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ABSTRACT

Exfoliative cytology has been widely used for early diagnosis of oral squamous 
cell carcinoma. We have developed an oral cancer risk index using DNA index value 
to quantitatively assess cancer risk in patients with oral leukoplakia, but with limited 
success. In order to improve the performance of the risk index, we collected exfoliative 
cytology, histopathology, and clinical follow-up data from two independent cohorts of 
normal, leukoplakia and cancer subjects (training set and validation set). Peaks were 
defined on the basis of first derivatives with positives, and modern machine learning 
techniques were utilized to build statistical prediction models on the reconstructed 
data. Random forest was found to be the best model with high sensitivity (100%) 
and specificity (99.2%). Using the Peaks-Random Forest model, we constructed an 
index (OCRI2) as a quantitative measurement of cancer risk. Among 11 leukoplakia 
patients with an OCRI2 over 0.5, 4 (36.4%) developed cancer during follow-up (23 ± 
20 months), whereas 3 (5.3%) of 57 leukoplakia patients with an OCRI2 less than 0.5 
developed cancer (32 ± 31 months). OCRI2 is better than other methods in predicting 
oral squamous cell carcinoma during follow-up. In conclusion, we have developed 
an exfoliative cytology-based method for quantitative prediction of cancer risk in 
patients with oral leukoplakia.

INTRODUCTION

Oral squamous cell carcinoma (OSCC) is the most 
common histological type of oral cancer [1]. OSCC 
always develops from precancerous lesions such as oral 
leukoplakia (OLK) and erythroplakia [2]. OLK is defined 
as “a white plaque of questionable risk having excluded 
other known diseases or disorders that carry no increased 
risk for cancer” [3]. The overall chance of malignant 
transformation of OLK varies from 3.6% to 12.9% [4–6]. 

In contrast to a 5-year survival rate of ~20% for advanced 
OSCC, the 5-year survival rate was up to 80% for OSCC 
diagnosed in the early stage [7]. Thus it is important to 
assess and follow up OLK lesions in order to diagnose 
OSCC early.

Several measures are available for assessment of oral 
cancer risk in OLK lesions. It is known that OLK lesions 
with ulceration or certain topography are more likely to 
undergo malignant transformation [8]. However, visual 
inspection is not reliable due to variations of physicians’ 

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 28), pp: 46057-46064

Research Paper



Oncotarget46058www.impactjournals.com/oncotarget

clinical experience. Histopathology (i.e., dysplasia) remains 
the golden standard for reporting cancer risk of OLK [9]. 
Unfortunately, this invasive approach depends on incisional 
biopsy and cannot be repeated during follow-up due to poor 
patient acceptance. Several other tools are also used to assess 
OLK lesions [10]: visual assessment of the physicochemical 
properties (e.g., toluidine blue staining, fluorescence 
spectroscopy) which is easy to use but less specific [11–13]; 
laboratory assessment of cellular markers (e.g., exfoliative 
cytology, micronucleus analysis) with higher sensitivity 
and specificity [14–17]; laboratory assessment of molecular 
markers (i.e., immunohistochemistry, gene microarray) 
which requires high-quality biopsy samples and are often 
quite expensive [18].

Exfoliative cytology is a non-invasive, easy, fast 
and low-cost examination for initial screening and early 
diagnosis of OSCC, with high sensitivity and specificity 
[19]. However, exfoliative cytology currently only provides 
qualitative assessment, instead of quantitative assessment, 
of cancer risk in OLK patients. In our previous study, we 
developed a statistical model and oral cancer risk index 
(OCRI) for quantitative risk of stratification of OLK 
patients [10]. At the time of sampling, we expected OCRI 
may inform us of OSCC which may be further validated by 
histopathology of incisional biopsy. OCRI is also expected 

to separate low-risk OLK from high-risk OLK, which may 
be followed up more frequently and in a more invasive 
manner, including treatment with chemopreventive agents, 
than low-risk OLK. Unfortunately, in our previous study on 
OCRI, false negative cases (i.e., 2 cases of OSCC with low 
OCRI values) seriously questioned the usefulness of OCRI.

In this study, by revising the method of data 
transformation and our preexisting statistical model, we 
improved the performance of risk index and eliminated 
false negatives. Using cytology data and clinical follow-
up data of two cohorts (training set and validation set), we 
demonstrated that the new risk index, OCRI2, predicted 
OSCC much better than OCRI and the traditional method.

RESULTS

Peaks-Random Forest (RF) model is better than 
the other statistical models in differentiating 
normal from OSCC

After the data is transformed through peak 
identification, five statistical models were tested using 
the data of training set and validation set. As shown 
in Figure 1, all five models predicted the 18 normal 
samples correctly in the training set. Only the peaks-RF 

Figure 1: Oral cancer risk index 2 (OCRI2) of normal subjects, OLK and OSCC patients in the training and validation 
sets using five statistical models (SVM, SVMfull, KNN, CF and RF). Y-axis represents the value of OCRI2. Each boxplot 
showed the median and 25%-75% of values.
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model predicted all 41 cases of OSCC correctly. For the 
validation set, the peaks-RF model correctly predicted 
101/102 normal and all OSCC, similar to the peaks-closed 
forest (CF) model. The other four models had many false 
positives and false negatives. Since a small number of 
false positives can be tolerated for a cancer risk prediction 
model, the peaks-RF model was chosen as the statistical 
model for calculation of OCRI2.

Cross-examination using the training set and the 
validation set confirmed the Peaks-RF model as 
a good prediction model of normal and OSCC

To test the validity of the peaks-RF model, we first 
used the training set to train our model and then tested 
the validation set. The peaks-RF model was able to 
successfully identify all 93 OSCC cases as OSCC, while 
only missed 1 out of 102 normal cases (sensitivity=100%, 
specificity=99.02% and AUC (area under the curve)=1.00). 
The testing process was repeated in reverse order with the 
validation set used for model training and the training set 
for prediction. The sensitivity and specificity were both 
100%, while the AUC was 1.00 (Supplementary Table 1).

Quantitative risk stratification of OLK patients 
and comparison of three methods

We then focused on quantitative risk stratification 
of OLK patients. In the training set, all 28 OLK cases 
were identified by the peaks-RF model as “low-risk 
(OCRI2<0.5)”. In the validation set, the peaks-RF model 
identified 64 OLKs as “low-risk (OCRI2<0.5)” and 
18 OLKs as “high-risk (OCRI2≥0.5)” (Supplementary 
Table 2).

We followed OLK patients in both the training 
set and the validation set. Among 68 cases of OLK 
(Supplementary Table 2), seven cases were found to 
undergo malignant transformation. With 0.5 as an arbitrary 
cut-off value for high or low risk, 36.4% (4/11) of high-
risk OLK patients developed OSCC during follow-up 
(23±20 months), whereas 5.3% (3/57) of low-risk OLK 
patients developed OSCC (32±31 months) (p=0.01) 
(Figure 2).

We then compared the performance of OCRI2 
in predicting OSCC with that of the traditional method 
and OCRI. Using 0.5 as an arbitrary cut-off value, OCRI 
failed to detect a significant difference in cancer incidence 

Figure 2: Prediction of OSCC in OLK patients during the follow-up period using three methods. Seven patients developed 
OSCC during follow-up. With 0.5 as an arbitrary cut-off, OCRI2 predicted OSCC better than OCRI and traditional method.
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between the high-risk OLK and the low-risk OLK 
(p=0.69). The traditional method categorizes OLK into 
negative, atypical and positive groups, whose cancer risk 
did not significantly differ among these groups (p=0.29) 
(Figure 2). These data indicated that OCRI2 can predict 
the occurrence of OSCC in the future better than the 
traditional method and OCRI.

DISCUSSION

In this study, we developed OCRI2 for assessment 
of cancer risk in OLK patients and had its predictive 
performance validated in new patients. Using two cohorts 
with clinical follow-up data, we demonstrated that OCRI2 
can differentiate between low-risk and high-risk OLK, and 
may improve the cost-effectiveness during clinical follow-
up of OLK patients.

Visual examination by clinicians with the aid of tools 
tends to have a high rate of false positivity. As a minimally 
invasive and inexpensive method, exfoliative cytology has 
long been used for qualitative detection of cervical cancer 
and oral cancer [20]. This approach has advantages over 

other methods mainly because cellular morphology tends 
to be relatively stable compared to molecular markers 
[10]. It has been well established that DNA aneuploidy 
could predict malignancy prior to histopathology [21, 22]. 
A quantitative parameter for risk stratification of OLK 
is desirable for two reasons: (1) Dynamic change of a 
quantitative parameter during clinical follow-up may add 
additional value towards prediction. This has been proven 
to be true in the case of prostate-specific antigen kinetics 
or velocity for prostate cancer prediction [23, 24]. (2) A 
quantitative parameter may improve the cost-effectiveness 
of clinical follow-up by paying more attention to high-risk 
OLK and less to low-risk OLK.

Several approaches have been used for quantitative 
stratification of cancer risk. Cancer risk index based on 
clinical risk factors using nomogram has been developed 
for several cancers, including head and neck squamous 
cell carcinoma [25], gastric cancer [26], and breast cancer 
[27]. In head and neck cancer, nomograms predicting 
five- and eight-year overall survival and cancer-specific 
survival were quite accurate [25]. Recently there has 
been tremendous enthusiasm in using molecular markers 

Table 1: General characteristics of subjects of the training set and the validation set

General 
characteristics

Training set Validation set

Normal OLK OSCC Normal OLK OSCC

Age (y)

 Mean ± SD 39.67 ± 15.48 57.68 ± 13.51 64.68 ± 11.71 44.00 ± 16.00 58.16 ± 11.48 61.70 ± 11.11

 Range 20 – 68 26 - 77 32 - 88 22 - 80 25 - 85 21 - 83

Sex

 Male, n (%) 5 (27.8) 19 (67.9) 20 (48.8) 46 (45.1) 37 (45.1) 45 (48.4)

 Female, n 
(%) 13 (72.2) 9 (32.1) 21 (51.2) 56 (54.9) 45 (54.9) 48 (51.6)

Site

 Tongue, n 
(%) 4 (22.2) 6 (21.4) 16 (39.0) 28 (27.5) 22 (26.8) 41 (44.1)

 Gingival, n 
(%) 4 (22.2) 11 (39.3) 7 (17.1) 15 (14.7) 33 (40.2) 27 (29.0)

 Other, n (%) 10 (55.6) 11 (39.3) 18 (43.9) 59 (57,8) 27 (32.9) 25 (26.9)

Smoking

 Yes, n (%) 1 (5.6) 16 (57.1) 10 (24.4) 32 (31.4) 29 (35.4) 31 (33.3)

 No, n (%) 17 (94.4) 12 (42.9) 31 (75.6) 70 (68.6) 53 (64.6) 62 (66.7)

Drinking

 Yes, n (%) 1 (5.6) 9 (32.1) 9 (22.0) 29 (28.4) 19 (23.2) 29 (31.2)

 No, n (%) 17 (94.4) 19 (67.9) 32 (78.0) 73 (71.6) 63 (76.8) 64 (68.8)

Total, n (%) 18 (100.0) 28 (100.0) 41 (100.0) 102 (100.0) 82 (100.0) 93 (100.0)
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for cancer risk stratification. However, the performance 
of molecular markers is not much better than established 
clinical risk factors [28–30]. In one oral cancer 
study [31], a gene predictive model showed marked 
improvements in terms of prediction accuracy over the 
models using clinicopathological risk factors. Although 
this approach is promising, the high expense and need 
for special analytical expertise are obvious hurdles that 
must be overcome before it can be clinically useful. It 
is also challenging to develop a consensus gene list, 
according to the distinct gene lists generated by multiple 
studies [32].

Our study has two major limitations: (1) Three 
cases of OLK with OCRI2<0.5 developed OSCC. Large 
or multiple OLK lesions, inadequate or inappropriate 
sampling of exfoliative cells, mishandling of the staining 

and imaging procedure may all contribute to false 
negative prediction. Longitudinal tests of exfoliative 
cytology during follow-up may capture such high-risk 
cases, and kinetics data may have additional value 
in predicting cancer. Moreover, our risk index may 
be further improved by including multiple cytology 
parameters, such as nuclear perimeter, area, diameter, 
minimum and maximum Feret, which had been shown 
to be statistically different between aneuploidy and 
diploid samples [33]. NextGen sequencing data may 
also be incorporated to improve the performance of the 
quantitative prediction model [34, 35]. (2) Forty-two 
OLK patients (38%, 42/110) were lost during follow-up, 
among which 3 presumably were of high-risk and 39 of 
low-risk. This may impact the difference of true cancer 
risks between these two groups.

Figure 3: Peaks method of data transformation. Peaks method was developed from first derivatives with positives defined as peaks. 
Ten intervals were based on ploidy value from 0.5 to 10.5, with 0.5 to 1.5 as the first interval, 1.5 to 2.5 as the second, and so on. All data of 
the training set (87 cases) were pooled together to show the distribution of the data (A). Normal subjects (18 cases) showed two peaks in the 
first and second intervals (B). OSCC subjects (41 cases) had high variance and their data were spread out through most of the intervals (C).
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MATERIALS AND METHODS

Clinical information and follow-up

We recruited and followed two cohorts, the training 
set and the validation set, from March 2008 to July 
2016. This study was approved by the ethical committee 
of Beijing Stomatological Hospital, Capital Medical 
University, and all patients signed the informed consent 
form before the study. Clinical data, exfoliative cytology, 
histopathology, and follow-up data were collected (Table 
1 and Supplementary Table 2). Both exfoliative cells and 
incisional biopsy were collected from the site of lesion 
(OLK or OSCC); exfoliative cells were randomly collected 
from the mucosa of normal subjects. The training set was 
made up of 18 normal, 28 OLK and 41 OSCC subjects, 
and the validation set was made up of 102 normal, 82 
OLK and 93 OSCC subjects (Table 1). During the follow-
up, clinical symptoms of all subjects were documented 
through clinical examination and phones calls. Malignant 
transformation was confirmed by histopathology.

Exfoliative cytology and histopathology

The exfoliative cytology and histopathology were 
conducted in the same way as in our previous study [10]. In 
brief, exfoliative cells were collected by using Cervibrush 
(Motic, China) and stored in a fixative (Motic, China). 
Cells were smeared onto a dry glass slide and treated 
with the Feulgen solution according to the manufacturer’s 
instruction. DNA-image cytometry and CLASSIFY 
software (Motic, China) were used for obtained the DNA 
index (DI). According to the diagnostic criteria by the 
British Columbia Cancer Agency, an aneuploid cell was 
defined as DI≥2.3 [36]. A case was defined as “positive” 
if there were more than 5 aneuploid cells, “Atypical” if 
the number of aneuploid cells was between 1 and 5, or 
“negative” if there was no aneuploid cell. This method 
was defined here as the “traditional method”.

For OLK and OSCC, an incisional biopsy was taken 
from the same area under local anesthesia after brush 
biopsy. Tissues were fixed with buffered formalin and the 
sections were diagnosed by our pathologist according to 
the standard criteria of the WHO Classification System of 
Head and Neck Tumors [36]. Mild, moderate, or severe 
dysplasia of OLK is defined if the general architectural 
disturbance is limited to the lower third of the epithelium, 
extending into the middle third of the epithelium, or 
greater than two-thirds of epithelium, respectively [37].

Peak determination, interval creation, and data 
reconstruction

Using the DI values from the sample, we first 
acquired the density of the data set. By taking the lagged 
differences of the density and observing the signs of 

differences, the first derivative of the DI values was 
mimicked. The points at which the density plot stopped 
rising and started falling were the positive values of the 
first derivative, which were then designated as peaks. 
These points had their x-values recorded and were 
compiled into a vector.

After these points were recorded, the data was 
reconstructed. Ten intervals were used to store the points, 
using a tally system that counted the number of points in 
each interval and returned an integer vector of 10 units 
long, consisting of the counts of points per interval. The 
intervals were created depending on the biology of cell 
ploidy. The intervals were divided by 10, from [0.5, 
1.5], [1.5, 2.5], … to [9.5, 10.5], with any values smaller 
than 0.5 being included in the 1st interval and any values 
greater than 10.5 being included in the last interval. 
These intervals were uniform around the natural counting 
numbers, 1, 2 to 10. Haploids, diploids, tetraploids and 
aneuploids would be easily identified with this method.

After the intervals were created and the points were 
tallied, we had an integer vector of 10 units long, with each 
unit representing the number of peaks in each respective 
interval (Figure 3). This procedure was repeated through 
all the cases. Each group of data was now an X by 10 data 
frame, with X being the number of samples in each group. 
Then, 2 more columns were added, the 11th of which was 
either a “c”, “k”, or “n” factor, representing OSCC, OLK 
and normal, respectively, and the 12th of which was all of 
the case numbers of the respective samples. Thus, nX12 
data frames for the training set and validation set were 
generated.

Statistical models and cross examination

Statistical modeling and performance evaluation 
were done with R [10] and the caret package (http://
caret.r-forge.r-project.org/). For the training set testing, 
the validation set (Normal and OSCC) were used to train 
the model. Firstly, the two data frames of validation set 
(Normal and OSCC) were combined, and then 70% of it 
was randomly selected for model optimization, with the 
remaining 30% left for testing and evaluation (with the one 
difference being support vector machine-full (SVMfull), 
which used 100% of the data). The models selected were 
support vector machine (SVM), SVMfull, k-nearest 
neighbors (KNN), CF, and RF. Along with the default 
parameters of the models, 10-fold cross validation was used 
within each pass, and the process was repeated 5 times. The 
same seed was also set for each random number generation, 
ensuring replicable results. The sensitivity and specificity 
of the predictions were the bases for determining which of 
the models was the strongest, and this was displayed in the 
confusion matrix. For the calculations of model adequacy, 
positive predictive value, negative predictive value and area 
under the curve were also calculated. PPV was defined as 
the number of cases detected as cancer that were actually 
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cancer is divided by the total number of cases detected as 
cancer. For NPV, the number of cases detected as normal 
that were actually normal is divided by the total number of 
cases detected as normal. These values were found through 
the confusion matrix command in R. In calculating AUC, 
the ROCR package in R was used. Since the testing data is 
already ordered by factor level, the OCRIs were extracted 
and relabeled with their original classification. Then, the 
performance function was used to calculate AUC, which is 
between 0 and 1.

Next, the process was done in reverse. The training 
set (Normal and OSCC) was used to train the model, and 
the model was used to test the validation set (Normal and 
OSCC). All previous methods were implemented.

OCRI2 calculation

OCRI2 is the probability of OSCC for an unknown 
sample. The range of OCRI2 ran from 0 to 1, with 0 
indicating zero risk of OSCC and 1 indicating a 100% 
chance of OSCC. We set 0.5 as an arbitrary cut-off value 
to separate high-risk and low-risk cases for the sake 
of comparison. Two-sided Chi-square test with Yates 
correction was used for statistical comparison between 
high-risk OLK and low-risk OLK, and among “negative”, 
“atypical” and “positive” OLK, in Figure 2.
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