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a b s t r a c t

The incidence of Hepatocellular Carcinoma (HCC) in Saudi Arabia is not surprising given the relatively
high prevalence of hepatitis C virus (HCV) infection. Hepatitis C is also common in Saudi Arabia with a
prevalence rate of 1% to 3% of the population, which further increases the risk of HCC. The incidence of
HCC has been increasing in recent years, with HCV-related HCC accounting for a significant proportion
of cases. Traditional medicine has long been a part of Saudi Arabian culture, and many medicinal plants
have been used for centuries to treat various ailments, including cancer. Following that, this study com-
bines network pharmacology with bioinformatics approaches to potentially revolutionize HCV-related
HCC treatment by identifying effective phytochemicals of indigenous plants of Medina valley. Eight
indigenous plants including Rumex vesicarius, Withania somnifera, Rhazya stricta, Heliotropium arbainense,
Asphodelus fistulosus, Pulicaria incise, Commicarpus grandiflorus, and Senna alexandrina, were selected for
the initial screening of potential drug-like compounds. At first, the information related to active com-
pounds of eight indigenous plants was retrieved from public databases and through literature review
which was later combined with differentially expressed genes (DEGs) obtained through microarray data-
sets. Later, a compound-target genes-disease network was constructed which uncovered that kaempferol,
rhazimol, beta-sitosterol, 12-Hydroxy-3-keto-bisnor-4-cholenic acid, 5-O-caffeoylquinic acid, 24-
Methyldesmosterol, stigmasterone, fucosterol, and withanolide_J decisively contributed to the cell
growth and proliferation by affecting ALB and PTGS2 proteins. Moreover, the molecular docking and
Molecular Dynamic (MD) simulation of 20 ns well complemented the binding affinity of the compound
and revealed strong stability of predicted compounds at the docked site. But the findings were not vali-
dated in actual patients, so further investigation is needed to confirm the potential use of selected medic-
inal plants towards HCV-related HC.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hepatocellular carcinoma (HCC) is the predominant type of pri-
mary liver cancer, representing 70 to 85% of cases globally
(Magalhães et al., 2023). HCC typically arises from underlying liver
disease, including chronic infections with hepatitis B virus (HBV)
or hepatitis C viruses (HCV), and cirrhosis (Suresh et al., 2020). In
its early stages, HCC is often asymptomatic, making it challenging
to diagnose and treat effectively. As a result, HCC exhibits a signif-
icant fatality rate, thus emphasizing the significance of prompt
identification and preventive measures to enhance clinical progno-
sis for minimizing the worldwide incidence of liver cancer (Qu
et al., 2019). HCV is identified as the principal risk element for
HCC in Saudi Arabia (Poustchi et al., 2010). In general, 40% of
HCC patients in Saudi Arabia were attributed to HCV, whereas
35% of cases were associated with HBV (Alavian and Haghbin,
2016). The primary factors contributing to HCC development in
chronic HCV infection include comorbid liver diseases, viral geno-
type, lifestyle factors, and the co-occurrence of diabetes mellitus
(Goossens and Negro, 2014). Co-occurrence of diabetes, comorbid
liver diseases, and genotype of the virus greatly contribute to
HCC development in HCV infection. Based on available data, per-
sons with obesity have 1.5 to 4-fold greater likelihood of develop-
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ing HCC as compared to individuals without obesity (Marrero et al.,
2005). Most importantly, multiple treatment options are available
which are intended to eradicate the viral infections, lowering the
transmission rate to others, and reducing the probability of devel-
oping HCC (Smith et al., 2012). Despite that, the morbidity rate of
affected individuals remains high and available drugs do not pro-
duce satisfactory results. Therefore, the limited treatment options
and high mortality rate of HCV-related HCC have attracted the
great attention of researchers from all over the world. Thus, the
implementation of pharmacological treatment comprising natural
agents is deemed a feasible therapeutic approach for HCV-related
HCC, and could potentially offer solutions to the queries raised
previously.

The floral biodiversity of Saudi Arabia comprises approxi-
mately 2250 species, which are distributed throughout the King-
dom (Rahman et al., 2004). Saudi Arabia is renowned for its
diverse array of cultivated as well as wild cultivated flora (Sher
et al., 2010). Unfortunately, the intergenerational transfer of
indigenous knowledge is impeded by several factors, including
limited information dissemination and a scarcity of data on their
practical applications, as well as difficulties in identifying wild
medicinal plants. These challenges hinder the preservation and
utilization of traditional knowledge, posing a threat to cultural
heritage and potential therapeutic resources. Recently, Alsaedi
et al. (Alsaedi and Aljeddani, 2022) screened Rumex vesicarius,
Withania somnifera, Rhazya stricta, Heliotropium arbainense,
Asphodelus fistulosus, Pulicaria incise, Commicarpus grandiflorus,
and Senna alexandrina, as a source of herbal remedies in Medina
valley. These plants are used by people inhabiting in these areas
for treatment of various ailments, however, the underlying
action mechanism of these plants for treating diseases and disor-
ders is completely unknown.

Sensing the opportunities provided by active compounds, Hop-
kin (Hopkins, 2007) developed an integrative in silico approach
‘‘network pharmacology” which shifted the paradigm from ‘one
drug-one target’ to a ‘multiple-target model. Network pharmacol-
ogy has now proved to be a boon in the drug-designing process
as it assists in the rebirth of indigenous knowledge (Chandran
et al., 2017). This approach serves as a benchmark for the initial
screening of active ingredients and identification of novel thera-
peutic targets to better understand the pathophysiology of disease
(Noor et al., 2022). Hence, it inevitably contributes to the globaliza-
tion and modernization of botanical herbs and brings about a para-
digm shift in the drug discovery process. In short, the path to the
successful discovery of candidate drugs frequently demands an
understanding of the complicated network pharmacology
landscape.

This study is attributed to the identification of active ingredi-
ents, corresponding targets, and multi-target pharmacological
mechanisms of the anti-HCC effect of Rumex vesicarius, Withania
somnifera, Rhazya stricta, Heliotropium arbainense, Asphodelus fis-
tulosus, Pulicaria incise, Commicarpus grandiflorus, and Senna
alexandrina, by integrating network pharmacology with bioin-
formatics approaches. Network pharmacology constructs
multi-component and multitarget models to clarify the complex
interactions between active compounds and target proteins
from a network perspective. Molecular docking studies were
added as a supplement to validate the results. Afterward, the
interaction mechanism, stability, and conformational changes
of docked complexes were analyzed by performing molecular
dynamic (MD) simulation at 20 ns. To our knowledge, this study
is the first to explore the efficacy and mechanism of indigenous
plants of Medina valley for treating HCV-related HCC, as well as
providing theoretical support and directions for further basic
research.
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2. Materials and methods

2.1. Data preparation

2.1.1. Active compounds database building
All components of the 8 indigenous plants of Medina valley

were collected from literature as well as publically available repos-
itories including KNApSAcK (Nakamura et al., 2013), and Indian
Medicinal Plants, Phyto-chemistry Additionally, Therapeutics
(IMPPAT) (Mohanraj et al., 2018) databases. ‘‘Asphodelus fistulosus”,
‘‘Commicarpus grandifloras”, ‘‘Heliotropium arbainense”, ‘‘Pulicaria
incisa”, ‘‘Rhazya stricta”, ‘‘Rumex vesicarius”, ‘‘Senna alexandrina”,
and ‘‘Withania somnifera” were used as plant-specific keywords in
KNApSAcK, IMPPAT, and TCMSP databases, while review of exist-
ing literature was performed using the online platforms Google
Scholar and PubMed. After retrieval of phytochemicals, the com-
pound with drug-like potential was screened based on their Drug
likeness (DL) and Oral Bioavailability (OB). OB refers to the fraction
of a drug or compound that reaches the systemic circulation fol-
lowing oral administration and is available to exert its intended
pharmacological effects. An OB � 30% is considered a commonly
used criterion for the screening of compounds because it suggests
that a significant proportion of the orally administered drug or
compound can be absorbed and reach systemic circulation. A com-
pound with an OB value of<30% may have limited efficacy as it is
poorly absorbed and may require higher doses to achieve thera-
peutic effects. Therefore, a higher OB value increases the likelihood
of a compound being effective and therefore, is thought to be an
important variable in drug development as well as its optimization.
Similarly, the qualitative assessment of a molecule’s likelihood to
become an oral drug based on its bioavailability is evaluated
through DL analysis. Only those active compounds which met
the threshold value of OB � 0.30 and DL � 0.18 were selected as
putative compounds with drug-like potential. Following that Swis-
sADME and MolSoft tools were employed to predict the DL and OB
of retrieved compounds.

2.1.2. ADMET profiling
While OB and DL are important factors to consider when eval-

uating the drug-like potential of compound, however, these
parameters are not the only factors that determine the effective-
ness of compounds for further development. Other important
parameters, including absorption, distribution, metabolism, excre-
tion, and toxicity (ADMET) properties, also need to be evaluated to
determine whether a compound has the potential to be an effective
and safe drug. ADMET properties are assessed during the early
stages of drug development and are critical in predicting a drug’s
potential efficacy, safety, and pharmacokinetics. The goal of
ADMET profiling is to optimize the pharmacological properties of
a drug candidate and reduce the likelihood of failure during clinical
trials. Regarding this, SwissADME server (Daina et al., 2017) and
Protox II (Banerjee et al., 2018) tool were used to check the ADMET
properties of selected ingredients. Active ingredients with better
absorption, inactive toxicity, and good solubility features were
considered for subsequent analysis.

2.1.3. Prediction of compound-related targets
The integrative efficacy of compounds of the 8 indigenous

plants of Medina valley was determined by analyzing the interac-
tion obtained from two different platforms including STITCH
(Gfeller et al., 2014) and Swiss Target Prediction (Kuhn et al.,
2007) databases, with the species limited as ‘‘Homo sapiens”. In
the case of the STITCH database, only those targets with a com-
bined score greater than or equal to 0.7 were chosen for further
analysis. While the SMILES of selected ingredients were subjected
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to Swiss Target Prediction to identify the potential targets based on
the reverse pharmacophore matching approach. Regarding this,
only those target proteins having a probability value
greater � 0.7 were selected as the potential targets of 8 indigenous
plants.
2.1.4. Microarray data analysis for identification of disease-related
target

In current work, the microarray data utilized were sourced from
the publicly accessible Gene Expression Omnibus (GEO) database,
which is hosted by NCBI of the United States (Clough and Barrett,
2016). The HCV-related HCC was used as a search term in the
NCBI-GEO database and three microarray datasets including
GSE107170, GSE69715, and GSE62232 were retrieved (Table 1).
The microarray datasets were selected based on the criteria that
the datasets must include tissue samples from both diseased liver
tissues and normal liver tissues. Further, each dataset consisted of
more than three samples. The microarray data were then pro-
cessed using the Limma package of R for the identification of Dif-
ferentially Expressed Genes (DEGs) which were then considered
disease-related targets of HCV-related HCC.
2.2. Compound-target network construction

After the identification of putative targets of both disease and
plants, a venn plot was constructed for the identification of over-
lapped genes between plants and HCV-related HCC. These over-
lapped genes were then considered as the potential targets of
indigenous plants of Medina valley which can be considered as
the potential biomarkers to halt the pathophysiology of HCV-
related HCC. Further, Cytoscape version 3.8 was used for the con-
struction of a compound-target network (Shannon et al., 2003)
based on the overlapped genes. In the compound-target network,
the nodes symbolize the ingredients and their associated proteins
while the solid black lines denote the interaction that exist among
target proteins and compounds. Lastly, the network-analyzer was
used to assess the degree of connectivity of compounds within
compound-target network.
2.3. Functional annotation of overlapped genes

After the successful identification of overlapped genes, the Gene
Ontology (GO) and pathway enrichment analyses were employed
for unveiling their underlying molecular functions (MF), biological
processes (BP), cellular components (CC), and key signaling path-
ways. The BP category describes the biological processes in which
a gene or protein is involved, the CC category describes the subcel-
lular locations where a gene or protein is active, and the MF cate-
gory describes the specific molecular activities and interactions in
which a gene or protein is involved. In this regard, the Database for
annotation, visualization, and integrated discovery (DAVID)
(Dennis et al., 2003) was employed for the functional annotation
of overlapped targets. DAVID database yielded several GO terms
and KEGG pathways, but the threshold of p-value<0.05 was set
for screening of statistically significant KEGG pathways and GO
terms. Lastly, the ggplot2 package of R was used for the visualiza-
Table 1
Brief description of microarray datasets used in the current study.

GEO datasets Sample Disease

GSE62232 Liver HCV-related HCC
GSE69715 Liver HCV-related HCC
GSE107170 Liver HCV-related HCC
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tion of the top 20 GO terms and top 20 KEGG pathways based on
their count and p-value < 0.05.

2.4. Protein-Protein interaction (PPI) network construction

Following the identification of the common genes, they were
inputted into the STRING database to generate PPI network (Von
Mering et al., 2005). PPIs are remarkably significant due to their
high specificity, adaptability, and versatility. The functional inter-
actions between the overlapping targets were assessed based on
a combined score threshold of 0.4. The resulting PPI network was
then subjected to Cytoscape version 3.8 (Shannon et al., 2003) for
the identification of hub genes. Hub genes are highly connected
nodes with multiple interactions with other proteins. Hub genes
are considered critical components of the PPI network as they have
a key role to play in maintaining the integrity and stability of the
network, and they are often associated with key biological pro-
cesses and pathways. Hub genes are usually identified by analyzing
the topology of the PPI network, using measures such as degree,
betweenness, or closeness centrality. In current study, degree
methods available in CytoHubba was used for the selection of
hub genes.

2.5. Compound-target-disease network construction

To further explore the action mechanism of native plants on
HCV-related HCC, the active ingredients-target protein and target
protein-disease networks were constructed through Cytoscape
version 3.8. (Shannon et al., 2003). These networks were than
merged to construct a final compound-target-disease network. In
network, the nodes symbolize the disease related pathway, com-
pounds, and proteins, while the interaction between these nodes
were indicated with solid lines. This integrated network provides
valuable insights about the synergistic effect of compounds when
these plants were used for treating HCV-related HCC.

2.6. Molecular docking analysis

To validate the accuracy of the network pharmacology predic-
tion, molecular docking analysis was employed to confirm the
interactions among key targets and compounds. This enables the
identification of potential drug combinations that may have syner-
gistic effects on disease treatment. In the current study, Autodock
vina 1.1.2 in PyRx 0.8 (Dallakyan and Olson, 2015) was employed
for docking analysis of the predicted X-ray crystal structure of
hub proteins against active ingredients. The SDF formats of com-
pounds were downloaded from PubChem data, and were exposed
to OpenBabel, available in PyRX for energy minimization. In order
to achieve a stable conformation, an optimization algorithm
known as conjugate gradient descent was utilized in conjunction
with the Universal Force Field (UFF) as the energy minimization
parameter. Further, 2000 steps were set for energy minimization
and the minimization was set to stop at an energy difference
of < 0.01 kcal/mol. The energy-minimized ligands were converted
to.pdbqt format docking. Later, binding pockets of target proteins
were found by utilizing an online CASTp tool. (Tian et al., 2018).
Later, the target docking approach was used in PyRx 0.8
Platform Control Affected

GPL570 10 12
GPL570 66 37
GPL570 31 44
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(Dallakyan and Olson, 2015) to calculate binding energies of ligand
molecules with target proteins. Autodock vina utilized an empiri-
cal scoring function to determine the affinity of protein-
Table 2
Selected active compound, their Oral Bioavailiability(OB), Drug-Likeness (DL), Molecular w

Plant Source Active compounds O
B
(O

Withania somnifera (+)-Catechin 0
24-Methyldesmosterol 0
Beta-Sitosterol 0
Campesterol 0
Fucosterol 0
Kaempferol 0
Oleanolic acid 0
Quercetin 0
Stigmasterol 0
Stigmasterone 0
Withaferin A 0
Withanolide J 0
Withanone 0

Senna alexandrina Rhein 0
Kaempferol 0
Emodin-8-glucoside 0
Rheinanthrone 0
Aloe-emodin-8-O-beta-D-
glucopyranoside

0

Isorhamnetin 0
Physcionin 0
Tinnevellin glucoside 0
Beta-Sitosterol 0

Rumex vesicarius Retinol 0
d-Tartaric acid 0
Ascorbic acid 0
Beta-Tocopherol 0

Rhazya stricta Isovallesiachotamine 0
2H-3,7-Methanoazacycloundecino(5,4-
b)indole-9-carboxylic acid, 7-ethyl-
1,4,5,6,7,8,9,10-octahydro-, methyl
ester, (7S-(7R*,9S*))-

0

Strictanol 0
Tetrahydroalstonine 0
Rhazimol 0
Corynan-16-carboxylic acid,
16,17,19,20-tetradehydro-17-hydroxy-,
methyl ester, (16E,19E)-

0

Rhazinilam 0
Rhazimal 0
Quebrachamine 0
Stemmadenine 0
Methyl (10S,12R,13E,18S)-13-
ethylidene-8,15-diazapentacyclo
[10.5.1.01,9.02,7.010,15]octadeca-
2,4,6,8-tetraene-18-carboxylate

0

Ursolic acid 0
Rhazimine 0
15beta-Hydroxyvincadifformine 0
(+)-Condylocarpine 0
Vallesiachotamine 0
Corynan-17-ol 0
10-Hydroxyakuammicine 0

Pulicaria incisa 5-O-caffeoylquinic acid 0
3, 5-di-O-caffeoylquinic acid 0

Heliotropium arbainense 12-Hydroxy-3-keto-bisnor-4-cholenic
acid

0

Lasiocarpine 0
Commicarpus grandiflorus 12-Hydroxy-3-keto-bisnor-4-cholenic

acid
0

Beta-Sitosterol 0
Betulinic acid 0

Asphodelus fistulosu Quercetin 0
Beta-Sitosterol 0
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compound binding, which was calculated by aggregating contribu-
tions from various individual terms. The docked complex with the
lowest root mean square deviation (RMSD), was considered the
eight (MW), and PubChem IDs.

ral
ioavailability
B > 0.30)

Drug
Likeness
(DL > 0.18)

Molecular
Weight
(g/mol)

PubChem ID

.55 0.64 290.27 9064

.55 0.76 398.66 193,567

.55 0.78 414.7 222,284

.55 0.59 400.7 173,183

.55 0.85 412.7 5,281,328

.55 0.5 286.24 5,280,863

.85 0.37 456.7 10,494

.55 0.52 302.23 5,280,343

.55 0.62 412.7 5,280,794

.55 0.5 410.7 14,807,783

.55 0.37 470.6 265,237

.55 0.46 470.6 21,679,022

.55 0.45 470.6 21,679,027

.56 0.46 284.22 10,168

.55 0.5 286.24 5,280,863

.55 0.74 432.4 99,649

.56 0.89 270.24 119,396

.55 0.46 432.4 5,317,644

.55 0.39 316.26 5,281,654

.55 0.19 446.4 4,484,071

.55 0.47 408.4 157,631

.55 0.78 414.7 222,284

.55 0.73 286.5 445,354

.56 0.59 150.09 439,655

.56 0.74 176.12 54,670,067

.55 0.47 416.7 6,857,447

.55 0.24 350.4 6,442,678

.55 0.64 340.5 12,444,819

.55 0.38 298.4 12,314,913

.55 0.47 352.4 72,340

.55 1.22 338.4 101,986,486

.55 0.28 352.4 439,666

.55 0.44 294.4 11,312,435

.55 0.73 350.4 101,967,159

.55 0.47 382.4 92,990

.55 0.67 354.4 443,367

.55 1.04 322.4 6,444,325

.85 0.66 456.7 64,945

.55 1.24 350.4 6,443,646

.55 0.95 354.4 11,530,478

.55 0.9 322.4 10,914,255

.55 0.24 350.4 5,384,527

.55 0.31 298.4 164,952

.55 1.19 338.4 6,436,282

.11 0.79 354.31 5,280,633

.11 0.85 360.6 21,769,778

.85 0.95 360.5 536,316

.55 0.18 411.5 5,281,735

.85 0.95 360.5 536,316

.55 0.78 414.7 222,284

.85 0.25 456.7 64,971

.55 0.52 302.23 5,280,343

.55 0.78 414.7 222,284
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optimal complex, and the binding energies among ligand and tar-
get protein were evaluated based on their affinity. A good binding
strength was indicated by a value < -5.00 kcal/mol, while
value < � 7.00 kcal/mol indicated very good affinity. Finally, visu-
alization of docked complexes was performed using Discovery Stu-
dio (Studio, 2008), PyMOL (Yuan et al., 2017), and ChimeraX
(Goddard et al., 2018) programs.
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2.7. Molecular dynamic (MD) simulation

All-atom MD simulation is a computational method that
employs explicit representation of every atom and bond in a sys-
tem, allowing for a highly detailed examination of molecular
dynamics. This technique involves solving the equations of motion
for each atom in the system, based on the interatomic potentials
that describe the interactions between them. This study utilized
GROMACS 2018 software and the OPLS-AA/L force field to conduct
MD simulations of docked complexes. The initial structures for the
simulations were taken from 3D structure of the protein, and fur-
ther optimization was done using the DockPrep tool (Pettersen
et al., 2004). The MD simulation was initiated using docked com-
plexes of ligand molecules with the target protein, which pos-
sessed the highest binding affinity, as the initial position. While
the ligand molecule was parameterized through the SwissParam
webserver (Zoete et al., 2011). Later, the MD simulations were car-
ried out for 20 ns, following a previous studies (Alamri, 2020). Gen-
eral MD simulation parameters, particularly radius of gyration,
RMSD, and Root mean square fluctuation (RMSF) (Needle et al.,
2015) were evaluated for each complex.
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3. Results

3.1. Identification of bioactive components

After searching and filtering, 53 compounds were obtained from
Withania somnifera, 9 compounds from Senna alexandrina, 4 com-
pounds from Rumex vesicarius, 18 compounds from Rhazya stricta,
2 compounds from Pulicaria incisa, 2 compounds from Heliotropium
arbainense, 3 compounds from Commicarpus grandifloras, and 2
compounds from Asphodelus fistulosus. The duplicated compounds
were removed, and a total of 48 compounds were selected as the
putative components of 8 indigenous plants of Median valley. All
these 48 compounds met the precise criteria of DL � 0.18,
OB � 0.30, and molecular weight < 500 g/mol (Table 2).

The selected compounds were then evaluated for the ADME
analysis. A total of 18 compounds namely (+)-Catechin, 24-
Methyldesmosterol, Beta-Sitosterol, Campesterol, Fucosterol, Stig-
masterol, Stigmasterone, Withanolide J, Kaempferol, Rheinan-
throne, Isorhamnetin, d-Tartaric acid, Ascorbic acid, Beta-
Tocopherol, Rhazimol, 5-O-caffeoylquinic acid, 3, 5-di-O-
caffeoylquinic acid, and 12-Hydroxy-3-keto-bisnor-4-cholenic acid
were found to have non-toxic effect with minimal BBB permeant
and high GI absorption (Table 3). In ADMET analysis, hepatotoxic-
ity refers to the potential for active compounds to cause damage to
the liver, which can result in liver dysfunction or failure. In the cur-
rent study, it is worth noting that all select compound has inactive
hepatotoxicity. On the other hand, carcinogenicity refers to the
potential for selected compounds to cause cancer, while muta-
genicity indicates the ability of compounds to cause changes in
DNA that may lead to genetic mutations, which can result in devel-
opmental abnormalities, cancer, or other diseases. If we compare
with our findings, all selected compounds have inactive muta-
genicity and carcinogenicity. To sum up, these results strengthened
the findings of the current study that the indigenous plants of
1129
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Medina valley have drug-like active compounds which might have
a key role to play in the prevention and disease.

3.2. 2.2. Known therapeutic targets acting on HCV-related HCC

Three microarray datasets including GSE62232, GSE69715, and
GSE107170 were retrieved from the NCBI-GEO database and were
further processed using Limma package of R for the identification
of DEGs. In the Limma package, the p-value and LogFC criteria were
set as LogFC > 1.0 and p-value < 0.05 for screening of DEGs. A total
of 2484 DEGs (1089 upregulated and 1395 downregulated) DEGs
obtained from GSE62232 datasets, 2091 DEGs (533 upregulated
and 1558 downregulated) from GSE69715, and 1618 DEGs (384
downregulated and 1234 upregulated) from GSE107170 (Fig. 1).
The final DEGs were then used as known therapeutic targets of
HCV-related HCC.

3.3. Compound-target network construction

After disease-related target prediction, a venn diagram was
plotted for the identification of overlapped genes between
plant-related targets and disease-related targets. Further, 1592
potential target genes of 18 compounds were collected from
the Swiss Target Prediction and STITCH database. The Venn dia-
gram unveiled 139 potential anti-HCV-related HCC genes of 8
indigenous plants of Medina valley which were later considered
for further analysis. The compound along with their correspond-
ing targets was imported to Cytoscape for visualization of the
hub compound within the network. The compound-target net-
work demonstrated that predicted targets may simultaneously
Fig. 1. Pictorial representation of DEGs through Volcano plot with red and blue dots indic
genes are represented using grey color.
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induce a synergistic effect when these medicinal plants serve as
an anti-cancer agent.

3.4. Functional annotation of overlapped targets

GO and pathway enrichment analysis of overlapped proteins
were conducted using DAVID resources for the identification of
their biological characteristics. There were respectively 186 BP,
41 CC, and 69 MF terms in total, which fulfill the criteria of p-
value<0.05. The top 20 GO terms indicated that overlapped genes
may regulate cancer cell proliferation via regulation of T cell apop-
totic process, inflammatory response, positive regulation of protein
kinase B signaling, identical protein binding, enzyme binding,
extracellular exosome, cytosol, plasma membrane, endoplasmic
reticulum, and macromolecular complex. To explore the underly-
ing involved pathways of overlapped targets in HCV-related hepa-
tocellular carcinoma, KEGG pathway analysis of overlapped genes
was conducted. More importantly, the majority of common genes
exhibited pathways in cancer (21 counts). KEGG pathway analysis
uncovered that the genes were concentrated in metabolic path-
ways, p53 signaling pathway, chemical carcinogenesis, PI3K-Akt
signaling pathway, ovarian steroidogenesis, and endocrine resis-
tance. The bubble map of top signification terms and pathways
was shown in Fig. 2.

3.5. Identification of hub genes

The PPI network of overlapped targets was constructed through
STRING database. This network consists of 133 nodes and 626
edges. From these 133 nodes, the top 10 nodes based on their
ating the upregulated and downregulated genes respectively. While non-significant



Fig. 2. Bubble plot representing Gene ontology with respect to (A) biological processes, (B) cellular components, (C) molecular functions, (D) and KEGG pathways.
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degree of connectivity were selected as the hub genes. These hub
genes are ALB (61), EGFR (42), ESR1 (41), JUN (36), MMP9 (31),
PTGS2 (28), AR (28), MDM2 (24), CDK1 (21), and CYP3A4 (20)
(Fig. 3). These nodes may play a pivotal role in the PPI network
for the anti-cancer effect. The compound and target information
on the top 10 nodes are listed in Table 4, where the closeness cen-
trality is the center proximity, radiality is the radial degree, and
betweenness centrality indicates the nodes that play bridge span-
ning roles in network.
3.6. Compound-Target-Disease network

To develop a more intuitive comprehension of the mechanisms
responsible for the impact effect on indigenous plants in HCV-
related HCC, an integrated ‘‘compound-target-disease” network
was generated based on the GO and the KEGG route map (Fig. 4).
Pathway that are not directly associated with the HCV-related
HCC were removed. Through systematic analysis of the
compound-target network, PPI network, and compound-target-
disease network, top ranked proteins including ALB and PTGS2
were selected for molecular docking. ALB and PTGS2 have higher
degree of connectivity within PPI network as well as the majority
of the compounds were found to be targeted by these hub genes.
Secondly, GO term analysis revealed that genes may regulate the
cancer cell proliferation through identical protein binding, and
negative regulation of apoptotic process while the KEGG pathway
1131
uncovered that PTGS2 is enriched in pathways including chemical
carcinogenesis, metabolic pathways, pathways in cancer, etc.
3.7. Molecular docking analysis

Through PPI network analysis and target screening, two pro-
teins named ALB and PTGS2 were used for molecular docking anal-
ysis. The selected 18 compounds were then docked against ALB
and PTGS2 in order to predict their binding affinity and stability,
and free energy with the active site of the target protein
(Williams-Noonan et al., 2018, Guedes et al., 2014). Currently,
the approximation of binding free energy is an important objective
of docking protocols, which is revealed in terms of hydrogen bonds,
total internal energy, the energy of dispersion and repulsion, tor-
sional free energy, electrostatic force, the energy of desolvation,
and unbound system’s energy (Luo et al., 2022). The top com-
pounds, having the highest binding energy (<-5.00 kcal/mol) were
selected for further analysis. In the case of ALB protein, kaempferol
(-5.2 kcal/mol), rhazimol (-5.9 kcal/mol), beta-sitosterol (-6.2 kcal/
mol), 12-Hydroxy-3-keto-bisnor-4-cholenic_acid (-7.0 kcal/mol),
and 5-O-caffeoylquinic_acid (-6.0 kcal/mol) has highest binding
affinity as compared to other active compounds (Fig. 5). In case
of ALB-5-O-caffeoylquinic_acid complex binding affinity was con-
tributed the hydrogen bonding with the Ser B:27, Ser B:72, Glu
B:23, Gly B:25, and His B:71 residues. In terms of 12-Hydroxy-3-
keto-bisnor-4-cholenic_acid, ALB has hydrogen bonding interac-



Fig. 3. (A) Venn plot of common genes among plants and disease, (B) Compound-target network, where the size indicates their degree of connectivity, (C) Top 10 genes
ranked based on degree algorithm, (D) Bar plot representing the degree of each hub gene.

Table 4
Interaction network data of top 10 hub genes.

Sr.No. Name Degree Closeness Betweenness Radiality

1 ALB 61 94.33333 5559.591 7.424242
2 EGFR 42 82.83333 1859.256 7.174242
3 ESR1 41 82.45 1743.784 7.166667
4 JUN 36 80 1014.448 7.143939
5 MMP9 31 75.28333 521.8788 6.984848
6 PTGS2 28 75.11667 729.5465 7.030303
7 AR 28 75.11667 646.2724 7.022727
8 MDM2 24 72.2 668.1914 6.954545
9 CDK1 21 70.66667 468.2167 6.939394
10 CYP3A4 20 70.86667 602.4295 6.962121
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tion with Gly B:69, Gly B:25, His B:71, Ile B:24, and Glu B:77; for
beta-sitosterol, ALB demonstrating hydrogen bond interaction
with Glu A:13, Glu B:77, Leu A: 12, and Leu A:6; for kaempferol,
the hydrogen bonding interaction was found to be Ile B: 24, Glu
B:23, Phe A:7, and the rhazimol showed hydrogen binding interac-
tion with His B:71, Ser B:72, and Glu B:77 residues (Table 5).

In the case of PTGS2 protein, 24-Methyldesmosterol (-8.4 kcal/
mol), beta-sitosterol (-8.3 kcal/mol), stigmasterone (-8.0 kcal/mol),
fucosterol (-8.7 kcal/mol), and Withanolide_J (-9.5 kcal/mol)has
highest binding affinity in comparison with other active com-
pounds (Fig. 6). In the case of PTGS2- 24-Methyldesmosterol com-
plex binding affinity contributed the hydrogen bonding with the
Val A:444, His A: 388, Leu A: 294, Gln A:203; for beta-sitosterol
PTGS2 has hydrogen bonding interaction with Ile A: 408, His A:
1132
388, Tyr A: 385, Leu A: 294; for fucosterol, PTGS2 demonstrating
Ile A: 408, Tyr A: 385, Leu A: 294, Gln A:203; for stigmasterone,
hydrogen bonding interaction were found to be His A: 388, Leu
A: 294, Ile A: 408, Tyr A: 385; and Withanolide_J showed hydrogen
binding interaction with Val A:447, His A: 388, Leu A: 390, Ala
A:202 residues (Table 6).
3.8. MD simulation

To evaluate the association of ALB and PTGS2 protein and for
evaluating the stability of the ligand molecules, all-atom MD sim-
ulations were performed for 20 ns using GROMACS. The top two
complexes from each protein were selected for MD simulation
for measuring their RMSD and RMSF values which ultimately

http://Sr.No


Fig. 4. Compound-Target-Disease network. The size of nodes indicates their degree of connectivity. The circle represents hub proteins, the square represents targeted
pathways, while arrows represent the active compounds.
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helped in determining the stability of the docked complex. RMSD
measures the deviation of the docked complex from its initial
structure over the course of the simulation, while RMSF measures
the deviation of each atom in the complex from its average posi-
tion. Both measures are used to evaluate the stability and flexibil-
ity of the complex during the simulation period, and can be used to
identify the most stable and flexible regions of the complex. The
RMSD analysis indicated that the majority of complexes reached
equilibrium within 20 ns, indicating high stability of docked com-
plexes. However, some fluctuations were observed within the first
10 ns in all systems. The RMSD values for the ALB complex with 5-
O-caffeoylquinic_acid and 12-Hydroxy-3-keto-bisnor-4-cholenic_
acid stabilized around � 0.3 nm and 0.12 nm respectively (Fig. 7
(A)), while those for the PTGS2 complex with beta-sitosterol and
withanolide_J were equilibrated at around � 0.18 nm (Fig. 8(A)).
These findings suggested that the binding of 5-O-
caffeoylquinic_acid and 12-Hydroxy-3-keto-bisnor-4-cholenic_aci
d to ALB could cause conformational changes. This was further
supported by the analysis of RMSF vs ALB residue number, which
indicated that the 5-O-caffeoylquinic_acid and 12-Hydroxy-3-ket
o-bisnor-4-cholenic_acid complexes showed higher oscillations in
backbone residues (Fig. 7(B)) compared to the PTGS2 complex with
beta-sitosterol and withanolide_J (Fig. 8(B)).

The radius of gyration (Rg) is a crucial parameter to evaluate
changes in the compactness of a ligand–protein complex. In the
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case of ALB, 12-Hydroxy-3-keto-bisnor-4-cholenic_acid and 5-O-
caffeoylquinic_acid complexes demonstrated constant compact-
ness throughout the simulation, as evidenced by the constant Rg
values (Fig. 7(C)). In the case of PTGS2, withanolide_J showed high
fluctuations as compared to beta-sitosterol, which was in agree-
ment with its lowest binding free energy predicted through dock-
ing studies (Fig. 8(C)). Furthermore, the findings obtained from the
analysis of RMSD, RMSF, and Rg parameters suggested that all the
complexes remained stable throughout the simulation period.
Thus, it can be inferred that these compounds are potential candi-
dates for inhibiting ALB and PTGS2, which should be further vali-
dated through in vivo and in vitro studies.
4. Discussion

The prevalence of HCV-associated HCC in Saudi Arabia is rela-
tively high compared to other countries and is therefore consid-
ered as a significant public health issue within the country
(Thrift et al., 2017, Alavian and Haghbin, 2016). A recent study
indicated that HCV was found to be the major causative agent of
HCC in Saudi Arabia, accounting for 59% of all cases (Althubiti
and Alfayez, 2021). Their study provides shreds of evidence that
the prevalence of HCV infection in patients with HCC was signifi-
cantly higher in Saudi Arabia compared to other regions, such as
Egypt and Iran. Several factors contribute to the extreme preva-



Fig. 5. The docked complexes of ALB protein along with their strongest binding compounds.

Table 5
Binding energy and interactions of active compounds with ALB protein.

Protein-ligand complex Binding Affinity
(kcal/mol)

RMSD Interacting residues

IKTS_Kaempferol �5 2.702 Ile B: 24, Glu B:23, Phe A:7
IKTS_Rhazimol �5.9 1.095 His B:71, Ser B:72, Glu B:77
IKTS_Beta-Sitosterol �6.2 3.208 Glu A:13, Glu B:77, Leu A: 12, Leu A:6
IKTS_12-Hydroxy-3-keto-bisnor-4-cholenic_acid �7 0.972 Gly B:69, Gly B:25, His B:71, ILE B:24, Glu B:77
IKTS_5-O-caffeoylquinic_acid �6 2.994 Ser B:27, Ser B:72, Glu B:23, Gly B:25, His B:71

M.A. Alamri Saudi Pharmaceutical Journal 31 (2023) 1125–1138
lence of HCV-associated HCC in Saudi Arabia, including the wide-
spread use of contaminated needles in medical procedures, high
rates of blood transfusions, and poor infection control measures
in healthcare settings (Ashtari et al., 2015). In recent years, the
Saudi Arabian government has implemented several initiatives to
combat HCV and HCC, including the introduction of vaccination
programs and the establishment of specialized clinics for the man-
agement of HCV-related HCC. Overall, the high prevalence of HCV-
associated HCC in Saudi Arabia highlights the need for continued
efforts to improve infection control measures and increase public
awareness about the risks of HCV infection.

In the present work, the network pharmacology approach was
used for the systems-level view of the molecular interactions
underlying HCV-related HCC, which lends a helping hand in the
identification of new therapeutic strategies for improving patient
outcomes. At first, the information related to active constituents
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of indigenous plants was collected from publically available repos-
itories and published literature. The anti-cancer activity of 8 plants
namely Rumex vesicarius, Withania somnifera, Rhazya stricta, Helio-
tropium arbainense, Asphodelus fistulosus, Pulicaria incise, Commicar-
pus grandiflorus, and Senna alexandrina,were studied. These are the
local plants of Medina valley and have the potential to be used as
medicine to provide benefits to humanity. After the screening of
active compounds, the disease-related data of HCV-related HCC
were collected from microarray datasets. For this, Limma package
was run on the selected microarray datasets for the identification
of DEGs which were later compared with target genes of plant-
related compounds. The overlapped genes obtained after compar-
ison were subjected to network pharmacology approach for ana-
lyzing the multi-target effect of screened active compounds
against HCV-related HCC proteins. The pathway enrichment analy-
sis uncovered that overlapped genes are mainly involved in HIF-1



Fig. 6. The docked complexes of PTGS2 protein along with their strongest binding compounds.

Table 6
Binding energy and interactions of active compounds with PTGS2 protein.

Protein-ligand complex Binding Affinity
(kcal/mol)

RMSD Interacting residues

5IKQ_24-Methyldesmosterol �8.4 0.776 Val A:444, His A: 388, Leu A: 294, Gln A:203
5IKQ_Beta-Sitosterol �8.3 2.182 Ile A: 408, His A: 388, Tyr A: 385, Leu A: 294
5IKQ_Stigmasterone �8 2.072 His A: 388, Leu A: 294, Ile A: 408, Tyr A: 385
5IKQ_Fucosterol �8.7 1.408 Ile A: 408, Tyr A: 385, Leu A: 294, Gln A:203
5IKQ_Withanolide_J �9.5 2.527 Val A:447, His A: 388, Leu A: 390, Ala A:202
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signaling pathway, pathways in cancer, PI3K-Akt signaling path-
way, ErbB signaling pathway, C-type lectin receptor signaling path-
way, and oxytocin signaling pathway.

In HCV-related HCC, the PI3K-Akt signaling pathway is often
dysregulated, contributing to the development and progression of
HCC (Irshad et al., 2017). The virus activates the PI3K-Akt pathway
through several mechanisms, including the activation of growth
factor receptors including IGF-1R, EGFR, and c-Met (Józefiak
et al., 2021, Mahmoudvand et al., 2019, Arzumanyan et al.,
2013). HCV also activates PI3K-Akt signaling and promotes HCC
cell survival and growth by stimulating protein synthesis, inhibit-
ing apoptosis, and enhancing cell proliferation (Paskeh et al., 2022).
Moreover, activation of PI3K-Akt pathway has been associated
with the development of drug resistance in HCC (Feng et al.,
2020, Zou et al., 2020). Thus, by targeting the genes involved in
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PI3K-Akt pathways, the progression of HCC can be reduced
significantly.

In HCV-related HCC, studies reported that C-type lectin receptor
(CLR) plays a significant role in regulating the immune response
against HCV infection, as well as in the development of chronic
inflammation, which contributes to the proliferation of HCC
(Cabral et al., 2022, Boltjes et al., 2014). Moreover, the production
of cytokines and chemokines in response to virus infection can con-
tribute to the recruitment of inflammatory cells, such as macro-
phages, into the liver, which promotes the development of
cirrhosis in affected individuals (Al-Qahtani et al., 2014). Therefore,
targeting the CLR signaling pathway may be a promising approach
for treating HCV-related HCC. For example, blocking the activation
of CLRs or the downstream signaling pathways may help to reduce
inflammation and prevent the development and progression ofHCC.



Fig. 7. (A) RMSD of backbone atoms (C, Ca, and N) for ALB-Ligand complex systems. (B) RMSF of backbone atoms for ALB-Ligand complex systems. (C) Rg of backbone atoms.

Fig. 8. (A) RMSD of backbone atoms (C, Ca, and N) for PTGS2-Ligand complex systems. (B) RMSF of backbone atoms for PTGS2-Ligand complex systems. (C) Rg of backbone
atoms.
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After pathway enrichment analysis, two proteins namely ALB
and PTGS2 were selected as the hub proteins as these proteins have
a higher degree of connectivity within the compound-target net-
work and compound-target-disease network. Later, docking analy-
sis were performed to analyze the interaction of ALB and PTGS2
with screened compounds of local plants of Medina valley. Molec-
ular docking, however, only offers information for estimating com-
pound suitability at a protein active site. As a result, the use of MD
simulation and derived binding energy values to evaluate com-
pound to protein target systems has increased the dependence
on binding conformation data. MD simulation helps in analyzing
the dynamics of docked complexes and the fluctuations in its
energy landscape, providing insights into the stability of the com-
plex and the potential for ligand-induced conformational changes
in the protein. In short, molecular docking and dynamics simula-
tion analysis unveiled significant binding affinity between active
compound-protein matrices.

If we compare our findings with previous studies, then it is
noteworthy that PTGS2 promotes of cell proliferation and survival
in HCC by activating the MAPK and PI3K-Akt signaling pathways,
which promote cell cycle progression and inhibit apoptosis
(Zhang et al., 2022, Shi et al., 2022). In addition to its role in pro-
moting HCC growth and progression, PTGS2 overexpression has
been associated with resistance to chemotherapy and targeted
therapies, including sorafenib (Nie et al., 2018, Ladd et al.). Thus,
targeting PTGS2 with active compounds might be an effective ther-
apeutic approach for treating HCC. On the other hand, the presence
of inflammation, oxidative stress, and malnutrition in HCC can also
contribute to the decreased level of ALB (Liu et al., 2020). The
decreased level of ALB is often used as a biomarker for the severity
of liver disease and the progression of HCC (Wang et al., 2013). Fur-
ther, ALB suppresses the production of TNF-a and IL-6 cytokine
which can promote the development and progression of HCC (Li
et al., 2017). Moreover, ALB promotes the differentiation of T cells
into regulatory T cells, which can suppress the proliferation of can-
cer cells and prevent their invasion and metastasis (Zhang et al.,
2021). Overall, the role of ALB in HCC is complex and multifaceted,
therefore, targeting ALB protein with active compounds can assists
in developing effective therapeutic strategies based on ALB.

To sum up, our study provides a scientific foundation to unveil
the multi-target effect of the indigenous plant of Medina valley as a
promising treatment option for liver cancer. Thus, the integration
of network pharmacology with bioinformatics approaches can help
to identify the key molecular pathways and interactions that con-
tribute to HCV-related HCC, and can be used to identify potential
drug targets that can be modulated to treat this disease. Despite
that, we validate our results through molecular docking as well
as MD simulation, however additional in vivo and in vitro studies
are required to validate the efficacy of current findings. There are
several limitations to our study. First, additional tests are required
to confirm our findings. Second, a larger database of traditional
medicines and target genes is required, which improved the accu-
racy of the network pharmacology analysis results. Thirdly, even
after combining the outcomes of network pharmacology with
molecular docking, our study was unable to fully comprehend
the precise therapeutic mechanism of local plants for treating
HCV-related HCC. Thus, the integration of multiple disciplines
was necessary to understand the action mechanism of these local
plants in HCC.
5. Conclusion

The burden of HCV-related HCC in Saudi Arabia underscores the
importance of effective strategies for the prevention, screening,
and management of HCV infection and its complications. This high
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burden of HCV-related HCC in Saudi Arabia highlights the urgent
need for the development of new and effective treatments for
HCV infection and its associated complications. Regarding this,
our study proposes a new scientific methodology for assessing
the multi-component, multi-target effect of active compounds of
local plants particularly those belonging to Medina valley. The cur-
rent study integrated network pharmacology with bioinformatics
approaches and proposed (+)-Catechin, 24-Methyldesmosterol,
beta-sitosterol, campesterol, fucosterol, stigmasterol, stigmas-
terone, withanolide J, kaempferol, rheinanthrone, isorhamnetin,
d-Tartaric acid, ascorbic acid, beta-tocopherol, rhazimol, 5-O-
caffeoylquinic acid, 3, 5-di-O-caffeoylquinic acid, 12-Hydroxy-3-
keto-bisnor-4-cholenic acid as the potential compounds for treat-
ing HCV-related HCC. Additionally, our findings highlighted that
ALB and PTGS2 are potential therapeutic targets for reducing the
incidence of cell growth and proliferation. In short, this study
enriched our knowledge about the chemical composition of indige-
nous plants of Medina valley, as well as the synergistic mechanism
of active compounds against HCV-related HCC.
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