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Apoptosis – Fueling the oncogenic fire
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Apoptosis, the most extensively studied form of programmed cell death, is

essential for organismal homeostasis. Apoptotic cell death has widely been

reported as a tumor suppressor mechanism. However, recent studies have

shown that apoptosis exerts noncanonical functions and may paradoxically

promote tumor growth and metastasis. The hijacking of apoptosis by can-

cer cells may arise at different levels, either via the interaction of apoptotic

cells with their local or distant microenvironment, or through the abnormal

pro-oncogenic roles of the main apoptosis effectors, namely caspases and

mitochondria, particularly upon failed apoptosis. In this review, we high-

light some of the recently described mechanisms by which apoptosis and

these effectors may promote cancer aggressiveness. We believe that a better

understanding of the noncanonical roles of apoptosis may be crucial for

developing more efficient cancer therapies.

Introduction

Programmed cell death plays a crucial role in many

biological processes including tissue structuring during

embryogenesis, development of the immune system

and destruction of damaged cells. Among the different

forms of programmed cell death, apoptosis is the most

common and best-studied, relying on the activation of

caspase proteases to induce extensive cleavage of hun-

dreds of substrates and rapid cell death [1]. Apoptosis

is necessary to remove pathogen-invaded cells, but is

also needed to eliminate malignant as well as auto-

aggressive immune cells. Caspases, the key molecular

mediators of this process, can be activated through

two distinct but interconnected pathways: the extrinsic

and the intrinsic pathway.

On one hand, the extrinsic pathway relies on the

activation of death receptors through the binding of

their cognate ligand(s) [1]. On the other hand, the

intrinsic apoptotic pathway (also known as mitochon-

drial pathway) relies on widespread mitochondrial

outer membrane permeabilization (MOMP) after
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deadly apoptotic stresses such as cytokine deprivation,

DNA damage, or endoplasmic reticulum stress.

MOMP is tightly controlled by pro-apoptotic and

anti-apoptotic members of the BCL-2 protein family

[2].

Upon induction of apoptosis, the pro-apoptotic effec-

tor proteins BCL2-associated X (BAX) and BCL2

antagonist killer 1 (BAK) undergo direct or indirect

activation by pro-apoptotic BH3-only proteins in order

to form pores across the outer mitochondrial mem-

brane. This process is counteracted by anti-apoptotic

BCL-2 family proteins. Upon MOMP, mitochondrial

intermembrane space proteins such as second mitochon-

dria-derived activator of caspases (SMAC) and cyto-

chrome c are released into the cytosol. Cytochrome c

can then trigger apoptosome assembly and the activa-

tion of initiator caspase-9 and subsequently of effector

caspase-3 and -7, leading to apoptosis [2].

The dysregulation of apoptosis characterizes a wide

variety of diseases. In cancer, apoptosis is a well-estab-

lished tumor suppressor mechanism, and loss of apop-

totic control allows cancer cells to survive longer thus

acquiring additional oncogenic hits [3]. However, apop-

tosis may not only serve as a tumor suppressor mecha-

nism but may also have pro-oncogenic functions by

promoting the emergence and maintenance of aggressive

tumors. Aggressiveness is commonly used in the litera-

ture to describe cancers with a poor prognosis, increased

proliferation, and metastatic capacities [4,5].

Interestingly when defining what drives tumor

aggressiveness, a concept is gaining popularity, namely

that apoptosis may exert oncogenic effects and sub-

lethal apoptotic stresses may lead to the development

of aggressive tumors.

In this review, we discuss the hidden link between

apoptotic cell death, its effectors, mitochondria and

caspases, and cancer aggressiveness. Our discussion

begins by presenting the main oncogenic outcomes of

complete apoptosis. Consequently, we highlight how

failure to efficiently undergo apoptosis, nonlethal cas-

pase signaling, and mitochondria could mediate a vari-

ety of pro-tumorigenic events. We suggest that

understanding the noncanonical roles of apoptosis

may improve therapeutic strategies aimed at treating

highly aggressive tumors.

Noncanonical oncogenic roles of
complete apoptosis

As the most relevant form of programmed cell death,

apoptosis has long been regarded as a barrier to car-

cinogenesis. However, apoptotic cells may also exert

noncanonical functions by driving tumor cell

proliferation, leading to a reevaluation of the benefits

of triggering apoptosis in cancer therapy [6]. More-

over, a high intratumoral apoptotic index is correlated

with an increased mitotic index and shorter overall

survival in several cancers, while potentiating tumor

progression [7–10]. To address these apparently para-

doxical findings, in this section we will discuss some of

the main mechanisms underlying the pro-tumorigenic

effects of apoptotic cells.

Pro-oncogenic effects of apoptotic cell death on

tumor proliferation

Apoptosis-induced proliferation (AiP) is an evolution-

arily conserved form of compensatory proliferation in

multicellular organisms, by which apoptotic cells

actively stimulate surviving cells to divide [11]. This

process has been the most extensively studied in

Drosophila melanogaster, where apoptotic cells in the

imaginal disk were shown to activate mitogenic signal-

ing, thus promoting the proliferation of neighboring

cells [12–14]. In this model, apoptotic cells can stimu-

late the proliferation of neighboring nonapoptotic cells

in a caspase-dependent manner, through the initiator

caspase Dronc (ortholog of human caspase-9) [15].

AiP is also supported through the recruitment of

immune cells, and in particular macrophage-like hemo-

cytes. Mechanistically, undead imaginal disk cells,

sequester activated Dronc at the basal side of the

plasma membrane where it activates the NAPDH-oxi-

dase Duox inducing extracellular reactive oxygen spe-

cies (eROS) production. This triggers hemocyte

recruitment and Eiger (Tumor necrosis factor alpha

analogue) production that will sustain c-Jun N-termi-

nal kinase (JNK) and caspase activation in undead

cells. This cascade ultimately sustains the proliferation

of neighboring cells [16–18]. These caspase-dependent

signaling pathways equally play a critical role in

wound healing and regeneration via the activation of

p53, the JNK and the secretion of mitogens like Wnt

homolog Wingless (Wg), the Epidermal growth factor

(EGF) homolog Spitz, and the interleukin-6 homolog

Unpaired (Upd) [19–24].
Furthermore, in mammals, apoptotic caspases may

also contribute to tumor initiation through caspase-de-

pendent inflammation and sustained AiP [25]. A key

mediator of AiP in mammals is prostaglandin E2

(PGE2), which is secreted by apoptotic cells and has

been found to mediate their ability to stimulate tumor

proliferation (Fig. 1A). Accordingly, Li and collabora-

tors demonstrated that dying cells stimulate prolifera-

tion of neighboring cancer cells through a caspase-3-

dependent mechanism. In these settings, caspases
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cleave and activate calcium-independent phospholipase

A2 (iPLA2), resulting in an increased production of

arachidonic acid, which is converted via cyclooxyge-

nase 1 (COX1) and COX2 to PGE2, which then pro-

motes stem and progenitor cell proliferation [26,27].

This caspase-3/PGE2 signaling cascade was also

described for dying tumor cells, thus promoting the

growth of neighboring tumor cells, but also extends to

dying vascular endothelial cells fostering tumor cell

growth [28]. Of note, active caspase-3 was also recently

reported to be a key regulator of cell proliferation and

organ size without instructing cell elimination, through

the activation and nuclear translocation of the yes-as-

sociated protein (YAP), a vital regulator of organ size

[29]. Whether this caspase-3/YAP axis is relevant for

the proliferation of cancer cells remains a matter of

debate.

The role of PGE2 is particularly relevant in the

context of standard antitumor treatments. Highly

aggressive cancers, like melanoma, undergo tumor

repopulation after cytotoxic therapy, suggesting that

current therapies are often ineffective in eliminating

all of the melanoma tumor cells. This tumor repopu-

lation is orchestrated by PGE2 in a caspase 3-medi-

ated manner, where dying melanoma cells stimulate

the growth of living cells after cytotoxic therapy

[30,31]. Thus, targeting PGE2 either by a PGE2-neu-

tralizing antibody, by COX2 inhibitor celecoxib or by

broader acting nonsteroidal anti-inflammatory drugs

has been shown to effectively abrogate cancer stem

Apoptotic cells
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B Long-range effects
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Fig. 1. Pro-oncogenic effects of apoptotic cells. (A) Short-range effects of apoptotic cell death. Apoptotic cells secrete prostaglandin E2

(PGE2) that can have pleiotropic effects on surrounding cells, including mitogenic and immune-silencing effects. Apoptotic cells release

various ‘eat-me’ and ‘find-me’ molecules to signal their removal by phagocytes. These molecules include FKN that promotes angiogenesis

or drug resistance and ATP that can be taken up by surrounding tumor cells to provide energy for tumor growth. These signals can also

polarize TAMs toward a pro-oncogenic state (M2 phenotype) that can impair immune surveillance. Apoptotic cancer cells can also exert a

physical pull on neighboring cells. (B) Long-range effects of apoptotic cell death. Apoptotic cells can impact their distant environment by

releasing apoptotic-derived extracellular vesicles (Apo-EVs) or PS-charged microblebs that promote tumor survival, proliferation, and

migration by transporting oncogenes, splicing factors, and PS.
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cell (CSC) repopulation, enhance chemotherapeutic

response in bladder urothelial carcinomas, and reduce

incidence and mortality of colorectal cancer [32–34].
Moreover, selective inhibition of the PGE2 receptor

EP4 by the small molecule inhibitor, L-161,982

enhances oxaliplatin efficacy in resistant colon cancer

cells, supporting the role for the COX-2/PGE2/EP4

signaling axis in resistance to therapy [35]. Interest-

ingly, PGE2 can also have immune-silencing effects

and promote angiogenesis independently of Vascular

endothelial growth factor (VEGF) signaling [36,37]

(Fig. 1A). Aside from iPLA2, activated effector cas-

pases in dying cancer cells are involved in the activa-

tion of protein kinase C delta, which in turn mediates

phosphorylation of Akt, p38, and JNK1/2, leading to

mitogen production and tumor repopulation following

radiation therapy [38].

Paradoxically, these studies suggest that cancer cell

apoptosis can instruct the proliferation of neighboring

cancer cells, an insidious interaction that is currently

not taken into consideration when designing cancer

therapies.

The oncogenic impact of apoptotic cells on the

tumor microenvironment

Apoptotic cells are part of a dynamic microenviron-

ment where they release the so-called ‘find-me’ and

‘eat-me’ signals responsible for efficient phagocytosis.

These signals include fractalkine (FTK, also known as

C-X3-C motif chemokine ligand 1 or CX3CL1), phos-

phatidylserine (PS), lysophosphatidylcholine, sphin-

gosine-1-phosphate, and nucleotides ATP and UTP

[39]. These molecules are often thought to act locally

with a high affinity for immune cell activation. Never-

theless, growing evidence indicates that these signals

can be used by cancer cells in their own interest to

replicate and survive (Fig. 1A).

This has been reported for FTK, the role of which

as a chemokine extends beyond the recruitment of

phagocytes. Several recent studies investigating the

noncanonical roles of FTK in oncogenesis have been

carried out in hepatocellular carcinoma, prostate, or

breast cancer where FTK was linked with angiogene-

sis, hypoxia-induced proliferation, or enhanced ERBB2

receptor signaling [40–43]. FTK also protects glial cells

from Fas-mediated cell death by affecting the expres-

sion and inhibitory phosphorylation of BCL2 family

proteins (Fig. 1A) [44]. Additionally, FTK stimulates

metastasis formation through the activation of the Src/

FAK signaling pathway and M2 macrophage recruit-

ment [45–47]. The pro-oncogenic effects of FTK,

mainly those related to cancer cell migration,

metastasis, and angiogenesis, were extensively reviewed

recently [48].

It has been reported that ‘find-me’ signals produced

by apoptotic cells could induce inflammation and tis-

sue damage. However, in most cases of physiological

apoptotic cell death, inflammation is avoided through

efferocytosis, the mechanism at play in the removal

of apoptotic cells by macrophages. Interestingly, in

the context of cancer, efferocytosis creates an

immunosuppressive phenotype within tumors through

a coordinated series of signaling events [49]. Efferocy-

tosis limits the presence of pro-inflammatory damage-

associated molecular patterns (DAMPs) released by

uncleared cell corpses and shifts cytokine production

toward an immunosuppressive profile (e.g., IL-4, IL-

10, IL-13, and TGF-b). During efferocytosis, tumor-

associated macrophages (TAMs) are polarized toward

an M2-like wound-healing phenotype and FOXP3+
regulatory T cells are recruited, which potently sup-

press the effector functions of CD4+ and CD8+ effec-

tor T cells within the tumor microenvironment

(Fig. 1A). Of note, M2 macrophage polarization is

also promoted by PGE2 signaling, by inducing the

expression of the KLF4 transcription factor through

the activation of the CREB/BDNF/TrkB signaling

pathway [50,51]. Accumulation of TAMs was

reported to be correlated with poor prognosis in vari-

ous human malignancies and the contribution of

TAMs to cancer progression has been extensively

explored [49]. In 2015, Ford and collaborators

reported that apoptotic tumor cells promote coordi-

nated tumor growth, angiogenesis, and accumulation

of TAMs in aggressive B-cell lymphomas and malig-

nant melanoma. According to their model, in wild-

type lymphoma, spontaneous apoptotic tumor cells

are engulfed by macrophages, thus polarizing them

into TAMs. Lymphoma TAMs exhibit an efferocytic,

pro-angiogenic, matrix-remodeling, and wound-heal-

ing phenotype, which contributes to accelerated

tumor progression [7].

A recent study showed that a specific subset of

metabolites, composed of spermidine, AMP, GMP,

creatine, G3P, and ATP, is actively released by various

apoptotic cell types such as T cells or macrophages

after caspase-dependent pannexin-1 cleavage and acti-

vation into plasma membrane channels. In a paracrine

manner, these metabolites then promote neighboring

cell proliferation, wound-healing and inflammation

suppression (Fig. 1A) [52]. Before the clearance of

dying cells, ‘find-me’ signals such as nucleotides can

also have a trophic role on tumor cells [53]. For

instance, extracellular ATP can be taken up by tumors

via macropinocytosis to supplement their additional
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energetic needs for cancer growth, survival, and drug

resistance (Fig. 1A) [54,55].

Of note, other types of programmed cell death could

influence the tumor microenvironment. For instance,

RIPK3 activation during necroptosis was shown to

induce cytokine production (notably CXCL1, CXCL2

and CCL2) even after loss of membrane integrity and

thus to promote inflammation [56].

Apoptotic cells can also affect their microenviron-

ment through their altered biophysical properties. For

example, the negative surface charge caused by PS

exposure was shown to induce endothelial cell sprout-

ing and contribute to tumor neovascularization [57]

(Fig. 1A). Interestingly, Fern�andez-S�anchez et al.

showed that the mechanical pressure exerted by hyper-

proliferative tumor cells results in the activation of the

b-catenin pathway and mediates the formation of early

precancerous intestinal crypt foci, highlighting the

impact of mechanical forces on tumor progression

[58]. In Drosophila, it was elegantly shown that apop-

totic cells display an apical-basal acto-myosin pulling

force responsible for tissue folding [59,60]. This con-

cept is supported by the work of Yamaguchi et al. [61]

that highlights the role of apoptotic cells in facilitating

neural tube closure. These studies suggest that apop-

totic cells may play an active role in signaling to envi-

ronmental cells through their distinctive biophysical

properties. How this crosstalk can actually impact cell

migration, metastasis, or access to nutrients and oxy-

gen is still under investigation.

Long-range oncogenic effects of apoptotic cells

The concept of the ‘onco-regenerative niche’ proposed by

Gregory and Paterson suggests that cell death in tumors

provides a central driving force in shaping the tumor

microenvironment in short and distal settings, by orches-

trating a series of interconnected cellular responses and

extracellular modifications that promote tumor growth,

progression, and relapse [62]. In this concept, TAMs (ac-

tivated by apoptotic cells) and extracellular vesicles (EVs,

produced by apoptotic cells) are proposed as two impor-

tant components of the onco-regenerative niche [62].

Since apoptotic cells are active players in a dynamic

microenvironment, it is important to highlight that they

are able to communicate with their neighboring cells even

over a long distance, through the release of bioactive

molecules into the extracellular environment and through

production of membrane-bound EVs, including apop-

totic bodies (Fig. 1B). EVs are classified on the basis of

their morphology, biogenesis, or contents into three main

categories: apoptotic bodies, microvesicles, and exo-

somes. Among them, apoptotic bodies produced by cells

undergoing programmed cell death are the largest, with

sizes ranging from 50 to 5000 nm in diameter [63]. Car-

goes associated with apoptotic-derived EVs (Apo-EVs)

and apoptotic bodies include integral plasma membrane

proteins, enzymes, and RNAs, with apoptotic bodies also

harboring organelles and nuclear components including

DNA and histones. With direct relevance for cancer,

apoptotic bodies are known to be able to take up oncoge-

nes, possibly driving tumor growth and progression [62]

(Fig. 1B). In addition, Apo-EVs from endothelial cells

were shown to have immunomodulatory properties

[64,65]. The pro-oncogenic role of Apo-EVs is supported

by a recent study in which Pavlyukov and collaborators

reported that apoptotic cell-derived EVs promote malig-

nancy of glioblastoma through the intercellular transfer

of splicing factors. In this study, the authors demon-

strated that apoptotic glioblastoma cells paradoxically

promoted proliferation and resistance to therapy of sur-

viving tumor cells by secreting Apo-EVs enriched in vari-

ous components of spliceosomes. These Apo-EVs alter

RNA splicing in recipient cells, thereby promoting their

resistance to therapy and aggressive migratory phenotype

[66]. Apo-EVs could also mediate drug resistance. For

instance, in pancreatic ductal adenocarcinoma, EVs pro-

duced by cancer-associated fibroblasts as a consequence

of chemotherapy transfer Snail and miR-146a to cancer

cells, enhancing both their survival and proliferation dur-

ing treatment [65].

Phosphatidylserine is another well-established ‘eat-

me’ signal exposed by early apoptotic cells on the

plasma membrane, in a process mediated by active cas-

pases [67,68]. One compelling finding is that apoptotic

cells release PS-charged microblebs (small EVs) that can

alter the behavior of normal cells, both in proximity of

and at a distance from the site of apoptosis. Specifically,

microblebs derived from apoptotic endothelial cells can

be taken up by target surviving endothelial cells via the

PS receptor and mediate the protection of endothelial

cells from camptothecin-induced cell death by inhibiting

p38 activity (Fig. 1B) [69].

How failed apoptosis shapes cancer
aggressiveness

The widely accepted dogma is that apoptosis is an

obstacle to cancer development. This assumption how-

ever is not compatible with an increasing body of evi-

dence implying that proteins involved in apoptosis

execution can in fact drive oncogenesis. Indeed, in sev-

eral cancers, there is a strong correlation between high

anti-apoptotic BCL-2 levels and favorable prognosis

[70–73], whereas high expression of pro-apoptotic

BAX is correlated with a poor outcome in certain
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cancers [74,75]. Far from being mutated or lost

through genetic alterations, caspase-3 overexpression

was reported in a variety of cancers, arguing in favor

of noncanonical roles for caspases in oncogenesis [76].

In addition, caspase-3 is associated with poor survival

in several cancers such as colorectal, gastric, ovarian,

cervical, or oral carcinoma [77–79].
Recent data show that apoptosis execution in cancer

cells can be faulty, with cancer cells undergoing failed

apoptosis. This is characterized by limited MOMP (mi-

nority MOMP) and subsequent low-level caspase acti-

vation, which can induce DNA damage and genomic

instability and ultimately favors tumorigenesis. In this

section, we will therefore discuss recent studies on the

role of nonlethal caspase activation in cancer.

Caspases and genomic instability

Most studies on caspases have focused on their roles

as cell killers. However, increasing evidence highlights

a variety of roles for these cysteine proteases within

the cell, being either normal or cancerous. These func-

tions are as diverse as signal transduction and

cytoskeletal remodeling, and caspases are now known

to play an essential role in cell proliferation, migration,

and differentiation, which is particularly relevant in

the context of cancer [80,81].

Recently, it was demonstrated that radiotherapy,

chemotherapeutic drugs or BH3-only proteins such as

BCL2-interacting killer (BIK) can activate caspases at

nonlethal levels in surviving cells following minority

MOMP [82–84]. Despite the fact that these studies

proposed different DNA damaging mechanisms (Cas-

pase-Activated DNAse or CAD and endonuclease G,

EndoG, respectively), they all reported that surviving

cells are heavily impacted by unresolved DNA damage

leading to genomic instability and tumorigenesis

(Fig. 2). In addition, several reports shed light on a

dark side of caspase activity impacting cell survival

and tumorigenesis. Remarkably, sublethal doses of

TRAIL or Fas ligand were shown to induce DNA

damage and genetic mutations in a caspase-8- and

CAD-dependent manner [85,86]. Similarly, a recent

study associated nonlethal caspase activation with the

transformation of Barrett’s esophageal cells to cancer

cells following bile acid-induced repetitive minority

MOMP [87]. This conflicting role for caspases has

drawn attention to their use in cancer therapy, since

the BH3-mimetic ABT-737, the prototype of anti-

cancer drugs targeting the pro-survival BCL2 family

proteins, induces low-level caspase activation accompa-

nied by DNA damage [88]. In addition, cells undergo-

ing anastasis, which is a process of reversing late-stage

apoptosis, are also heavily impacted by DNA damage,

which in some cells leads to oncogenic transformation

[89].

Recently, Cartwright et al. further explored the role

of sublethal caspase-3 activation in facilitating Myc-in-

duced genetic instability and carcinogenesis. They pro-

posed that EndoG, an apoptotic nuclease downstream

of caspase-3, was directly responsible for Myc-induced

genetic instability and malignant transformation in

mammalian cells [90].

In recent years, there has been an increasing amount

of literature supporting a causal role for caspase-de-

pendent DNA damage in genomic instability and

increased predisposition to certain cancers. Transloca-

tions of the Mixed Lineage Leukemia (MLL) gene are

very common in infant or secondary (therapy-related)

acute leukemia [91]. Interestingly, etoposide-induced

MLL translocation was shown to require caspase

activity and CAD [92]. The mitochondrial-resident

EndoG was also proposed to cleave MLL locus under

aphidicolin-induced replicative stress [91].

Sustained DNA damage can also lead to a process

known as chromothripsis, a mechanism of chromo-

some fragmentation that can promote the acquisition

of numerous cancer-driving mutations [93]. Since

DNA cleavage is a key aspect of programmed cell

death, it has been proposed that chromothripsis may

occur when apoptosis is transiently initiated and then

aborted [94,89]. Cells that survive such a drastic event

and hence evade apoptosis may sustain several pro-

oncogenic alterations, such as gene fusions, loss of

tumor suppressor functions, and/or the amplification

of certain oncogenes [95].

These findings suggest that minority MOMP and

the subsequent nonlethal caspase activation could

favor oncogenic transformation and promote the emer-

gence of more aggressive tumor cells. Hence, under-

standing these caspase-mediated oncogenic effects may

also give rise to potentially important therapeutic pos-

sibilities.

Caspases and metastasis

Metastasis involves the spreading of cancer cells from

the primary tumor to other sites in the body and is

one of the deadliest consequences of cancer, resulting

in the majority of cancer-related deaths [96]. Thus,

understanding the mechanisms that lead to invasion

and metastasis are critical for the identification of

novel therapeutic targets. To achieve enhanced motil-

ity, cells continuously deform and rearrange their

cytoskeleton. Caspases are major modifiers of

cytoskeletal structure during apoptosis; therefore, it is
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conceivable that caspases may also play a role in con-

trolling cell motility (Fig. 2). Several studies demon-

strated a role for caspases in cell invasion and cellular

transformation. However, an activating or inhibiting

role for caspases on metastasis depends on the model

studied [97].

In mammalian models, a role for caspases has been

uncovered in cell migration. Zhou et al. demonstrated

that CASP3 knockout colon cancer cells are markedly

less invasive and more sensitive to radiotherapy

in vitro and in vivo. More interestingly, cells deficient

in caspase-3 were less prone to generate pulmonary

metastasis when inoculated subcutaneously or intra-

venously [98].

Caspase-8 is also involved in cell migration and

metastasis. Caspase-8 mutations in head and neck

squamous cell carcinoma ES confer resistance to death

receptor-mediated apoptosis and enhance migration,

invasion, and tumor growth [99]. Mechanistically, cas-

pase-8 interacts with multicomplex proteins to enhance

cleavage of focal adhesion substrates and cell migra-

tion. Senft et al. [100] reported that caspase-8 con-

tributes to cell migration via its interaction with p85, a

subunit of phosphatidylinositol 3-kinase. Furthermore,

caspase-8 knockdown disrupts metastasis in neuroblas-

toma in vivo [101]. Similarly, it was also reported that

inhibition of caspase-3 and caspase-8 decreased

glioblastoma cell migration and invasion and that this

caspase-dependent motility was mediated by the cleav-

age of the motility-associated gelsolin protein [102].

These studies support a role for caspases in promoting

cell migration and metastasis (Fig. 2). To further

investigate the link between nonlethal caspase activa-

tion and cancer aggressiveness, Berthenet et al.

recently isolated melanoma cells undergoing failed

apoptosis following BH3-only protein expression or

chemotherapy [103]. Interestingly, these cells displayed

enhanced migration and invasion through a JNK-de-

pendent mechanism, supporting recent publications

[104,105]. In addition, they defined a failed apoptotic

gene signature which can discriminate primary from

metastatic melanoma tumors. Cancer cells undergoing

anastasis also present a phenotypic switch from prolif-

eration to migration, with activation of Transforming

growth factor beta signaling and Snail expression that

are known to promote epithelial–mesenchymal transi-

tion (EMT) [106].

Aside from these migration-associated features, cas-

pases are also involved in angiogenesis, a process

allowing tumor neovascularization. Angiogenesis plays

a key role in cancer aggressiveness by providing tumor

cells with oxygen and nutrients, and by opening new

paths for cancer dissemination. Interestingly, Bernard

et al. [107] recently showed that activated caspase-3

can act as a transcription factor to induce VEGFA

expression and promote angiogenesis. Accordingly,

CAD

minority MOMP

Cytochrome c
EndoG

Non-lethal 
caspase activation

DNA damage

Mutagenesis
Oncogenic 
transformation

Chemotherapy
Radiotherapy

FAS / TRAIL BH3-only proapoptotic
proteins

Migration
Invasion

Angiogenesis
Metastasis

Cancer
stem cells

Fig. 2. Oncogenic effects of nonlethal

caspase activation. Suboptimal apoptotic

stimuli can engage minority MOMP, which

releases several apoptogenic factors such

as cytochrome c or EndoG. Cytochrome c

leads to nonlethal effector caspase

activation and derepression of caspase-

activated DNAse (CAD). Together with

EndoG, CAD cleaves genomic DNA causing

oncogenic mutations that can lead to

genomic instability and tumorigenesis.

Nonlethal caspase activation can also

promote cancer cell migration, invasion, and

stemness (induction of CSCs).
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anastatic cells also have a higher expression of angio-

genesis-related genes (PGF, EPHA2, and SPRY2), sug-

gesting an increased potential to trigger tumor

neovascularization [106,108].

In contrast, several studies in flies have proposed an

antagonistic role for caspase in cell migration. In a

model of larval wing epithelium migration, Rudrap-

atna et al. generated undead epithelial cells via the

expression of Hid (SMAC/Diablo orthologue) while

preventing lethal effector caspase activation through

the expression of the baculovirus caspase inhibitor

p35. Intriguingly, these cells gained in migratory and

invasive properties, partly due to JNK-driven metallo-

proteinase 1 expression [109,110]. In contrast, a recent

study from Arama et al. showed that caspases act as

inhibitors of cell motility, invasion and EMT in a

model of epithelial cell migration in irradiated develop-

ing Drosophila wings [97]. Using elegant genetic and

imaging approaches, they showed that nonlethal levels

of caspase activation inhibit irradiation-induced cell

migration (ICM) in Drosophila. They further showed

that ICM requires the Rho family of GTPases and the

ATR DNA repair pathway. An inhibitory nonapop-

totic role for caspase in cell migration is also sup-

ported by another recent study, showing that Dronc

activation coupled with ROS production delays thorax

closure, which is a model of wound healing and that

requires collective cell migration [111]. An interesting

fact, which may help to reconcile this apparent con-

flicting role of caspases in ICM, is that enhanced cell

motility is only observed when the Drosophila tissue is

entirely mutated for caspases, suggesting that exoge-

nous factors cleaved by caspases are present in the

invaded tissue to limit ICM [97]. These studies in Dro-

sophila contradict the study using CASP3 KO cancer

cells injected in otherwise wild-type mice showing that

cell invasion could be antagonized by caspase inhibi-

tion [98]. These paradoxical results in Drosophila and

in mammalian cells may be due to the fact that cas-

pases positively regulate cell invasion in a cell-au-

tonomous manner and negatively in a nonautonomous

fashion in the invaded tissue. These different findings

could also arise from the choice of experimental setup.

Firstly, for caspase activation Rudrapatna et al. opted

for Dronc activation, while effector caspases were

inhibited, which is a cellular model known to elicit a

strong secretory phenotype, and the Arama group trig-

gered caspase activation further upstream of the apop-

totic cascade, by using irradiation. Secondly, different

types of cellular migration (ICM triggers an EMT-like

invasion centered on single cell invasion while thorax

closure implies collective cell migration) may involve

different caspases and levels of activation.

Caspases and stemness

Cancer stem cells are involved in tumorigenesis, metas-

tasis, drug resistance, and relapse [112]. Within the

tumor bulk, CSCs have the capacity to self-renew, dif-

ferentiate, and give rise to a new tumor. This process

is precisely regulated by various modulators, including

WNT/b-catenin, NOTCH and Hedgehog signaling,

chromatin remodeling complexes, and noncoding

RNAs [112].

Caspases were described to regulate stem cell prop-

erties in a wide variety of embryonic and adult tissues,

and they are thus prevalent in many cellular processes

during development and adulthood. More specifically,

caspases play an important role in stem cell differenti-

ation. Fujita et al. showed that caspase activity

increases during retinoic acid-driven differentiation, a

scenario requiring cleavage and inactivation of the

stemness transcriptional factor NANOG by active cas-

pase-9. Of note, chemical inhibition of caspase activa-

tion using pan-caspase inhibitors or caspase-3 KO

hinders the differentiation process [113]. At a more

physiological level, caspases can also influence muscle

regeneration from resident stem cells called satellite

cells. The stemness of satellite cells is maintained by

the transcription factor Pax7. Importantly, caspase-3

can cleave Pax-7, initiating the myogenic differentia-

tion program [114]. Fernando et al. [115] reached a

similar conclusion in an in vitro model of skeletal mus-

cle differentiation. The authors identified Mst1 as

being activated by caspase-mediated proteolysis and

initiating myogenesis. The same group extended their

findings to neurosphere differentiation [116]. Car-

diomyocyte regeneration equally requires nonlethal

caspase activation: Low-level stresses trigger caspase

activation that further drives cardiomyocyte differenti-

ation [117].

Intense interest surrounds induced pluripotent stem

cells that can be obtained from virtually all differenti-

ated cells through the expression of a particular mix of

transcription factors [118]. One study links the re-in-

duction of pluripotency with OCT4-driven expression

of caspase-3 and caspase-8. Mechanistically, the

authors demonstrated that caspase-8 cleaves and inac-

tivates RB, a differentiation state enforcer [119]. Cas-

pases can also be involved in maintaining stem cells

quiescence. For hematopoietic stem cells (HSCs), cellu-

lar quiescence is particularly important to ensure dur-

able life-long repopulation of all blood and immune

cells. In caspase-3 KO mice, HSCs have an increased

sensitivity to exogenous proliferation signals leading to

accelerated differentiation and proliferation [120]. The

authors therefore concluded that caspases limit the
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proliferating signals and enforce the quiescence of

HSCs [120].

Since caspases play an important role in orchestrat-

ing the fate of normal stem cells, several studies tested

this interplay in CSCs (Fig. 2). The group of Chuan-

Yuan Li recently described that a large panel of cancer

cells sustained spontaneous DNA double-strand breaks

through limited mitochondrial permeabilization and

nonlethal activation of caspases and nucleases [121].

With relevance for CSCs, these DNA lesions chroni-

cally activate an Ataxia telangiectasia mutated (ATM)-

signal transducer and activator of transcription 3

(STAT3)-NF-jB axis that sustains tumorigenicity and

promotes cancer stemness in a patient-derived glioma

model [121]. The role of ATM in CSCs is also sup-

ported by studies in glioblastoma and breast cancer

where ATM activation was correlated with increased

survival and radioresistance of CSCs [122–124]. The

population of CSCs can also increase after failed

apoptosis in human mammary carcinoma. Xu et al.

referred to this as ‘reverse apoptosis’, reporting that

mammary carcinoma cells initiating apoptosis under

staurosporine or paclitaxel treatment could recover

with increased capacity to induce lymph node metasta-

sis. This is associated with an elevated percentage of

cells with CSC characteristics (CD44+/CD24� surface

markers) in the surviving cells [125]. Along this line,

BIK-triggered failed apoptosis in breast cancer cells

was also reported to increase their stem-like character-

istics [84].

These results suggest that nonlethal caspase activa-

tion can promote cancer aggressiveness through the

induction and maintenance of CSCs (Fig. 2). However,

the mechanisms underlying this noncanonical regula-

tion need to be further explored, in order to under-

stand the full impact of nonlethal caspase activation in

tumor cells.

Mitochondria, key apoptotic
mediators of tumor aggressiveness

Mitochondria are vital organelles involved in critical

processes such as energy production, calcium homeosta-

sis, or redox balance. There are several major pro-onco-

genic mechanisms involving mitochondria such as

oncogenic mtDNA mutations, oxidative stress, regula-

tion of cell death, or metabolic reprogramming. Since

these canonical functions were extensively described in

recent reviews, [126,127] we will briefly outline here

how mitochondria can initiate and foster the oncogenic

process through less known mechanisms involving par-

tial mitochondrial permeabilization, mitochondrial

transfer, and mitochondrial dynamics (Fig. 3).

Impact of limited mitochondrial permeabilization

in cancer progression

It was commonly believed that MOMP irreversibly

induces apoptosis when triggered in all mitochondria.

However, as discussed above, some cells can resist apop-

tosis due to the engagement of MOMP in a limited num-

ber of mitochondria without killing the cell [12,82,103].

Several cell signaling modulators can thus be released

upon minority MOMP that may have a significant

impact on tumor progression. For example, the SMAC/

Diablo protein, which usually resides in the mitochon-

drial intermembrane space, is released following MOMP

and promotes apoptosis by negatively regulating inhibi-

tor of apoptosis proteins (IAPs). Interestingly, IAPs can

function as direct E3 ubiquitin ligases for the Rho

GTPase Rac1, inducing its proteasomal degradation

(Fig. 3). As a consequence, SMAC-mediated stabiliza-

tion of Rac1 promotes a mesenchymal mode of migra-

tion in tumor cells [128,129]. Similarly, the same group

reported that melanoma-IAP regulates C-RAF stability

and cell migration, while XIAP can also promote cancer

cell migration through its contribution to Cdc42 home-

ostasis [130–132]. However, it remains unclear whether

SMAC/Diablo released from the mitochondria upon

minority MOMP can have an impact on cancer cell

migration by negatively regulating IAP expression.

Recently, another study strongly supported the role of

the SMAC/Diablo protein in tumorigenesis. Indeed,

SMAC/Diablo was reported to be over-expressed in

cancer cells despite its role in promoting cell death, sug-

gesting it might possess nonapoptotic functions. In this

research, the authors demonstrated that SMAC/Diablo

displays additional roles related to the regulation of

lipid synthesis essential for cancer growth and develop-

ment, which may partially explain the overexpression of

this protein in various cancers, including lung, B-cell

lymphoma, testis, colon, stomach, breast, prostate, and

skin cancer [133,134]. EndoG is another factor released

from the mitochondria and as mentioned before it pro-

motes the activation of NF-jB and STAT3 signaling

pathways, leading to the survival and proliferation of

tumor cells (Fig. 3) [121].

Additionally, mtDNA could be involved in tumori-

genesis, metastasis, and chemoresistance. For instance,

Neuzil et al. reported that in the absence of mtDNA,

tumor cells display a remarkably delayed tumor

growth. MtDNA-depleted tumor cells may actively

acquire mtDNA from surrounding cells, thereby restor-

ing respiratory function and even tumorigenic potential

[135,136]. This finding indicates that tumor cells may

seek for and obtain functional mtDNA from the sur-

rounding microenvironment via horizontal transfer.
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Therefore, it could be hypothesized that mtDNA

released upon minority MOMP could also have an

impact on cancer. Acting as a DAMP, mtDNA can be

a potent innate immunity activator. Indeed, mtDNA

released from mitochondria as a result of the permeabi-

lizing activity of pro-apoptotic BAX and BAK proteins

can trigger the activation of the interferon pathway via

the cyclic GMP-AMP synthase (cGAS) and the stimu-

lator of IFN genes protein (STING) pathway, which

stimulates interferon production [137–139]. Although

crucial for innate immunity and fight against viral

pathogens, sustained and uncontrolled activation of

cGAS-STING and the downstream signaling cascade is

responsible for chronic inflammation, resistance to

chemotherapy and metastasis [140–143] (Fig. 3). While

cGAS-STING activation is undeniably involved in can-

cer progression, the exact contribution of mtDNA to

this effect remains unclear, as well as the relevance of

minority MOMP to release sufficient amounts of

mtDNA to efficiently activate this inflammatory path-

way. A more plausible way through which cancer cells

could maintain chronic cGAS-STING-driven inflam-

mation would be through the acquisition of extra-tu-

moral mtDNA [143].

Thus, it is tempting to speculate that the release of

mitochondrial factors upon minority MOMP may

promote tumor progression, supporting a noncanonical

role for mitochondria beyond the induction of apoptosis.

minority MOMP
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Fig. 3. Apoptosis-related oncogenic roles of mitochondria. Minority MOMP can release several pro-apoptotic molecules such as SMAC,

EndoG and mtDNA. Specifically, SMAC promotes growth and metastasis in surviving tumor cells by increasing lipid synthesis and lifting

IAP-mediated inhibition on the Rho GTPases Rac1 or Cdc42. EndoG promotes survival and proliferation through the activation of the STAT3

signaling pathway. MtDNA released from permeabilized mitochondria is sensed by the cGAS-STING pathway and stimulates inflammation

and metastasis. Mitochondrial dynamics (fission and fusion) can also sustain cancer cell migration, tumor growth and oncogenic

transformation. Mitochondrial transfer via TNTs from neighboring healthy cells promotes tumor cell survival by enhancing the metabolic

fitness of damaged cancer cells.
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Mitochondrial transfer

The mechanisms underlying cancer cell recovery from

apoptosis are under investigation; however, it seems

that mitochondrial transfer from healthy cells may res-

cue apoptotic cells from death (Fig. 3). Therefore,

recent work suggests that this may also be relevant for

tumor cell survival following an early apoptotic signal-

ing. Wang et al. found that the delivery of functional

mitochondria from healthy cells to early apoptotic

cells via tunneling nanotubes (TNTs) mediates the

recovery of UV-treated PC12 cells in the early stages

of apoptosis [144]. Mitochondrial transfer has also

been reported between cardiomyocytes and cardiac

myofibroblasts, along membrane nanotubes to rescue

distressed cardiomyocytes from apoptosis [145].

Remarkably, this process has also been described in

cancer cells and particularly in the leukemic microenvi-

ronment, where mitochondrial transfer between bone

marrow mesenchymal stromal cells and leukemic cells

protects cancer cells from cytarabine treatment [146].

Moreover, the uptake of mitochondria by leukemic

cells increases oxidative phosphorylation and favors

survival (Fig. 3) [146,147]. Pasquier et al. also investi-

gated the formation of heterocellular TNTs between

stromal, mesenchymal or endothelial cells, and cancer

cells. These TNTs preferentially mediated mitochon-

drial exchange from stromal to cancer cells, resulting

in the emergence of chemoresistance to doxorubicin.

The preferential mitochondrial shuttling from stromal

cells toward cancer cells adds another layer of com-

plexity to the metastatic niche [148]. Given that TNT-

mediated mitochondrial transfer is almost exclusively

unidirectional, from healthy to damaged cells, one

might wonder whether molecular cues expressed by

apoptotic cells can also act as ‘rescue me’ signals,

attracting mitochondrial-loaded TNTs. This issue was

addressed by Liu et al. by shielding surface-exposed

PS on apoptotic endothelial cells with Annexin V.

Unexpectedly, this blocked the formation of TNTs

between donor and apoptotic cells, indicating that PS

selectively guides TNTs toward damaged cells

[149,147]. These findings are important for cancer ther-

apy, where mitochondrial transfer to cancer cells dam-

aged by chemo- or radiotherapy could protect certain

cancer cells from therapy. One might envision combin-

ing chemotherapy with inhibitors of TNT formation

and guidance such as actin polymerization inhibitors

or masking PS on apoptotic cancer cells [147].

Understanding the role of mitochondrial transfer in

defined biological contexts is limited by the experimen-

tal tools available. This was improved by the

MitoCeption protocol developed by the Vignais team

that permitted direct and quantitative mitochondrial

transfer from one cell to another. They showed that

the transfer of mesenchymal stem cell-derived mito-

chondria boosts the energetic metabolism in recipient

cancer cells while fostering cancer cell proliferation

and invasion [150]. More recently, they also demon-

strated the role of mitochondrial transfer as a novel

mechanism in the regulation of T cell function,

whereas uptake of mitochondria promotes an anti-in-

flammatory phenotype in Th17 cells [151]. Surpris-

ingly, recent studies found that circulating blood

contains cell-free respiratory competent mitochondria

[152]. This implies that cancer cell-derived mitochon-

dria might transmit their pro-oncogenic signals at the

level of the whole organism. In summary, mitochon-

drial transfer seems to arise as a relevant survival

strategy for cancer cells in order to recover from apop-

tosis and enhance tumor progression. Thus, this pro-

survival mechanism should seriously be taken into

account and specifically targeted when developing can-

cer therapies.

Mitochondrial dynamics

The mitochondrial network is highly dynamic since it

undergoes perpetual cycles of fusion and fission.

Mechanistically, mitochondrial fusion and fission are

executed by evolutionarily conserved GTPases that

either constrict and fragment the mitochondria [dy-

namin-related protein 1 (DRP1)] or tether and fuse

together shorter mitochondria to form elongated orga-

nelles [Mitofusin 1 (MFN1), MFN2, and Optic atro-

phy protein 1] [153,154]. Interestingly, during early

apoptotic stages, the mitochondrial network is dramat-

ically altered, leaning toward complete fission [155].

Similarly, abnormal mitochondrial fusion and fission

are observed in cancer cells where they could impact

tumor migration and invasion. This notion is sup-

ported by Zhao et al., who found an upregulation of

mitochondrial fission protein DRP1 expression in

human invasive breast carcinoma and metastases to

lymph nodes. This was associated with a higher mito-

chondrial fission and preferential distribution of frag-

mented mitochondria in lamellipodia, which are wave-

like cellular extensions at the leading edge of migrat-

ing cells. Their results suggest that DRP1-dependent

mitochondrial fission is critical for breast cancer cell

migration and invasion (Fig. 3) [156]. These findings

reflect those of Desai et al. who also found that pref-

erential anterior distribution of mitochondria is corre-

lated with faster and more persistent cancer cell

migration. This correlation is particularly relevant
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during confined cell migration conditions, similar to

those encountered by metastatic cells in vivo [157].

With a direct impact on cancer therapy, the distribu-

tion of elongated and active mitochondria within the

lamellipodia was also observed as an adaptive

response of cancer cells to treatment with PI3K inhibi-

tors that are currently used in clinical applications. As

a consequence, mitochondrial repositioning in the cor-

tical cytoskeleton sustains the turnover of focal adhe-

sion complexes and therefore facilitates cell migration

and invasion [158–160]. Mechanistically, Caino et al.

established that cancer cells reprogram a network of

proteins involved in mitochondrial intracellular traf-

ficking centered on syntaphilin to shuttle mitochondria

to the cortical cytoskeleton and sustain metastasis

[161,162].

Well-characterized oncogenic signaling pathways can

also hijack mitochondrial dynamics and favor cancer

aggressiveness (Fig. 3). Specifically, oncogenic Myc

transcriptionally controls the expression of several pro-

teins involved either in mitochondrial trafficking

(RHOT1, RHOT2, TRAK2, and Kif5B) or fission

(DRP1). This facilitates the redistribution of mito-

chondria in lamellipodia to boost tumor cell invasion

[163]. DRP1-mediated mitochondrial fission was also

shown to be a crucial regulator of MAPK-driven

tumor growth, while also mediating Ras-induced trans-

formation [164,165]. These studies suggest that mito-

chondrial dynamics are linked with tumor progression

(Fig. 3) raising the question whether one can use mito-

chondrial shape and intracellular localization to specif-

ically identify highly metastatic cancer cells. Moreover,

inhibition of either fusion or fission might be consid-

ered when targeting cancer metastasis.

Concluding remarks

Triggered by radiotherapy and most chemotherapeutic

drugs, apoptosis blunts tumor growth in a wide variety

of cancers. However, in the context of cancer therapy,

inducing apoptosis might not always be pertinent. As

we have discussed in this review, apoptosis per se or

failed apoptosis exert oncogenic functions in certain

circumstances, with caspases and mitochondria mediat-

ing most of the pro-oncogenic effects. These non-

canonical tumorigenic functions range from tumor cell

proliferation, survival, genetic instability, stemness,

angiogenesis, and metastasis, all of which may pro-

mote tumor growth and emergence of more aggressive

cancers. Therefore, since apoptosis might be deleteri-

ous toward cancer treatment in certain contexts, we

could consider inducing other forms of cell death, such

as MOMP-induced caspase-independent cell death (or

CICD). Indeed, CICD is highly immunogenic and it

lacks the capacity to induce the proliferation of surviv-

ing cancer cells, making it a promising alternative to

apoptosis when envisioning novel therapeutic

approaches [166–169]. Other strategies could involve

the use of caspase inhibitors to prevent unwanted

effects linked with nonlethal caspase activation or cas-

pase activators to raise this nonlethal caspase activa-

tion to lethal levels and effectively kill cancer cells.

PGE2 inhibitors could also be used to prevent AiP.

Taken together, we suggest that understanding the

mechanisms regulating the balance between the tumor

suppressor and oncogenic functions of apoptotic sig-

naling may lead to more effective therapeutic strategies

in the treatment of highly aggressive tumors.
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