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Abstract

Precision medicine attempts to individualize cancer therapy by matching tumor-specific

genetic changes with effective targeted therapies. A crucial first step in this process is the

reliable identification of cancer-relevant variants, which is considerably complicated by the

impurity and heterogeneity of clinical tumor samples. We compared the impact of admixture

of non-cancerous cells and low somatic allele frequencies on the sensitivity and precision of

19 state-of-the-art SNV callers. We studied both whole exome and targeted gene panel

data and up to 13 distinct parameter configurations for each tool. We found vast differences

among callers. Based on our comprehensive analyses we recommend joint tumor-normal

calling with MuTect, EBCall or Strelka for whole exome somatic variant calling, and Haploty-

peCaller or FreeBayes for whole exome germline calling. For targeted gene panel data on a

single tumor sample, LoFreqStar performed best. We further found that tumor impurity and

admixture had a negative impact on precision, and in particular, sensitivity in whole exome

experiments. At admixture levels of 60% to 90% sometimes seen in pathological biopsies,

sensitivity dropped significantly, even when variants were originally present in the tumor at

100% allele frequency. Sensitivity to low-frequency SNVs improved with targeted panel

data, but whole exome data allowed more efficient identification of germline variants. Effec-

tive somatic variant calling requires high-quality pathological samples with minimal admix-

ture, a consciously selected sequencing strategy, and the appropriate variant calling tool

with settings optimized for the chosen type of data.

Introduction

The promise of personalized cancer medicine is to formulate effective treatment options based

on the individual genetic makeup of patient and tumor [1–5]. Understanding the genetic

mechanisms underlying tumor etiology and matching these with actionable drugs, however,

remains a considerable challenge [6, 7]. Take the example of cetuximab, a monoclonal anti-

body that curbs proliferative signaling of the epithelial growth factor receptor EGFR. In a 2007

study, cetuximab provided a marginal but statistically significant improvement over existing

chemotherapies for patients carrying EGFR mutations [8]. A subsequent study [9] revealed

that about 40% of patients with EGFR mutations carry additional mutations in the KRAS gene

downstream from EGFR, which preclude any benefits from cetuximab therapy. Failure to
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consider all cancer-relevant mutations may thus severely undermine the effectiveness of per-

sonalized treatment recommendations.

This issue has immediate consequences for the methodologies used to analyze next-genera-

tion sequencing data from tumors. They must be able to reliably separate a few tens to hun-

dreds of tumor-relevant mutations from thousands of mostly non-informative germline

mutations [10, 11], and must do so despite the complex and distinct biology of individual

tumors and despite the technical issues associated with large next generation sequencing data

sets. Separation of germline and somatic mutations is especially hampered by distinct allele fre-

quency distributions in tumor and germline. Many cancer-relevant variants are present at low

frequencies due to varying degrees of genetic heterogeneity in the tumor [12–14], i.e., the accu-

mulation of novel mutations as cancer cells continue to divide within the growing tumor.

Moreover, typical pathological tumor samples often include a considerable proportion of non-

cancerous stromal and immune cells that decrease the overall frequency of somatic mutations.

Consequently, frequencies of cancer variants in tumor samples may drop so low that they may

be virtually indistinguishable from sequencing artefacts. It is therefore pivotal to optimize the

variant calling step at the start of any personalized medicine pipeline.

Ideally, the pipeline identifies all cancer-relevant mutations present in the tumor (maximal

sensitivity) but avoids calling misleading false positives due to artifacts and contaminations in

the raw data (maximal precision). Previous comparisons of SNV callers [15–20] already

highlighted that available calling methods often yield highly discordant results. However, these

studies did not systematically compare somatic and germline SNV callers on whole exome and

targeted gene panel data, especially taking into account distinct parameter settings for each

tool. Moreover, the influence of low-frequency somatic alleles and admixture on caller perfor-

mance remains understudied. In this paper we therefore aim to evaluate the influence of

tumor impurity and heterogeneity on the sensitivity and precision of somatic callers in both

whole exome and targeted gene panel data. Because a reference tumor data set with extensively

curated low-frequency mutations was not available at the time of this study, we relied on

simulated data to be able to distinguish true SNV calls from false ones (false positives) and to

evaluate how many mutations were missed (false negatives). Nevertheless, we used clinically

relevant cancer mutations to produce realistic tumor data, as detailed below.

Our results provide novel benchmarking data sets that can be used for future testing exer-

cises of heterogeneous and admixed tumor data and represent best practice guidelines to deal

with the challenges encountered in clinical tumor samples, particularly those posed by low

somatic variant frequencies.

Materials and methods

Reference genomes and variant implantation

To emulate realistic genomes of cancer patients, we implanted 5,381,311 SNVs, insertions and

deletions representing the European-Caucasian ancestry [11, 21] into the GRCh37 human ref-

erence genome [22]. The diploid control genome consisted of two independently created

genomes representing the maternal and paternal lineage. Tumor data was generated from the

control genome by inserting 32,422 known cancer variants from the ICGC and COSMIC [23]

databases into our control genome. We repeated this ten times to create five maternal and five

paternal cancer genomes, each containing a random subset of the selected cancer variants. To

obtain heterogeneous tumor genomes with different allele compositions and frequencies, we

combined the five maternal and paternal cancer genomes in randomized proportions. Finally,

we simulated ten tumors using a range of 0% to 90% admixture with control sequence. Fig 1

summarizes the variants present in the parental genomes.
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Simulation approach for synthetic genomes

For each tumor data set, we used Wessim [24] to generate 100 bp Illumina reads with a mean

insert size of 300 bp (standard deviation 100) for exome and 200 bp (s.d. 50) for panel data,

and median coverage of 70x and 520x for exon and panel data, respectively. Wessim applies a

Fig 1. Schematic overview of “gold standard” variants in the simulated data set. Moving from outer to inner circle, the circles show

chromosomes, genomic regions covered in the exome experiments (dark blue), genomic regions in the panel regions (light blue), density of

germline and somatic SNVs combined (dark green; maximum of scale at 3,000), density of somatic SNVs (green; maximum at 30), density

of germline SNVs (light green; maximum at 3,000), density of germline and somatic indels (dark orange; maximum at 300), density of

somatic indels (orange; maximum at 30), and density of germline indels (light orange; maximum at 300). Variant densities were computed in

1 Mb bins.

https://doi.org/10.1371/journal.pone.0186175.g001
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sequencing error model with distinct error rates for substitutions, insertions, and deletions,

and employs BLAT [25] to mimic probe hybridization. We used Agilent SureSelect Human

All Exon v5 probes for whole exome and the Molecular Health Pan-Cancer Gene Panel cover-

ing 542 cancer-relevant genes (S1 File) for the gene panel read simulations, which covered

50,390,601 and 2,383,840 nucleotides, respectively. Because the gene panel only covered a lim-

ited number of nucleotides, we risked having too few somatic variants for a reliable and sensi-

tive analysis of false negatives. To solve this issue, we simulated a hypermutated tumor for the

panel analyses with a high number of somatic variants. After producing the reads, we aligned

each data set to the GRCh37 reference using Novoalign 3.04.06 [26] without soft clipping. As

recommended by the GATK Best Practices, SNVs were directly called from these alignments

using HaplotypeCaller and MuTect2. For all other callers, the alignments were first realigned

around indels using GATK IndelRealigner 3.6 [27].

Choice of SNV callers

We specifically included callers that could deal with paired tumor-control data and that could

account for tumor heterogeneity. Moreover, we considered software that is actively maintained

and that could be easily installed and run without errors. Our test considered SNV calling

methodologies ranging from Bayesian models and heuristic models to statistical tests on variant

counts. Using ten simulated tumor admixture data sets and the control, we performed three

sets of benchmarking experiments: germline SNV calling from a single (non-tumor) sample,

calling any SNVs (germline and somatic) from a single tumor sample without control sample,

and somatic SNV calling from paired tumor-control samples. We thus evaluated 11 germline,

10 tumor-only, and 13 paired tumor-control SNV callers. Table 1 provides an overview of the

SNV calling tools used in this study. For each tool we tested different settings with respect to

Table 1. SNV callers benchmarked in this study. The callers are labelled as the type of lineage they call. Germline denotes calling germline SNVs from a

single (non-tumor) sample, tumor denotes calling any SNVs (germline and somatic) from a single tumor sample, and somatic denotes calling somatic SNVs

from paired control-tumor samples. *GATK HaplotypeCaller, **GATK Unified Genotyper, ***JointSNVMix outputs both germline and somatic calls from

paired control-tumor samples.

Tool Methodology Type

Atlas2 1.4.3 [28, 29] Logistic regression model, platform-specific sequencing and mapping errors Germline, tumor

deepSNV-1.18.0 [30] Beta-binomial model Somatic

EBCall 20160405 [31] Empirical Bayesian model Somatic

FreeBayes 20160623 [32] Bayesian model with error probabilities Germline, tumor

GATK HC*3.6 [27, 33] Bayesian model Germline, tumor

GATK UG**3.6 [27, 33] Bayesian model Germline, tumor

JointSNVMix 0.7.5*** [34] Probabilistic graphical models Germline, somatic

LoFreqStar 2.1.2 [35] Statistical test on Poisson-binomial distributed variant counts with error probabilities Germline, tumor, somatic

MuTect 2015.1-3 [36] Bayesian classifiers Somatic

MuTect2 3.6 [36] Bayesian classifiers Somatic

QuadGT 20130222 [37] Bayesian model Somatic

SAMtools 1.3.1 [38] Bayesian model Germline, tumor

Shimmer 20150220 [39] Statistical hypothesis testing with multiple testing correction Somatic

SNVMix2 0.12.2 [40] Probabilistic binomial mixture model Germline, tumor

SNVSniffer 2.0.4 [41] Bayesian model Germline, tumor, somatic

SomaticSniper 1.0.5.0 [42] Statistical test of genotype likelihood model Somatic

Strelka 1.0.15 [43] Bayesan model of admixture Somatic

VarDict 1.4.6 [44] Combined heuristic and statistical algorithm Germline, tumor, somatic

VarScan2 2.4.2 [45] Combined heuristic and statistical algorithm Germline, tumor, somatic

https://doi.org/10.1371/journal.pone.0186175.t001
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minimum coverage, minimum base qualities, minimum mapping qualities, score cutoffs (e.g.,

p-value), and tool-specific parameters (e.g., model tuning, ploidy). In total, we thus performed

92 germline, 850 tumor-only, and 900 paired tumor-control calling experiments for the exome

and panel data set each. The parameters used for each tool are listed in S2 File.

Validation on real sequencing data

Next, we investigated how the SNV callers that had the best results on the synthetic data per-

formed on realistic laboratory data. To be able to calculate sensitivity and precision, we

obtained two genomic data sets, HG001 and HG002, for which highly reliable golden standard

SNVs are available. The Genome in a Bottle consortium made these high-quality data sets

(consisting of reference DNA and validated SNV calls) publicly available specifically for the

purpose of analytical validation [46]. To produce admixed data, DNA from the two samples

were mixed at the ratio of 1:7; this was repeated for four replicates. Agilent capture libraries

were prepared for the Molecular Health Cancer Gene Panel and sequenced on an Illumina

HiSeq 2500 machine with 101 bp paired-end reads and average insert size of 166 bp. The reads

were aligned to the GRCh37 reference using Novoalign 3.04.06 [26] without soft clipping,

duplicates were removed using Picard MarkDuplicates 2.5.0 [47], and realigned using GATK

IndelRealigner 3.6 [27]. The median coverage was around 1,400x. Finally, SNVs were called

using LoFreqStar 2.1.2 [35], VarDict 1.4.6 [44] and VarScan 2.4.2 [45], which were the three

best SNV callers in terms of sensitivity and precision on the synthetic panel data sets. To calcu-

late true and false positives, we compared the SNV calls to the GiaB gold standard data set. The

latter consisted of the union of the high-confidence gold standard SNVs for HG001 and

HG002 that fall within the genomic areas covered by the Molecular Health target regions. In

total, the data set contained 1,363 gold standard SNVs.

Evaluation measures

For each caller and data set we compared the SNVs obtained from the caller with the known

“gold standard” variants we implanted into the data sets. For the germline and somatic callers

we compared against the known germline and somatic SNVs, respectively. For the tumor call-

ers, we restricted the evaluation on somatic SNVs as the performance of calling germline

SNVs, which are more abundant compared to somatic SNVs, would mask the performance of

calling somatic SNVs. We determined the number of (i) true positives (TP), or SNVs called at

the correct position; (ii) false positives (FP), or SNVs called but not present in the gold stan-

dard set and (iii) false negatives (FN), SNVs that were not called by the evaluated method.

Using these counts, we calculated (i) sensitivity, TP
TPþFN, the ability of a caller to find true SNVs

and (ii) precision, TP
TPþFP, the proportion of true SNVs relative to all SNVs found by the caller.

We determined precision and sensitivity of each caller for different data sets (admixture levels)

and tool settings. For each dataset, each tool and each set of parameters we calculated the har-

monic mean of the sensitivity and precision as a measure of parameter performance. In the

manuscript, we only report the highest (best-performing) parameter settings for each tool, data

set and, where appropriate, admixture level; the full results can be found in the supplement.

Results

Alignment and data set properties

We obtained one control and ten tumor data sets with admixture levels varying between 0 (pure

tumor) and 90% (mostly contamination with normal tissue). Fig 2 shows the range of variant

frequencies present in each of the data sets. The final data sets used as control samples contained
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59,664 and 2,425 germline SNVs for exome and gene panel, respectively. For the tumor samples

these numbers were 636 and 3,497 SNVs, respectively. The latter number is so high because we

had to ensure a reliable analysis of false negatives in the panel data (see Methods).

SNV caller benchmarking of germline data

For each caller, we compared a set of 1 to 13 parameter settings, depending on the number of

available parameters (S2 File). In the main text and figures we will only discuss the optimal

(best-performing) parameter set for each individual caller. The optimal parameter set had the

highest harmonic mean of the sensitivity and precision. For a complete overview of results

across tools and parameters, we refer to the Supplement S3 File.

For germline data, all but three callers had sensitivity and precision above 90% and 99% on

exome data, respectively, and even higher average sensitivities on panel data for similar preci-

sion (98%, 99%; Fig 3A). Evaluation results for Atlas2 on exome data are missing as the experi-

ments were not finished successfully. The worst performance on exome data was seen for

VarScan2 (89.3% sensitivity). The best callers for exome data were HaplotypeCaller, which

Fig 2. Histograms of true allele frequencies in each tumor sample. Note how increasing admixture increases the prevalence of low-

frequency variants.

https://doi.org/10.1371/journal.pone.0186175.g002
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correctly called 56,869 out of 59,664 gold standard mutations with 24 false positives (sensitivity

95.3%, precision 100.0%), and FreeBayes with 56,775 correct and 47 false SNV calls (95.1%,

99.9%). Interestingly, this means that the best methods still missed more than 2,500 mutations

that were present in the simulated germline exome data.

On high coverage targeted gene panel data (Fig 3B) the best performance was seen for Hap-

lotypeCaller (99.3% sensitivity and 99.9% precision), SAMtools (99.6% sensitivity and 99.8%

precision), and FreeBayes (98.8% sensitivity and 99.8% precision). Atlas2 (72.5% sensitivity),

and JointSNVMix (72.0% sensitivity) identified the lowest number of SNVs.

Next, we looked at the concordance of calls between all callers. For the exome data, all ten

germline callers correctly identified a core set representing 86.6% of SNVs without false posi-

tives (S1A and S1B Fig). On the panel data, 44.6% of SNVs were identified by all eleven callers,

and 91.6% by at least ten callers at very high precision (> 99.9%).

Influence of admixture on tumor SNV calling

We also systematically compared up to 13 distinct parameter combinations for each tool and

each somatic data set (S2 File). For the sake of brevity and to avoid confusion, we here present

the best performing parameter set for each tool at each admixture level. Again these were the

settings with the highest harmonic mean of sensitivity and precision for a particular tool at a

particular level of admixture. Therefore it is possible that sensitivity and precision values calcu-

lated at different admixtures were reached by tweaking the appropriate parameters. The com-

plete results can be found in the Supplement S3 File.

Compared to germline calling, the low frequencies of many alleles in the paired tumor-con-

trol whole exome data set led to significantly lower sensitivity and precision for all tools (Fig

4A and 4B). About 80.7% of known SNVs were correctly identified by all 13 exome callers or

all except one (S1C Fig) in the pure tumor data. Only six out of 13 tools managed a sensitivity

above 90% (Fig 4A); of these, EBCall, JointSNVMix, MuTect, LoFreqStar and QuadGT were

able to also reach more than 90% precision (Fig 4B). Given 636 gold standard SNVs, e. g.,

MuTect called 592 with 14 false positives, and LoFreqStar 582 with 56 false positives. VarDict

performed worst, missing 206 mutations and falsely calling 46.

Increasing levels of tumor admixture resulted in rapily declining sensitivity for all tools. At

intermediate (50%) admixture, all tools together were able to find 90.1% of SNVs (S1C Fig). At

90% admixture, the seven best callers called between 36.3% and 55.2% of the SNVs, and all

Fig 3. Benchmarking results for germline SNVs. Sensitivity versus precision is shown for A. exome and B. targeted gene panel data.

https://doi.org/10.1371/journal.pone.0186175.g003
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tools together called 58.0%. This effect was less pronounced for precision, with almost negligi-

ble differences in precision for Strelka, deepSNV, Shimmer and MuTect at different admixture

levels. In all, MuTect showed the best overall performance for paired tumor-control exome

data at all admixture levels, closely followed by Strelka and QuadGT. This illustrates that most

tools had trouble identifying low-frequency variants in admixed tumor exome data.

We next looked at the performance of SNV calling on a single tumor exome sample.

Although these tools called both somatic and germline SNVs, we focused the sensitivity and

precision analysis on the somatic calls only. Here, we also saw declining sensitivity with

increasing admixture levels for all tools (Fig 4C). The effect on precision was less pronounced

for about half of the tools; for the other half precision started falling at around 60% contamina-

tion with normal tissue (Fig 4D). HaplotypeCaller and LoFreqStar maintained the highest

precision across all but the lowest admixture levels. Overall, LoFreqStar showed the best per-

formance in terms of sensitivity and precision.

Although this is rarely done in clinical practice, we also investigated the sensitivity and pre-

cision of calling SNVs from paired tumor-control targeted gene panels. In these experiments,

we observed an increased senstivity compared to the exome data, particularly for increasing

levels of contamination of normal tissue (Fig 5A). Interestingly, MuTect2 and SNVSniffer

Fig 4. Benchmarking results for somatic SNVs on exome data. A and C. Sensitivity; B and D. precision for somatic SNVs. A, B. on

paired tumor-control exome data; C, D. on single tumor exome data.

https://doi.org/10.1371/journal.pone.0186175.g004
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were much less sensitive on paired panel data than on exome data. Moreover, precision was

above 90% for almost all callers and admixture levels (Fig 5B). EBCall reached high sensitivity

in highly admixed tumors when it was provided with an estimate of tumor allele frequency.

However, it remains unclear whether tumor cellularity estimates based on pathological sam-

ples would yield similar improvements on realistic data.

Finally, we investigated the performance of SNV calling on more typical (unpaired) tar-

geted gene panel data, which excludes a control sample but has increased coverage. With this

type of data we also saw high variability among callers and declining sensitivity with increasing

admixture levels for all tools (Fig 5C and 5D). Precision was very high for all tools and admix-

ture levels, except for SNVSniffer, SNVMix2, SAMtools and FreeBayers for admixture levels

above 60%.

Impact of parameter settings on detection of low-frequency somatic

SNVs

Our comparison of parameter settings across tools and data types showed that parameters

related to base-quality cutoffs can be used to tweak the balance between finding low-frequency

Fig 5. Benchmarking results for somatic SNVs on targeted gene panel data. A and C. Sensitivity; B and D. precision for somatic SNVs.

A, B. on paired tumor-control targeted gene panel data; C, D. on single tumor targeted gene panel data.

https://doi.org/10.1371/journal.pone.0186175.g005
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SNVs and avoiding false positives. Too high cutoffs resulted in loss of low-frequency SNVs,

whereas too low ones introduced false positives. Nevertheless, in germline exome data, base

quality thresholds only slightly lowered the sensitivity of HaplotypeCaller and SAMtools. In all

of the somatic SNV experiments, raising base quality and variant coverage thresholds

increased sensitivity to somatic variants at the cost of additional false positives. At the highest

admixture levels (starting from 70%), the influence of parameters was negligible because the

calls were dominated by false positives.

Validation of the three best performing algorithms using GiaB reference

DNA and gold standard SNVs

The GiaB consortium provides reference DNA with associated validated SNV calls that can be

used as golden standard for evaluating novel analytical approaches against a known standard.

We tested LoFreqStar, VarDict and VarScan, which performed best on targeted panel sequenc-

ing data derived from the synthetic genomes, on sequences derived from 4 replicates of 1:7

proportional mixtures of the DNA of the two GiaB reference samples (Table 2, Fig 6). On aver-

age, LoFreqStar again performed best, and identified 1,501 SNVs, which resulted in an average

sensitivity of 0.998 and an average precision of 0.899, which is slightly lower than on the syn-

thetic data sets. VarDict and VarScan performed similarly on GiaB as on synthetic data. Just as

was the case for the synthetic targeted panel data, the sensitivity was not strongly influenced by

the allele frequencies in the data set. These results confirm that LoFreqStar is a SNV caller that

performs well on targeted gene panel data, even if the samples are admixed and most variants

have low frequencies.

Discussion

Genomic pipelines in cancer precision medicine need to discover all cancer-relevant muta-

tions while avoiding misleading false positives. This study aimed to investigate the impact of

low somatic allele frequencies and tumor-germline admixture on the sensitivity and precision

of somatic SNV calling. Based on a comprehensive and systematic analysis of 19 state-of-the-

art tools each with up to 13 distinct parameter settings, we here present a set of best practice

recommendations for optimizing somatic SNV calling from tumor samples.

Table 2. Sensitivity and precision of LoFreqStar, VarDict and VarScan on GiaB reference samples. The SNVs predicted by the algorithm were com-

pared to the golden standard SNVs provided by GiaB.

Tool Replicate SNVs called Sensitivity Precision

LoFreqStar 1 1,483 0.997 0.909

2 1,497 0.998 0.901

3 1,516 0.998 0.890

4 1,509 0.998 0.894

VarDict 1 1,512 0.996 0.890

2 1,513 0.996 0.890

3 1,525 0.996 0.883

4 1,510 0.996 0.892

VarScan 1 1,480 0.992 0.906

2 1,501 0.993 0.894

3 1,492 0.992 0.899

4 1,488 0.993 0.902

https://doi.org/10.1371/journal.pone.0186175.t002
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We found vast differences among tools regarding the number and type of calls across germ-

line and somatic SNVs, both in whole exome and in targeted panel data. Previous studies also

reported that somatic callers tend to identify a small, common set of high-confidence core

mutations [16, 18] combined with an idiosyncratic set of either false positives (VarScan2,

SomaticSniper) or low-frequency true positive mutations (MuTect, Strelka) [19]. A popular

caller, VarScan2, has difficulties with detecting lower-frequency mutations [16, 17, 19], often

calls germline mutations [16] and is systematically outperformed by other tools on both whole

exome and gene panel data. Taken together, our results emphasize that identification of can-

cer-relevant somatic variants requires methods that are specifically tailored to a particular type

of experiment (whole exome, targeted gene panel) using parameters that avoid calling too

many false positives (minimum variant coverage, base quality thresholds, expected tumor het-

erogeneity, admixture; see below).

Based on our analysis of about 3,700 SNV calling experiments and the literature, we there-

fore recommend the following best practices. For whole exome germline data, HaplotypeCaller

and FreeBayes are the most reliable tools. On germline gene panel data, SAMtools is slightly

more sensitive than the other two. For tumor whole exome data, joint tumor-normal calling

Fig 6. Sensitivity of LoFreqStar, VarDict and VarScan on the GiaB reference samples averaged over the four replicates. Because of

the 1:7 mixtures, allele frequencies are discrete for the given values.

https://doi.org/10.1371/journal.pone.0186175.g006
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using MuTect optimizes sensitivity and minimizes false positives. However, MuTect does not

report germline variants, which could be hereditary cancer-relevant mutations such as

BRCA1, BRCA2, TP53 or HER2 [48–50]. Failure to identify such germline cancer mutations

may lead to imprecise treatment recommendations. MuTect should therefore be combined

with a HaplotyperCaller analysis of the normal (germline) sample. Also Strelka, EBCall and

QuadGT are reliable, but slightly less sensitive alternatives to MuTect for whole exome analy-

ses. Targeted gene panel data exhibit higher coverage than exome data and should thus be

used to improve detection of low-frequency variants. However, this comes at the cost of many

missed variants in regions not captured by the panel and less straightforward detection of

germline mutations. On this type of data, about half of the tested tools showed very good per-

formance, both on synthetic and realistic lab-derived and admixed GiaB data. For single

tumor panel data we recommend using LoFreqStar or VarDict, with appropriate base quality

and variant coverage thresholds, especially considering that in clinical practice targeted panel

sequencing does not include control samples.

The analysis of parameter settings across tools further demonstrated that the quality and

purity of the sample had a much stronger influence on the performance of the SNV callers

than particular settings. Similarly, algorithm choice had more impact on the discovery of low-

frequency variants than tweaking parameters such as minimal variant coverage and base qual-

ity scores in any particular tool. Nevertheless, adjusting these parameters for the tool that is

optimal for a given type of data does allow the researcher to balance sensitivity and precision

according to his or her preferences, but this only impacts a very small (but potentially informa-

tive!) fraction of the total variants called by any method.

Combining caller outputs for somatic variant calling did not improve results much, as the

most sensitive callers called both “core” and low-frequency mutations, whereas other tools

produced many false positives. This remains a contentious issue, with several authors agreeing

in favor [16, 17, 20] and some against caller integration [18]. The choice for either may be

strongly influenced by the type of caller (LoFreq and MuTect were not included in all studies,

for example) and the type of data that was tested, with confidence in combining callers often

recommended for well-curated data sets with little admixture.

Our results emphasize that precision medicine pipelines need to pay special attention to

admixture of tumor samples with germline cells, especially for exome data with low coverage.

Admixture may be caused by biological factors, as tumor tissues often contain epithelial, stro-

mal and vascular cells that play a role in tumor growth and progression [51]. Moreover,

immune cells may penetrate tumor tissue to exert tumor suppression or may be coopted by

the tumor for tissue invasion and metastasis [52, 53]. On the other hand, admixture may be an

artifact of pathological biopsies, which can exhibit 60% to 90% germline contamination [54]

(tumor cells thus sometimes constitute a minority of the sample). This has two important con-

sequences for optimization of genomic pipelines. First, high fractions of germline variants

complicate separation of somatic and germline variants, which is particularly problematic if

the germline includes cancer-predisposing [48, 55] or resistance mutations [56]. This is most

easily mitigated by joint tumor-control sampling [55]. Second, admixture reduces somatic

allele frequencies: a somatic variant present at a true frequency of 30% in the tumor only has a

3% allele frequency in a highly contaminated biopsy and still only 13.3% in a “good” sample.

Our analysis demonstrates that admixture can severely impact sensitivity, and may negatively

influence precision in exome sequencing projects. Regardless of the tool used, admixture leads

to a reduction in overall calls, and an exponential drop in the sensitivity for calling somatic

mutations. With 70% admixture, the best caller (MuTect) misses over 14% of mutations, even

if the variants were initially present at 100% of the tumor. At high levels of admixture, high-

coverage targeted panels may thus recover more variants than whole exome approaches. Each
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patient sample thus benefits from contextualization of the analysis pipeline, such that the

appropriate balance can be struck between recovering low-frequency variants (gene panels)

and avoiding germline variants (paired tumor-normal whole exome data).

Taken together, our results caution that admixture represents a significant quality issue for

precision medicine that may hamper the ability of pipelines to deliver complete, reliable and

actionable results. Unfortunately, current clinical practice often does not foresee later genetic

analysis [54]. The future of precision medicine thus hinges as much on increased quality and

purity of tumor sampling as it does on optimized and sensitive analyses. Genomic pipelines

should therefor include a tumor purity check to accommodate large variations in somatic allele

frequencies and germline contaminations.

Finally, low frequency variants may also be an intrinsic property of genetically heteroge-

neous tumors [12–14]. At the moment of clinical diagnosis, tumors consist of spatially dis-

tinct subclones that evolved from the most recent ancestor through mutation, selection and

adaptation to the changing environment around the growing tumor. Although low-fre-

quency variants in subclones are very difficult to detect, their presence in the tumor is highly

relevant for tumor progression, metastasis and thus therapy [57–60]. Cancer treatment effec-

tively suppresses the drug-sensitive dominant clone, leaving only the few drug-resistant cells

that typically had a growth disadvantage compared to the sensitive cells dominating the pri-

mary tumor [61–63]. The removal of competition from fitter, drug-sensitive cells subse-

quently enables uninhibited growth of an often more aggressive, drug-resistant secondary

tumor [62, 64, 65]. Therefore cancer treatments often only buy a few months of progression-

free and limited overall survival. A recent comprehensive study of hundreds of patients

across cancer indications confirmed a highly significant relationship between intra-tumor

heterogeneity and mortality [66]. The identification of rare subclones carrying resistance

biomarkers is thus of high clinical relevance, and may be exploited to favor therapies that

mitigate the evolutionary advantage of resistant cells during treatment [67, 68]. Tuning of

clinical genomic pipelines to reliably detect low-frequency SNVs in heterogeneous tumors

may thus be crucial to optimize long-term treatment success of heterogeneous tumors. Since

our results show that most of the tested algorithms could not reliably detect low-frequency

variants in exome data, but were much more sensitive on the increased coverage of targeted

panel data, the analysis of highly heterogeneous tumors may benefit from a sensitive, tar-

geted sequencing design with increased coverage.

Conclusion

In conclusion, our study of SNV callers within the context of low-frequency somatic variants

showed that developing reliable genomic pipelines is far from trivial. Whole exome analyses

offer the advantage of covering a large part of the genome, which increases the likelihood of

finding (rare) cancer-relevant mutations. It often includes a non-cancerous tissue or blood

sample that allows efficient separation of somatic from germline mutations and the determina-

tion of cancer-predisposing germline mutations. Targeted gene panels are more cost-effective

than whole exome data and are more sensitive to low-frequency variants due to higher cover-

age, but do not always allow efficient identification of germline variants and by definition miss

somatic variants in genomic regions not covered by the panel. Based on a case-per-case basis,

genomic pipelines need to balance a tradeoff between sensitivity to low-frequency variants and

calling too many false positives, according to the type, quality and admixture of the data that is

being analyzed. Finally, we caution that the reliability of precision medicine pipelines depends

at least as much on the quality and purity of the tumor sample as on optimization of the meth-

ods and parameters within the pipeline. Using a standard pipeline that is not optimized for the
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data at hand as a first step in precision medicine risks missing relevant cancer mutations and

may negatively impact the quality of treatment recommendations.
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targeted gene panel data. A. Germline exome (left) and germline targeted gene panel (right). B.

Paired tumor-control exome, C. single tumor targeted gene panel, D. paired tumor-control

targeted gene panel data, and E. single tumor targeted gene panel. Each slice represents the
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made by all callers. The legend gives the number of callers supporting a set of calls. Numbers

above pie charts represent different admixture levels (0 to 90%).

(TIFF)

S1 File. Panel gene list. Molecular Health Pan-Cancer Gene Panel covering 542 cancer-rele-

vant genes.

(TXT)

S2 File. Tools parameters. Contains the parameters used for running the SNV callers.

(ZIP)

S3 File. Evaluation. Contains the evaluation of SNV calls per caller and parameter set combi-

nation.

(ZIP)

Acknowledgments

The authors thank Fabio Gori and Alexander Zien for discussions on the benchmarking data

set and the GiaB approach, Martin Stein for discussions on the experiment set up to compare

different SNV callers, and Nora Rieber, Markus Hartenfeller, Pascal Gellert and several anony-

mous reviewers for comments on the manuscript.

Author Contributions

Conceptualization: RB SV.

Data curation: RB SV.

Formal analysis: RB.

Investigation: RB SV GJ.

Methodology: RB SV.

Project administration: RB GJ.

Software: RB SV.

Supervision: GJ.

Validation: RB GJ.

Visualization: GJ RB.

Writing – original draft: GJ.

Writing – review & editing: GJ RB SV.

Comprehensive benchmarking of SNV callers for highly admixed tumor data

PLOS ONE | https://doi.org/10.1371/journal.pone.0186175 October 11, 2017 14 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186175.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186175.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186175.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186175.s004
https://doi.org/10.1371/journal.pone.0186175


References
1. Abrahams E, Ginsburg GS, Silver M. The Personalized Medicine Coalition: Goals and Strategies.

American Journal of Pharmacogenomics: Genomics-Related Research in Drug Development and Clini-

cal Practice. 2005; 5(6):345–355. https://doi.org/10.2165/00129785-200505060-00002

2. Ginsburg GS, Willard HF. Genomic and Personalized Medicine: Foundations and Applications. Transla-

tional Research: The Journal of Laboratory and Clinical Medicine. 2009; 154(6):277–287. https://doi.

org/10.1016/j.trsl.2009.09.005

3. Auffray C, Chen Z, Hood L. Systems Medicine: The Future of Medical Genomics and Healthcare.

Genome Medicine. 2009; 1(1):2. https://doi.org/10.1186/gm2 PMID: 19348689

4. Fernald GH, Capriotti E, Daneshjou R, Karczewski KJ, Altman RB. Bioinformatics Challenges for Per-

sonalized Medicine. Bioinformatics (Oxford, England). 2011; 27(13):1741–1748. https://doi.org/10.

1093/bioinformatics/btr295

5. Hamburg MA, Collins FS. The Path to Personalized Medicine. The New England Journal of Medicine.

2010; 363(4):301–304. https://doi.org/10.1056/NEJMp1006304 PMID: 20551152

6. Overby CL, Tarczy-Hornoch P. Personalized Medicine: Challenges and Opportunities for Translational

Bioinformatics. Personalized Medicine. 2013; 10(5):453–462. https://doi.org/10.2217/pme.13.30 PMID:

24039624

7. Arnedos M, Vicier C, Loi S, Lefebvre C, Michiels S, Bonnefoi H, et al. Precision Medicine for Metastatic

Breast Cancer—Limitations and Solutions. Nature Reviews Clinical Oncology. 2015; 12(12):693–704.

https://doi.org/10.1038/nrclinonc.2015.123 PMID: 26196250

8. Jonker DJ, O’Callaghan CJ, Karapetis CS, Zalcberg JR, Tu D, Au HJ, et al. Cetuximab for the Treat-

ment of Colorectal Cancer. New England Journal of Medicine. 2007; 357(20):2040–2048. https://doi.

org/10.1056/NEJMoa071834 PMID: 18003960

9. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, et al. K-Ras Mutations

and Benefit from Cetuximab in Advanced Colorectal Cancer. New England Journal of Medicine. 2008;

359(17):1757–1765. https://doi.org/10.1056/NEJMoa0804385 PMID: 18946061

10. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer Genome Land-

scapes. Science. 2013; 339(6127):1546–1558. https://doi.org/10.1126/science.1235122 PMID:

23539594

11. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An Integrated Map

of Structural Variation in 2,504 Human Genomes. Nature. 2015; 526(7571):75–81. https://doi.org/10.

1038/nature15394 PMID: 26432246

12. Jacoby MA, Duncavage EJ, Walter MJ. Implications of Tumor Clonal Heterogeneity in the Era of Next-

Generation Sequencing. Trends in Cancer. 2015; 1(4):231–241. https://doi.org/10.1016/j.trecan.2015.

10.006 PMID: 28741514

13. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour Evolution Inferred by Sin-

gle-Cell Sequencing. Nature. 2011; 472(7341):90–94. https://doi.org/10.1038/nature09807 PMID:

21399628

14. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor Heterogene-

ity and Branched Evolution Revealed by Multiregion Sequencing. New England Journal of Medicine.

2012; 366(10):883–892. https://doi.org/10.1056/NEJMoa1113205 PMID: 22397650

15. Alioto TS, Buchhalter I, Derdak S, Hutter B, Eldridge MD, Hovig E, et al. A Comprehensive Assessment

of Somatic Mutation Detection in Cancer Using Whole-Genome Sequencing. Nature Communications.

2015; 6:10001. https://doi.org/10.1038/ncomms10001 PMID: 26647970

16. Roberts ND, Kortschak RD, Parker WT, Schreiber AW, Branford S, Scott HS, et al. A Comparative

Analysis of Algorithms for Somatic SNV Detection in Cancer. Bioinformatics. 2013; 29(18):2223–2230.

https://doi.org/10.1093/bioinformatics/btt375 PMID: 23842810

17. Wang Q, Jia P, Li F, Chen H, Ji H, Hucks D, et al. Detecting Somatic Point Mutations in Cancer Genome

Sequencing Data: A Comparison of Mutation Callers. Genome Medicine. 2013; 5:91. https://doi.org/10.

1186/gm495 PMID: 24112718

18. Krøigård AB, Thomassen M, Lænkholm AV, Kruse TA, Larsen MJ. Evaluation of Nine Somatic Variant

Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data. PLOS

ONE. 2016; 11(3):e0151664. https://doi.org/10.1371/journal.pone.0151664 PMID: 27002637

19. Xu H, DiCarlo J, Satya RV, Peng Q, Wang Y. Comparison of Somatic Mutation Calling Methods in

Amplicon and Whole Exome Sequence Data. BMC genomics. 2014; 15:244. https://doi.org/10.1186/

1471-2164-15-244 PMID: 24678773

20. Hofmann AL, Behr L, Singer J, Kuipers J, Beisel C, Schraml P, Moch H, Beerenwinkel N. Detailed simu-

lation of cancer exome sequencing data reveals differences and common limitations of variant callers.

BMC Bioinformatics. 2017; 18:8. https://doi.org/10.1186/s12859-016-1417-7 PMID: 28049408

Comprehensive benchmarking of SNV callers for highly admixed tumor data

PLOS ONE | https://doi.org/10.1371/journal.pone.0186175 October 11, 2017 15 / 18

https://doi.org/10.2165/00129785-200505060-00002
https://doi.org/10.1016/j.trsl.2009.09.005
https://doi.org/10.1016/j.trsl.2009.09.005
https://doi.org/10.1186/gm2
http://www.ncbi.nlm.nih.gov/pubmed/19348689
https://doi.org/10.1093/bioinformatics/btr295
https://doi.org/10.1093/bioinformatics/btr295
https://doi.org/10.1056/NEJMp1006304
http://www.ncbi.nlm.nih.gov/pubmed/20551152
https://doi.org/10.2217/pme.13.30
http://www.ncbi.nlm.nih.gov/pubmed/24039624
https://doi.org/10.1038/nrclinonc.2015.123
http://www.ncbi.nlm.nih.gov/pubmed/26196250
https://doi.org/10.1056/NEJMoa071834
https://doi.org/10.1056/NEJMoa071834
http://www.ncbi.nlm.nih.gov/pubmed/18003960
https://doi.org/10.1056/NEJMoa0804385
http://www.ncbi.nlm.nih.gov/pubmed/18946061
https://doi.org/10.1126/science.1235122
http://www.ncbi.nlm.nih.gov/pubmed/23539594
https://doi.org/10.1038/nature15394
https://doi.org/10.1038/nature15394
http://www.ncbi.nlm.nih.gov/pubmed/26432246
https://doi.org/10.1016/j.trecan.2015.10.006
https://doi.org/10.1016/j.trecan.2015.10.006
http://www.ncbi.nlm.nih.gov/pubmed/28741514
https://doi.org/10.1038/nature09807
http://www.ncbi.nlm.nih.gov/pubmed/21399628
https://doi.org/10.1056/NEJMoa1113205
http://www.ncbi.nlm.nih.gov/pubmed/22397650
https://doi.org/10.1038/ncomms10001
http://www.ncbi.nlm.nih.gov/pubmed/26647970
https://doi.org/10.1093/bioinformatics/btt375
http://www.ncbi.nlm.nih.gov/pubmed/23842810
https://doi.org/10.1186/gm495
https://doi.org/10.1186/gm495
http://www.ncbi.nlm.nih.gov/pubmed/24112718
https://doi.org/10.1371/journal.pone.0151664
http://www.ncbi.nlm.nih.gov/pubmed/27002637
https://doi.org/10.1186/1471-2164-15-244
https://doi.org/10.1186/1471-2164-15-244
http://www.ncbi.nlm.nih.gov/pubmed/24678773
https://doi.org/10.1186/s12859-016-1417-7
http://www.ncbi.nlm.nih.gov/pubmed/28049408
https://doi.org/10.1371/journal.pone.0186175


21. Mills RE, Pittard WS, Mullaney JM, Farooq U, Creasy TH, Mahurkar AA, et al. Natural Genetic Variation

Caused by Small Insertions and Deletions in the Human Genome. Genome Research. 2011; 21

(6):830–839. https://doi.org/10.1101/gr.115907.110 PMID: 21460062

22. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial Sequencing and Analysis

of the Human Genome. Nature. 2001; 409(6822):860–921. https://doi.org/10.1038/35057062 PMID:

11237011

23. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: Exploring the

World’s Knowledge of Somatic Mutations in Human Cancer. Nucleic Acids Research. 2015; 43(D1):

D805–D811. https://doi.org/10.1093/nar/gku1075 PMID: 25355519

24. Kim S, Jeong K, Bafna V. Wessim: A Whole-Exome Sequencing Simulator Based on in Silico Exome

Capture. Bioinformatics (Oxford, England). 2013; 29(8):1076–1077. https://doi.org/10.1093/

bioinformatics/btt074

25. Kent WJ. BLAT—the BLAST-like Alignment Tool. Genome Research. 2002; 12(4):656–664. https://doi.

org/10.1101/gr.229202 PMID: 11932250

26. Novocraft. http://www.novocraft.com. Accessed 21 December 2016.

27. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation dis-

covery and genotyping using next-generation DNA sequencing data. Nature Genetics. 2011; 43

(5):491–498. https://doi.org/10.1038/ng.806 PMID: 21478889

28. Challis D, Yu J, Evani US, Jackson AR, Paithankar S, Coarfa C, et al. An Integrative Variant Analysis

Suite for Whole Exome next-Generation Sequencing Data. BMC bioinformatics. 2012; 13:8. https://doi.

org/10.1186/1471-2105-13-8 PMID: 22239737

29. Shen Y, Wan Z, Coarfa C, Drabek R, Chen L, Ostrowski EA, et al. A SNP Discovery Method to Assess

Variant Allele Probability from next-Generation Resequencing Data. Genome Research. 2010; 20

(2):273–280. https://doi.org/10.1101/gr.096388.109 PMID: 20019143

30. Gerstung M, Beisel C, Rechsteiner M, Wild P, Schraml P, Moch H, et al. Reliable Detection of Subclonal

Single-Nucleotide Variants in Tumour Cell Populations. Nature Communications. 2012; 3:811. https://

doi.org/10.1038/ncomms1814 PMID: 22549840

31. Shiraishi Y, Sato Y, Chiba K, Okuno Y, Nagata Y, Yoshida K, et al. An Empirical Bayesian Framework

for Somatic Mutation Detection from Cancer Genome Sequencing Data. Nucleic Acids Research. 2013;

41(7):e89–e89. https://doi.org/10.1093/nar/gkt126 PMID: 23471004

32. Garrison E, Marth G. Haplotype-Based Variant Detection from Short-Read Sequencing.

arXiv:12073907 [q-bio]. 2012.

33. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis

Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome

Research. 2010; 20(9):1297–1303. https://doi.org/10.1101/gr.107524.110 PMID: 20644199

34. Roth A, Ding J, Morin R, Crisan A, Ha G, Giuliany R, et al. JointSNVMix: A Probabilistic Model for Accu-

rate Detection of Somatic Mutations in Normal/Tumour Paired next-Generation Sequencing Data. Bio-

informatics. 2012; 28(7):907–913. https://doi.org/10.1093/bioinformatics/bts053 PMID: 22285562

35. Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, Wong CH, et al. LoFreq: A Sequence-Quality Aware,

Ultra-Sensitive Variant Caller for Uncovering Cell-Population Heterogeneity from High-Throughput

Sequencing Datasets. Nucleic Acids Research. 2012; 40(22):11189–11201. https://doi.org/10.1093/

nar/gks918 PMID: 23066108

36. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive Detection of

Somatic Point Mutations in Impure and Heterogeneous Cancer Samples. Nature Biotechnology. 2013;

31(3):213–219. https://doi.org/10.1038/nbt.2514 PMID: 23396013

37. Bareke E, Saillour V, Spinella JF, Vidal R, Healy J, Sinnett D, et al. Joint Genotype Inference with Germ-

line and Somatic Mutations. BMC Bioinformatics. 2013; 14(5):1–11.

38. Li H. A Statistical Framework for SNP Calling, Mutation Discovery, Association Mapping and Population

Genetical Parameter Estimation from Sequencing Data. Bioinformatics. 2011; 27(21):2987–2993.

https://doi.org/10.1093/bioinformatics/btr509 PMID: 21903627

39. Hansen NF, Gartner JJ, Mei L, Samuels Y, Mullikin JC. Shimmer: Detection of Genetic Alterations in

Tumors Using next-Generation Sequence Data. Bioinformatics. 2013; 29(12):1498–1503. https://doi.

org/10.1093/bioinformatics/btt183 PMID: 23620360

40. Goya R, Sun MGF, Morin RD, Leung G, Ha G, Wiegand KC, et al. SNVMix: Predicting Single Nucleo-

tide Variants from next-Generation Sequencing of Tumors. Bioinformatics. 2010; 26(6):730–736.

https://doi.org/10.1093/bioinformatics/btq040 PMID: 20130035

41. Liu Y, Loewer M, Aluru S, Schmidt B. SNVSniffer: an integrated caller for germline and somatic single-

nucleotide and indel mutations. BMC Systems Biology. 2016; 10(S2):47. https://doi.org/10.1186/

s12918-016-0300-5 PMID: 27489955

Comprehensive benchmarking of SNV callers for highly admixed tumor data

PLOS ONE | https://doi.org/10.1371/journal.pone.0186175 October 11, 2017 16 / 18

https://doi.org/10.1101/gr.115907.110
http://www.ncbi.nlm.nih.gov/pubmed/21460062
https://doi.org/10.1038/35057062
http://www.ncbi.nlm.nih.gov/pubmed/11237011
https://doi.org/10.1093/nar/gku1075
http://www.ncbi.nlm.nih.gov/pubmed/25355519
https://doi.org/10.1093/bioinformatics/btt074
https://doi.org/10.1093/bioinformatics/btt074
https://doi.org/10.1101/gr.229202
https://doi.org/10.1101/gr.229202
http://www.ncbi.nlm.nih.gov/pubmed/11932250
http://www.novocraft.com
https://doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
https://doi.org/10.1186/1471-2105-13-8
https://doi.org/10.1186/1471-2105-13-8
http://www.ncbi.nlm.nih.gov/pubmed/22239737
https://doi.org/10.1101/gr.096388.109
http://www.ncbi.nlm.nih.gov/pubmed/20019143
https://doi.org/10.1038/ncomms1814
https://doi.org/10.1038/ncomms1814
http://www.ncbi.nlm.nih.gov/pubmed/22549840
https://doi.org/10.1093/nar/gkt126
http://www.ncbi.nlm.nih.gov/pubmed/23471004
https://doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
https://doi.org/10.1093/bioinformatics/bts053
http://www.ncbi.nlm.nih.gov/pubmed/22285562
https://doi.org/10.1093/nar/gks918
https://doi.org/10.1093/nar/gks918
http://www.ncbi.nlm.nih.gov/pubmed/23066108
https://doi.org/10.1038/nbt.2514
http://www.ncbi.nlm.nih.gov/pubmed/23396013
https://doi.org/10.1093/bioinformatics/btr509
http://www.ncbi.nlm.nih.gov/pubmed/21903627
https://doi.org/10.1093/bioinformatics/btt183
https://doi.org/10.1093/bioinformatics/btt183
http://www.ncbi.nlm.nih.gov/pubmed/23620360
https://doi.org/10.1093/bioinformatics/btq040
http://www.ncbi.nlm.nih.gov/pubmed/20130035
https://doi.org/10.1186/s12918-016-0300-5
https://doi.org/10.1186/s12918-016-0300-5
http://www.ncbi.nlm.nih.gov/pubmed/27489955
https://doi.org/10.1371/journal.pone.0186175


42. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, et al. SomaticSniper: Identification

of Somatic Point Mutations in Whole Genome Sequencing Data. Bioinformatics. 2012; 28(3):311–317.

https://doi.org/10.1093/bioinformatics/btr665 PMID: 22155872

43. Saunders CT, Wong WSW, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: Accurate Somatic

Small-Variant Calling from Sequenced Tumor—normal Sample Pairs. Bioinformatics. 2012; 28

(14):1811–1817. https://doi.org/10.1093/bioinformatics/bts271 PMID: 22581179

44. Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, et al. VarDict: a novel and ver-

satile variant caller for next-generation sequencing in cancer research. Nucleic Acids Research. 2016;

44(11):e108. https://doi.org/10.1093/nar/gkw227 PMID: 27060149

45. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: Somatic Mutation and

Copy Number Alteration Discovery in Cancer by Exome Sequencing. Genome Research. 2012; 22

(3):568–576. https://doi.org/10.1101/gr.129684.111 PMID: 22300766

46. Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, et al. Integrating human sequence data sets

provides a resource of benchmark SNP and indel genotype calls. Nature Biotechnology. 2014; 32

(3):246–51. https://doi.org/10.1038/nbt.2835 PMID: 24531798

47. Picard. https://broadinstitute.github.io/picard/index.html. Accessed 23 March 2017.

48. Grant RC, Selander I, Connor AA, Selvarajah S, Borgida A, Briollais L, et al. Prevalence of Germline

Mutations in Cancer Predisposition Genes in Patients with Pancreatic Cancer. Gastroenterology. 2015;

148(3):556–564. https://doi.org/10.1053/j.gastro.2014.11.042 PMID: 25479140

49. Yamamoto H, Higasa K, Sakaguchi M, Shien K, Soh J, Ichimura K, et al. Novel Germline Mutation in the

Transmembrane Domain of HER2 in Familial Lung Adenocarcinomas. Journal of the National Cancer

Institute. 2014; 106(1):djt338. https://doi.org/10.1093/jnci/djt338 PMID: 24317180

50. Meindl A, Hellebrand H, Wiek C, Erven V, Wappenschmidt B, Niederacher D, et al. Germline Mutations

in Breast and Ovarian Cancer Pedigrees Establish RAD51C as a Human Cancer Susceptibility Gene.

Nature Genetics. 2010; 42(5):410–414. https://doi.org/10.1038/ng.569 PMID: 20400964

51. Hanahan D, Weinberg RA. Hallmarks of Cancer: The next Generation. Cell. 2011; 144(5):646–674.

https://doi.org/10.1016/j.cell.2011.02.013 PMID: 21376230

52. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The Immune Contexture in Human Tumours:

Impact on Clinical Outcome. Nature Reviews Cancer. 2012; 12(4):298–306. https://doi.org/10.1038/

nrc3245 PMID: 22419253

53. Pagès F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, et al. Effector Memory T Cells,

Early Metastasis, and Survival in Colorectal Cancer. The New England Journal of Medicine. 2005; 353

(25):2654–2666. https://doi.org/10.1056/NEJMoa051424 PMID: 16371631

54. Basik M, Aguilar-Mahecha A, Rousseau C, Diaz Z, Tejpar S, Spatz A, et al. Biopsies: Next-Generation

Biospecimens for Tailoring Therapy. Nature Reviews Clinical Oncology. 2013; 10(8):437–450. https://

doi.org/10.1038/nrclinonc.2013.101 PMID: 23799370

55. Jones S, Anagnostou V, Lytle K, Parpart-Li S, Nesselbush M, Riley DR, et al. Personalized Genomic

Analyses for Cancer Mutation Discovery and Interpretation. Science Translational Medicine. 2015; 7

(283):283ra53. https://doi.org/10.1126/scitranslmed.aaa7161 PMID: 25877891

56. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic Resistance of Tumorigenic

Breast Cancer Cells to Chemotherapy. Journal of the National Cancer Institute. 2008; 100(9):672–679.

https://doi.org/10.1093/jnci/djn123 PMID: 18445819

57. Greaves M, Maley CC. Clonal Evolution in Cancer. Nature. 2012; 481(7381):306–313. https://doi.org/

10.1038/nature10762 PMID: 22258609

58. Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour Heterogeneity in the Clinic. Nature. 2013; 501

(7467):355–364. https://doi.org/10.1038/nature12627 PMID: 24048068

59. Burrell RA, McGranahan N, Bartek J, Swanton C. The Causes and Consequences of Genetic Hetero-

geneity in Cancer Evolution. Nature. 2013; 501(7467):338–345. https://doi.org/10.1038/nature12625

PMID: 24048066

60. McGranahan N, Swanton C. Biological and Therapeutic Impact of Intratumor Heterogeneity in Cancer

Evolution. Cancer Cell. 2015; 27(1):15–26. https://doi.org/10.1016/j.ccell.2014.12.001 PMID: 25584892

61. Burrell RA, Swanton C. Tumour Heterogeneity and the Evolution of Polyclonal Drug Resistance. Molec-

ular Oncology. 2014; 8(6):1095–1111. https://doi.org/10.1016/j.molonc.2014.06.005 PMID: 25087573

62. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, et al. Evolution and

Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia. Cell. 2013; 152(4):714–726. https://

doi.org/10.1016/j.cell.2013.01.019 PMID: 23415222

63. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM, et al. Genetic Variegation of

Clonal Architecture and Propagating Cells in Leukaemia. Nature. 2011; 469(7330):356–361. https://doi.

org/10.1038/nature09650 PMID: 21160474

Comprehensive benchmarking of SNV callers for highly admixed tumor data

PLOS ONE | https://doi.org/10.1371/journal.pone.0186175 October 11, 2017 17 / 18

https://doi.org/10.1093/bioinformatics/btr665
http://www.ncbi.nlm.nih.gov/pubmed/22155872
https://doi.org/10.1093/bioinformatics/bts271
http://www.ncbi.nlm.nih.gov/pubmed/22581179
https://doi.org/10.1093/nar/gkw227
http://www.ncbi.nlm.nih.gov/pubmed/27060149
https://doi.org/10.1101/gr.129684.111
http://www.ncbi.nlm.nih.gov/pubmed/22300766
https://doi.org/10.1038/nbt.2835
http://www.ncbi.nlm.nih.gov/pubmed/24531798
https://broadinstitute.github.io/picard/index.html
https://doi.org/10.1053/j.gastro.2014.11.042
http://www.ncbi.nlm.nih.gov/pubmed/25479140
https://doi.org/10.1093/jnci/djt338
http://www.ncbi.nlm.nih.gov/pubmed/24317180
https://doi.org/10.1038/ng.569
http://www.ncbi.nlm.nih.gov/pubmed/20400964
https://doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
https://doi.org/10.1038/nrc3245
https://doi.org/10.1038/nrc3245
http://www.ncbi.nlm.nih.gov/pubmed/22419253
https://doi.org/10.1056/NEJMoa051424
http://www.ncbi.nlm.nih.gov/pubmed/16371631
https://doi.org/10.1038/nrclinonc.2013.101
https://doi.org/10.1038/nrclinonc.2013.101
http://www.ncbi.nlm.nih.gov/pubmed/23799370
https://doi.org/10.1126/scitranslmed.aaa7161
http://www.ncbi.nlm.nih.gov/pubmed/25877891
https://doi.org/10.1093/jnci/djn123
http://www.ncbi.nlm.nih.gov/pubmed/18445819
https://doi.org/10.1038/nature10762
https://doi.org/10.1038/nature10762
http://www.ncbi.nlm.nih.gov/pubmed/22258609
https://doi.org/10.1038/nature12627
http://www.ncbi.nlm.nih.gov/pubmed/24048068
https://doi.org/10.1038/nature12625
http://www.ncbi.nlm.nih.gov/pubmed/24048066
https://doi.org/10.1016/j.ccell.2014.12.001
http://www.ncbi.nlm.nih.gov/pubmed/25584892
https://doi.org/10.1016/j.molonc.2014.06.005
http://www.ncbi.nlm.nih.gov/pubmed/25087573
https://doi.org/10.1016/j.cell.2013.01.019
https://doi.org/10.1016/j.cell.2013.01.019
http://www.ncbi.nlm.nih.gov/pubmed/23415222
https://doi.org/10.1038/nature09650
https://doi.org/10.1038/nature09650
http://www.ncbi.nlm.nih.gov/pubmed/21160474
https://doi.org/10.1371/journal.pone.0186175


64. Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, et al. EGFR Mutation and

Resistance of Non-Small-Cell Lung Cancer to Gefitinib. The New England Journal of Medicine. 2005;

352(8):786–792. https://doi.org/10.1056/NEJMoa044238 PMID: 15728811

65. Morrissy AS, Garzia L, Shih DJH, Zuyderduyn S, Huang X, Skowron P, et al. Divergent Clonal Selection

Dominates Medulloblastoma at Recurrence. Nature. 2016; 529(7586):351–357. https://doi.org/10.

1038/nature16478 PMID: 26760213

66. Mroz EA, Tward AM, Hammon RJ, Ren Y, Rocco JW. Intra-Tumor Genetic Heterogeneity and Mortality

in Head and Neck Cancer: Analysis of Data from The Cancer Genome Atlas. PLOS Med. 2015; 12(2):

e1001786. https://doi.org/10.1371/journal.pmed.1001786 PMID: 25668320

67. Zhao B, Hemann MT, Lauffenburger DA. Intratumor Heterogeneity Alters Most Effective Drugs in

Designed Combinations. Proceedings of the National Academy of Sciences. 2014; 111(29):10773–

10778. https://doi.org/10.1073/pnas.1323934111

68. Gatenby RA, Brown J, Vincent T. Lessons from Applied Ecology: Cancer Control Using an Evolutionary

Double Bind. Cancer Research. 2009; 69(19):7499–7502. https://doi.org/10.1158/0008-5472.CAN-09-

1354 PMID: 19752088

Comprehensive benchmarking of SNV callers for highly admixed tumor data

PLOS ONE | https://doi.org/10.1371/journal.pone.0186175 October 11, 2017 18 / 18

https://doi.org/10.1056/NEJMoa044238
http://www.ncbi.nlm.nih.gov/pubmed/15728811
https://doi.org/10.1038/nature16478
https://doi.org/10.1038/nature16478
http://www.ncbi.nlm.nih.gov/pubmed/26760213
https://doi.org/10.1371/journal.pmed.1001786
http://www.ncbi.nlm.nih.gov/pubmed/25668320
https://doi.org/10.1073/pnas.1323934111
https://doi.org/10.1158/0008-5472.CAN-09-1354
https://doi.org/10.1158/0008-5472.CAN-09-1354
http://www.ncbi.nlm.nih.gov/pubmed/19752088
https://doi.org/10.1371/journal.pone.0186175

