expected to have a

larger effect on the highly organized network of thermostable pro-

teins. By virtue of the different energy distribution between mesosta-

ble and thermostable proteins, sampling mesostable energies allows

to properly assess the difference between the real thermostable pro-

tein network and its randomized counterpart. All steps of our method

are schematically illustrated in Figure 2. In particular, given a link

characterized by an energy weight Eij and by a distance of interaction

dij, we replaced the energy with a new one (E0ij) extracted from an en-

ergy distribution defined for the specific distance interval dij belongs

to. For each distance interval k, we generated a probability density

function qkðEÞ, using only the energies values observed in such inter-

val in the mesostable proteins. At the end of the process, for each real

RIN, we generated an ensemble of random networks (rRINs). The

randomization allows us to develop a classifier based on the distance

between the real network Strength and the random Strength distribu-

tion. The Ts score, defined in Equation (2) (see Section 2), is a meas-

ure of how much the original RIN average Strength value deviates

from the expected average value of the rRIN distribution. Note that

our descriptor is general and parameter-free and can be computed for

every kind of weighted graph. The Ts score can be used as a thermal

stability classifier setting the threshold value at 0; substantially con-

sidering true all predictions for which the Ts score is higher (resp.

lower) than 0 and the protein Tm is higher (lower) than 70oC. A so

defined method is completely parameter-free. It only requires a prob-

ability density of mesostable protein interactions. In order to evaluate

a possible dependence of the method from the chosen dataset, we per-

formed a cross-validation (7-folds see Section 2) using the Ts score

computed with total energy Strength. The method achieves an aver-

age accuracy of 72 63% with a mean receiver operating characteris-

tic (ROC) curve characterized by an area under the curve (AUC)

value of 80 62%. The small error on both the performances (due to

the dimensions of the dataset) indicates the independence of the

method from the input information.

Classifying on the threshold of the Ts score, i.e. considering the

Ts as a binary variable, does not satisfactorily match with the infor-

mation contained in the descriptor. In order to have a more sensible

classification, we evaluated three different scores, using the total en-

ergy and specific interaction terms, i.e. the C and LJ interactions (see

Supplementary Material), and performed a clustering analysis.
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Figure 3a shows the hierarchical clustering obtained clustering all

the proteins of our Twhole dataset using the Ward method as linkage

function while the Manhattan distance among the three descriptors

was used as distance metric. We also tested different metrics and

clustering methods obtaining very similar results (data not shown).

The optimal clustering cut was estimated using both the

Connectivity, Dunn and Silhouette parameters, which indicates the

two group division as the optimal one. We called these groups

‘Mesostable’ (right group in Fig. 3a) and ‘Thermostable’ (left

group). Indeed, the right cluster, containing 47 proteins, includes al-

most exclusively mesostable proteins (38), while the left cluster con-

tains 26 thermostable proteins over the total 37 proteins. The

overall accuracy of the method is 76%. We correctly assign the right

thermal stability to 64 out of 84 proteins. The AUC of the ROC

curve for the three Ts descriptors are 78, 79 and 68% (see Fig. 3b).

3.3 Key residues identification
Here, we investigated the thermal resistance properties of proteins

at the residue level. As protein stability is the result of the coopera-

tive effects and the synergic actions of several residues, assessing the

specific contribution of each amino acid is difficult (Sadeghi et al.,

2006). We define the Ti
s score (see Supplementary Material), creat-

ing two groups of residues for each protein: with Ti
s lower or higher

than zero. We consider residues belonging to the first group to have

a more stabilizing role than the ones in the second group.

Consequently, along the lines of the global-protein classification

procedure, we defined ‘thermostable’ (respectively ‘mesostable’) res-

idues belonging to the first (second) group. Using a total energy-

based score, thermostable residues are the ð1164Þ% of total resi-

dues. In the C network (see Fig. 4a), the most frequent thermostable

amino acids are the four charged amino acids: Arg, Asp, Glu and

Lys, which cover the 96.6 and 96.1% of thermostable residues in

thermostable and mesostable proteins, respectively. Apolar and aro-

matic residues (Leu, Met, Phe and Tyr) are typically thermostable

residues of the van der Waals (vdW) network, including 53 and

54% of the total residues in mesostable and thermostable proteins,

respectively (see Fig. 4b).

In order to investigate the role of each residue in the complexity

of the whole system, we analyzed the properties of all residues using

a graph-theory approach, calculating eight network parameters (see

Section 2). A PCA was performed in both kinds of network. In

Figure 4c and d, all residues were projected along the first two prin-

cipal components. Thermostable residues are neatly separated from

others if we consider the largest eigenvalue of the PCA in the C net-

work and more weakly if we take into account the second and third

ones (see Supplementary Material for details). Generally, charged

residues form highly energetic electrostatic cages which prevent

water inclusion (Levy and Onuchic, 2004; Sabarinathan et al.,

2011) while apolar and aromatic amino acids form short-ranged

vdW interactions that confer stability to the overall structure

(Lanzarotti et al., 2011; Paiardini et al., 2008). Here we identify key

residues whose peculiar spatial disposition confers them a particular

Fig. 2. Given a protein structure, our method represents it as a RIN (a). (b) The minimal atom–atom distance (8.4 Å in the example), for each residue pair, is calcu-

lated. The energy value (green line on the sketch) related to each contact is replaced with another one (yellow), randomly extracted from the energy distribution

of mesostable protein contacts lying in the same distance interval (8–8.5 Å in the example). Performing this procedure for each pair, a new network of intramo-

lecular interactions is established characterized by a new energy organization. Reiterating the process, we obtain an ensemble of random networks (c).

(d) Finally, for each random network the average Strength parameter is calculated, obtaining a Strength distribution. Green line represents the mean Strength

value of the real network, while red and blue region in the random Strength distribution show the classification criterion: if real Strength lies in red (resp. blue) re-

gion the protein is classified as thermostable (resp. mesostable) (Color version of this figure is available at Bioinformatics online.)

Fig. 3. (a) Cluster of the Twhole dataset proteins with three Strength based descriptors, i.e. C, LJ and total energy. Stars indicate proteins on the Thyper dataset. The

two groups are discriminated with a P-value of 2:6� 10�6 (Fisher’s exact test). (b) ROC curves of the three descriptors with the whole network Ts scores
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role in the stabilization of the protein. Notably, our approach, based

on a heterogeneous dataset, permits us to confirm and generalize the

stabilizing role of both the charged and apolar/aromatic residues

formerly suggested by homologous-based studies.

The mean shortest path (L) and the clustering coefficient (C) are

able to catch the effect of the thermostable residues on maintaining

these important structural motifs. The former provides information

about the position of the residue in the network with the most cen-

tral residues, having higher shortest path values. The latter quanti-

fies the residue surrounding packing, being a ratio between the

actual links and maximal number of possible links (Atilgan et al.,

2004; Vendruscolo et al., 2001).

In Figure 4c (left panel), we projected all residues in the LC plane

coloring in dark red the charged thermostable residues and in cyan

the charged non-thermostable residues. Charged residues are con-

centrated in the region characterized by both small L and C values,

with their thermostable subset tending to possess the smaller pos-

sible value of C. This means that thermostable residues have both to

be exposed and surrounded by residue that makes low energetic

interaction between each other’s. In analogy with Coulombian net-

works, we projected in the LC plane the four kinds of key residues

identified in the vdW networks. Even if the signal is weaker, key res-

idues in the thermostable vdW network (Leu, Met, Phe, Tyr) tend to

possess a higher clustering coefficient, testifying the packing stabiliz-

ing effect of vdW interactions. Densities of C parameter are found

to be different with a P-value < 10�16 (non-parametric test of

Kolmogorov–Smirnov).

These findings allow us to divide residues in eight groups: four

groups are identified by the C interaction, i.e. thermostable charged/

uncharged residues and non-thermostable charged/uncharged

residues; while vdW interaction networks divide residue according

to thermostable/non-thermostable being or not being in the Leu-

Met-Phe-Tyr group. For each protein of the Twhole dataset it is pos-

sible to compute the sum of the Ti
s scores in each of the eight pos-

sible groups, obtaining a vector of eight descriptors for each protein.

Performing a linear regression with the four C-based vector compo-

nent, the four vdW-based ones and with the whole eight-component

vector we end up with a preliminary AUC of the ROC curves of 81,

77 and 83%, respectively (see Supplementary Material), and we are

currently developing a residue-specific approach for Tm prediction.

3.4 Frataxin: a particular case of study
As a further application of our method, we investigated the stability

of Yfh1, the yeast ortholog of frataxin. This highly conserved family

of proteins is being deeply studied since in human it is responsible

for the Friedreich’s ataxia neurodegenerative disease. Furthermore,

Yfh1 displays a very peculiar behavior in its thermal stability prop-

erties (Adrover et al., 2010, 2012; Pastore et al., 2007). In fact, sev-

eral experimental studies show that both Yfh1’ cold and heat

denaturation occurs at experimentally accessible temperature in

physiological conditions, at 5 and 35 �C, respectively. This is very

rare since usually cold denaturation occurs at very low tempera-

tures, below freezing water one, making this phenomenon very rare-

ly observed in wild-type proteins.

To investigate the origins of the marginal stability exhibited by

Yfh1, we compared the global and local thermal resistance analysis

of Yfh1 with its bacterial (CyaY) and human (hFrata) orthologs,

which are thermally stable until 54 and 58 �C under physiological

conditions. Our global descriptor correctly classifies all three pro-

teins as mesostable with a positive global Ts score. We then

Fig. 4. (a, b) Frequencies of thermostable amino acids for the thermostable (red) and mesostable (blue). Frequencies of all the amino acids are shown in gray. (c,

d) Projection along the first two principal components of all residues. Thermostable residues for mesostable (resp. thermostable) proteins are indicated in green

(orange) dots. All residues are mapped in LC space. In red Arg, Asp, Glu and Lys amino acids are shown as the most frequent thermostable residues of the C net-

work. In yellow dots, Tyr, The, Leu and Met are shown as the most frequent thermostable amino acids of vdW one. In the middle, cartoon representation of Yfh1

and multiple alignment with thermostable and mesostable residues colored in shades of red and blue (Color version of this figure is available at Bioinformatics

online.)

2574 M.Miotto et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty1011#supplementary-data


proceeded to assess the local stability by computing the Ti
s for each

residue (see Supplementary Table S5). In particular, we focused on

one cluster of charged amino acids experimentally identified by

Sanfelice et al. (2015). This cluster is composed by residues D101,

E103 and E112, that interact between two different strands of the

beta sheet (b1 and b2) and therefore are regarded as responsible for

the structural stability. Interestingly, according to our Ti
s scores (see

Fig. 4), all these residues are less stabilizing in Yfh1 with respect to

CyaY and hFrata, despite their evolutionarily conservation. Another

feature, the local analysis unveiled, is the presence of near-neighbor

highly ‘mesostable’ and ‘thermostable’ residues, such as the ones at

the beginning of the destabilizing flexible region of Yfh1 N-terminal

loop (Adrover et al., 2010) which are absent in CyaY and hFrata

(see 3D structure in Fig. 4). The good agreement between our

predictions and experiments shows the capability of the method to

determine thermal stability properties both from a global and local

point of view.

4 Discussion

Our work aims to represent a step toward the understanding of the

thermal properties of a protein given its 3D structure. While the

axiom thermophilic organisms have thermostable proteins is certain-

ly correct, some mesophilic proteins may as well be thermostable

(Pucci and Rooman, 2017). Knowledge on the organism optimal

growth temperature, Tenv, used to classify mesophiles and thermo-

philes, may be misleading with high value of correlation due to the

fact that Tenv is always a lower-bound for Tm.

The basic idea behind our method relies on the assumption that

thermostable proteins undergo an optimization process during evo-

lution that leads to specific structural arrangement of their energy

interactions. Our analysis is based on a RIN in which the 3D struc-

ture of a protein is schematized as a graph with the residues acting

as nodes and the molecular interactions as links. In our definition of

network, links are weighted according to the sum of two non-

bonded energetics terms: electrostatic and LJ potential. The analysis

of the distribution of energies (links) highlighted the correlation be-

tween the thermal stability of protein sets (grouped according to

their Tm) and the probability of finding high intramolecular interac-

tions, with a highest correlation of 0.90 considering eight groups of

proteins (Fig. 1). Unfortunately, neither it is possible to further div-

ide the dataset in more groups due to the dataset dimension, nor we

could not consider the energy distribution for the single protein be-

cause the small number of links makes the statistics noisy, especially

in strong energy regions. Moreover, moving to higher orders of or-

ganization, e.g. considering the individual residual energies

(Strength parameter), further reduces the data. For this reason, the

next-up analysis was performed with a two-group division of the

dataset.

Interestingly, we found that not only strong negative energies de-

termine the thermal stability of a protein, but also strong positive

interactions play a role. Such finding confirms the complex nature

of the protein interaction network and in fact the stabilizing role of

repulsive energies can be explained in cases where repulsion between

a couple of residues results in a better spatial rearrangement of pro-

tein regions. To better grasp the role of favorable and unfavorable

energies disposition, we determined the stabilizing contribution of

each amino acid, defining the residue Strength [(Equation (1)].

Indeed, this parameter gives an estimate of the residue significance

in the overall protein architecture and can be used both as a local

property of each individual amino acid and as a global average

network feature of the entire protein. Moving to the higher level of

organization we investigated the biological role of the secondary

structure interactions in thermal stability. The interactions between

residues belonging to alpha helixes and loops concentrate more en-

ergy in thermostable proteins than mesostable ones. Those results

suggest that the thermal stability of a given protein is deeply linked

both to the intensity of interactions and to their spatial disposition,

and that both are fine-tuned during the evolutionary process. In

order to assess the thermal stability, we investigated the network en-

ergy organization and compared it against an ensemble of random-

ized networks. The ensemble comparison has two main purposes:

The first consists in overcoming the limitation of the need of pairs of

homologous proteins for direct comparison. The second purpose,

raised from the observation that thermostable proteins are enriched

of high connected nodes (hubs) and have more organized networks

of interactions respect mesostable proteins (Jonsdottir et al., 2014;

Kumar et al., 2000; Pucci and Rooman, 2016), relies in the need

introducing a quantitative measure of the evolutionary optimization

process thermostable proteins underwent, i.e. the distance between

real protein interaction network and a randomized one, in which we

disrupt the optimization of energy achieved by thermostable pro-

teins during evolution. As described in the method section, the ener-

gies of a network are always obtained from a distribution of

mesostable protein interactions. In this way, the more the original

network diverts from the ensemble, the higher the probability that

the protein belongs to the thermostable class. Moreover, the com-

parison allows us to assess in a quantitative way the effect of the en-

ergetic topology of the protein. Using this protocol to build up the

Ts parameter-free descriptor and performing a cluster analysis, we

are able to discriminate between mesostable and thermostable pro-

teins, with a maximum accuracy of 76% and a maximum AUC of

78%.

At last, we investigated whether evolution acts on particular resi-

dues to optimize protein thermal stability or if stability is given by a

cooperative effect with evolution acting on the whole protein. Our

analysis identifies two sets of key (thermostable) residues according

to the kind of energetic interactions the network is built with (C or

vdW). Surprisingly, thermostable residue frequency in thermostable

and mesostable proteins is comparable and they represent only a

small subset of all residues.

This single residue approach allows us explore the local contri-

butions to global stability and sheds light on peculiar cases of mar-

ginal thermal stability. In particular, we investigate the case of Yfh1

protein, the yeast ortholog of frataxin. Our global descriptor cor-

rectly classifies the protein as mesostable while our residue-based Ti
s

descriptors allow us to identify stabilizing/destabilizing regions in

agreement with previous works (Sanfelice et al., 2015). In general, a

complete description of the cold denaturation processes needs to ex-

plicitly include the water–residue interactions since it has been

postulated (Privalov, 1990) and partially confirmed through mo-

lecular dynamics simulations at the specific unfolding temperature

(Adrover et al., 2012) such interactions play a paramount role in

driving denaturation.

In order to better understand the theoretical aspects of thermo-

stability and improve the classification to be used in more applica-

tive fields, we created a new parameter dependent Ts score given by

a linear combination of the Ts score of the eighth possible set of resi-

dues (see Section 3). The improved performance of 83% of ROC’s

AUC highlighted the promising features of the single residue

approach.
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