
DOI: 10.1002/minf.201300020

Classification of High-Activity Tiagabine Analogs by Binary
QSAR Modeling
Andreas Jurik,[a] Regina Reicherstorfer,[a] Barbara Zdrazil,[a] and Gerhard F. Ecker*[a]

Keywords: GAT-1 · Binary QSAR · Tiagabine · GABA uptake inhibitors

Termination of GABA-ergic signaling requires fast uptake of
the neurotransmitter by highly selective transporter pro-
teins. Four subtypes of sodium- and chloride-dependent
GABA transporters exist, GAT-1 being the most prominent
one in the brain. The only marketed drug targeting this
transporter system is the anticonvulsant tiagabine.[1] It is
highly GAT-1 selective, consisting of R-nipecotic acid as
a GABA mimetic moiety and a diaryl region attached by
a linker chain.[2–3] Its development roots back to the work
of Yunger et al. in the early 1980s, introducing a lipophilic
diaromatic region to the amino acid, thus tackling the fact
that nipecotic acid, already a potent inhibitor of GABA
transport, is not able to penetrate the blood brain barrier.[4]

This resulted in the so-called SK&F tool compounds, which
were subsequently optimized towards IC50 values in the
nanomolar range and simultaneously rising GAT-1 selectivity.
Lots of synthetic effort focusing on modifications in linker
length and polarity, and substitutions on the (mainly di-) ar-
omatic region has been put into the structural optimization
of the compound class, as summarized by Madsen et al.[5]

Modifying the amino acid region is less tolerated, but
might be the key for stepping towards other GAT subtypes.
Likewise, the introduction of a third aryl ring goes along
with an increase in selectivity for hGAT-3.[6–7] It also turned
out that ortho-substitution of at least one of the aromatic
rings has a beneficial effect. In addition, introduction of
a polar region at the distal side of the aliphatic linker,
which is connected to the cyclic amino acid at its protona-
ble nitrogen atom, increases activity. This is usually ach-
ieved by introducing a diaryloxime or a diarylvinyl ether
group. Isolated investigation of the preferred carboxy
group configuration in this GABA mimetic moiety showed
a clear superiority of R-configuration to the non-racemic
guvacine scaffold, itself being more potent than com-
pounds containing S-nipecotic acid.[8,9] Despite the consid-
erable number of structure-activity relationship observa-
tions that have been described,[6,10] a quantitative summary
of their respective contributions has not been performed
yet.

In the present work, we describe a ligand-based ap-
proach to summarize SAR information derived from a data-
set of published lipophilic aromatic GAT inhibitors.

A dataset of 162 consistently tested compounds was col-
lected from the literature.[8,9,11–19] Two classes of 2D and in-

ternal 3D descriptors were calculated using the software
package MOE2012.10.[20] The 2D class, not depending on
the molecule conformation, consisted of 188 descriptors
belonging to 7 categories, namely physicochemical proper-
ties, subdivided surface area, atom and bond counts, Kier &
Hall connectivity and kappa shape Index, adjacency and
distance matrix, pharmacophore feature and partial charge
descriptors.

Out of the available 3D descriptors, the ’x3D’-class was
discarded as it depends on external coordinates as a frame
of reference. The remaining ’i3D’ class consisted of 138 fea-
tures, describing shape, potential energy and partial charg-
es of the dataset. In addition, indicator variables were intro-
duced for the three scaffolds of the amino acid mimicry,
namely R- and S-nipecotic acid and guvacine. Three col-
umns were added to the dataset, one for each scaffold.
Presence or absence of the respective scaffold in the chem-
ical structure was indicated by 1 and 0, respectively. The
full data matrix is given in the supplementary material. Sur-
prisingly, although the data set seems ideal for Hansch-
anaylsis and PLS, all attempts to retrieve statistically signifi-
cant models failed. Therefore, the strategy was adjusted to-
wards binary QSAR. The according method implemented in
the QuaSAR module of MOE2012 uses a biased Bayesian in-
ference technique in order to predict the probability of
a compound to be active or inactive, even for small and
unbalanced data sets.[21]

A pIC50 activity threshold of 7.0 was defined for discrimi-
nation between highly active and inactive compounds.
Four different descriptor sets were used for building the
binary models : 16 physicochemical descriptors, 32 binned
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VSA descriptors plus the three indicator variables, one set
of features chosen by contingency analysis (see Table 1),
and the first 10 principal components of the internal 3D de-
scriptors. In order to assess the quality of the models, inter-
nal validation by leave-one-out cross-validation and predic-
tion of an external test set was performed. For the latter,
two procedures were applied to split the 162 compounds
into 147 (90 %) for training and 16 (10 %) for testing. In
order to achieve maximum diversity in the test set, primary
splitting of the compounds was done on the basis of maxi-
mum diversity, calculated by MACCS fingerprint clustering.
The second method used ten times repeated random selec-
tion. Upon selection of the test set compounds, it was also
taken care of preserving the ratio between active and inac-
tive compounds in both subset populations.

Using the whole panel of 2D-descriptors followed by
backward selection as well as the sole use of the 16 physi-
cochemical descriptors did not provide any reasonably
good model. Also 3D descriptors performed poorly and
were thus discarded. Nevertheless, a set of 32 binned van
der Waals surface area (VSA) descriptors turned out to be
well suited to describe the dataset. Introducing the indica-
tor variables outlined above increased both positive and
negative predictive power for the external test set from
42.9 % and 77.8 % to 60.0 % and 81.8 %, respectively, clearly
justifying their use (Table 2). The second feature selection
method applied used the descriptor contingency calcula-
tion available in the MOE package (Table 1). For the diversi-
ty split, it were 9 mainly atom/bond count, adjacency
matrix and polarity descriptors, performing equally well
when compared to the VSA descriptors for the training set,
but exhibiting inferior positive predictive power for the test
set (Table 2).

For the diversity splits, the best model showed an overall
accuracy on the training set of 89.7 %, with 98.1 % for

active and 85.1 % for inactive compounds. The external test
set was predicted with an overall accuracy of 75.0 % (60 %
on actives and 81.8 % on inactives), as summarized in
Table 2. Accordingly generated models for the ten random
splits achieved similar values, performing slightly better on
the training sets but exposing lower accuracy for identify-
ing the active instances of the external test sets.

Analyzing the misclassified compounds revealed several
insights. VSA descriptors exhibited some difficulties in han-
dling molecules with asymmetrical biaromatic moieties,
which are often classified as false positives. Main challenges
for 3D descriptors included long linker compounds, large
tricyclic moieties and S-configuration of the carboxy group.
Just two compounds of the dataset, which is provided in
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Figure 1. Chemical structures of GABA, R-nipecotic acid, the lipophilic derivatives SK&F 89976-A and tiagabine.

Table 1. Descriptors chosen by contingency analysis for the two
training sets and their (mean) relative importance.

Descriptor Description Rel. impor-
tance

Maximum diversity split
a_count Number of atoms (incl. implicit H) 0.283
b_1rotN Number of rotatable single bonds 0.235
b_1rotR Fraction of rotatable single bonds 0.236
b_count Number of bonds (incl. implicit H) 0.274
b_rotN Number of rotatable bonds 0.233
b_rotR Fraction of rotatable bonds 0.250
PEOE_VSA_
FPPOS

Fractional positive polar van der Waals
surface area

0.218

vdw_area Area of van der Waals surface (�2) 0.283
wienerPol Wiener polarity number[22] 0.240

Random splits
a_count 0.202
b_count 0.212
b_single Number of single bonds (incl. H) 0.226
opr_brigid Number of rigid bonds[23] 0.292
wienerPol 0.293
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the Supporting Information, were misclassified by at least
two models: Cpd. 100, was the only active one bearing a 7
heavy atom long linker. The other, cpd. 37, often was as-
signed to the active class due to its favorable combination
of ortho-substitution and an oxime moiety in the linker, yet
having an S-configured carboxy group. Nevertheless, in
both cases the pIC50 value was close to the threshold of 7.0

(see Figure 2 for comparison with the most active com-
pound 69).

The surprisingly low importance of the indicator variables
during the model generation of the training sets might be
explained by the underrepresentation of S-configured rep-
resentatives in the dataset.

New insights about activity-determining features of
GABA uptake come from the importance of the two de-
scriptors wienerPol and opr_brigid. Suggested along with
three other descriptors in the contingency selection for the
random split training set, they perform surprisingly well
even if taken alone. Taking just the two for model genera-
tion yields Matthews correlation coefficients of 0.53 and
0.63 for training and test set, respectively. Even though the
performance is by far weaker when applied to the diverse
split, this nicely demonstrates that the degree of rigidity
and the polarity distribution play a significantly larger role
for activity than expected so far. In contrast, taking just the
indicator variables for model generation did not lead to
any significant model. In conclusion, BQSAR is a versatile
method for capturing SAR information from consistent da-
tasets, when classical QSAR models do not yield sufficient
predictive power.

Computational Methods

Database preparation. The initial dataset consisted of more
than 400 compounds that were collected from the litera-
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Table 2. Accuracy of the binary QSAR models for training and test
sets (%)

A[a] A0[b] A1[c] XA[d] XA0 XA1

Maximum diversity split
Training set
VSA + ind. var[e] 89.7 85.1 98.10 85.6 83.0 90.4
2D contingency[f] 86.3 88.3 82.7 80.1 84.0 73.1
External test set MCC
VSA + ind. var 75.0 81.8 60.0 0.42
2D contingency 75.0 90.9 40.0 0.37
Random splits
Training set
VSA + ind. var 91.3 88.2 97.1 86.8 86.1 88.2
2D contingency 86.1 86.6 85.1 80.9 84.4 76.7
External test set MCC
VSA + ind. var 67.5 80.0 46.7 0.30
2D contingency 73.8 79.0 65.0 0.46

[a] Overall accuracy; [b] overall accuracy on inactives = specificity;
[c] overall accuracy on actives = sensitivity; [d] accuracy for leave
one out (LOO) cross-validation; [e] 32 binned VSA descriptors plus
indicator variables;[24–25] [f] set of descriptors selected by contingen-
cy calculation.

Figure 2. Comparison of the most active compound with most often misclassified compounds. For the most active compound 69, the op-
timal linker length and polarity, ortho-substitution and R-configuration of the carboxy group are present. Frequent false negative cpd. 100
comprises an unusually long linker for active compounds; Cpd. 37 has features typical for highly actives, but lacks the correct stereo con-
figuration.
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ture.[4,8–9,11–16,18–19,26] The dataset was curated by removing
data from racemic compounds and non comparable inhibi-
tion assays, resulting in a final 162 member dataset.

Threshold. For the binary QSAR, the compounds were
categorized as active according to a pIC50 of equal to or
greater than 7.0, corresponding to 100 nM inhibition of 3H-
GABA uptake. Any other members of the dataset below the
threshold were defined as inactive or 0, dividing the data-
set into 57 active and 105 inactive molecules. Compounds
annotated with ’larger-than’ IC50 values were kept in the da-
taset, as they were all considerably in the micromolar
range, thus set inactive at all eligible thresholds.

Protonation states. Hydrogen atoms were assigned for
the major microspecies at a physiological pH of 7.4 in the
target tissue, as well as in the test assay.[27,28] The automati-
cally generated states were cross-checked by random selec-
tion of compounds for external pKA calculation. Chemicali-
ze.org was used for prediction of pKA values and the major
microspecies at pH 7.4 (XII 2012; chemaxon.com). Subse-
quently, a fast energy minimization step was applied in
order to ensure reasonable bond lengths, while keeping
pre-assigned chiral centers. Further optimized structures
were calculated using CORINA.[29]

Descriptors. 188 2D descriptors, consisting of 7 catego-
ries, as well as 138 internal 3D descriptors of 5 categories,
suitable for small molecules, were calculated within the Mo-
lecular Operating Environment software package (MOE
2012.10)[20] . For the 2D descriptors, those were 16 physico-
chemical properties, 18 subdivided surface area, 41 atom
and bond counts, 16 Kier & Hall connectivity and kappa
shape indices, 34 adjacency and distance matrix, 13 phar-
macophore feature and 50 partial charge descriptors. In ad-
dition, indicator variables were introduced to describe the
amino acid moiety, namely R- and S-nipecotic acid and gu-
vacine. Out of those, three of the descriptor sets were as-
sembled. Together with the indicator variables, the 18 sub-
divided surface area descriptors and 14 binned VSA partial
charge features shaped the ’VSA’ descriptor set. One con-
sisted of the 16 physicochemical components, as for the
third set, all aforementioned features where offered to be
chosen by the contingency analysis module within MOE.
The internal 3D class consisted of 11 potential energy, 21
MOPAC, 91 surface area, volume and shape features, and
15 conformation dependent charge descriptors; their first
ten principal components being used for the fourth model
generation approach.

Selection of training and test set. Two procedures were
applied for dividing the compounds into training and test
set prior to model generation.

a. The compounds were clustered according to their sim-
ilarity, determined by calculating MACCS fingerprints at
a threshold of 75 % Tanimoto similarity using the Finger-
print Clustering module in MOE2012. As it can be seen in
Supporting Information, Scheme 1, clustering at this thresh-
old yields reasonable cluster sizes without over-scattering
the dataset. Beginning with a cluster size of minimum 5

members, 1 compound or 10 % were assigned to the test
set, chosen according to the actives-inactives distribution
within the cluster, also nicely resembling the overall distri-
bution with an actives to inactives ratio of 5 : 11 compared
to 57 : 105 in total. Smaller clusters were automatically
added to the training set, similar to a procedure described
by Fells et al.[30] For detailed information on the different
clusters, see Supporting Information, Table 1.

b. The second splitting method was repeated random se-
lection of 6 out of the 57 actives, and 10 out of 105 inac-
tive compounds, representing 10 % of the primary data-
base, yielding ten independent training and test set splits.
Detailed description of standard deviation, Matthews corre-
lation coefficient and predictive power of the given mean
values can be found in the Supporting Information.

Contingency analysis. For both training sets, the calculat-
ed descriptors were analyzed for importance and mutual
dependence. Four statistical parameters, namely the contin-
gency coefficient, Cramer’s V, the uncertainty coefficient U
and the correlation coefficient R2, were combined by the
contingency module of MOE2012, suggesting a set of de-
scriptors for QSAR models.

Model generation. Binary QSAR models were generated
within MOE2012, setting a pIC50 value of 7.0 or above as ac-
tivity criterion, and adjusting the smooth value to 0.01.
Component and condition limit, as well as the binary
threshold, were kept at default values.

Performance measurement. The models generated for the
two training sets were validated by leave one out cross-val-
idation. Both for training and test sets, confusion matrices
were drawn, depicting true positives (TP), false positives
(FP), false negatives (FN) and true negatives (TN). Overall
accuracy (A), accuracy on actives (A1, = sensitivity), accuracy
on inactives (A0, = specificity), positive and negative predic-
tive power (PPP, NPP) as well as Matthews correlation coef-
ficient (MCC) were determined as followed:

A ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ

A1 ¼ TP=ðTPþ FNÞ

A0 ¼ TN=ðTNþ FPÞ

PPP ¼ TP=ðTPþ FPÞ

NPP ¼ TN=ðTNþ FNÞ

MCC ¼ TPxTN-FPxFN=½ðTPþ FPÞðTPþ FNÞðTNþ FPÞ ðTNþ FNÞ�1=2
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