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Abstract: We study the role of disorder in producing the metastable states in which the extent of
mass localization is intermediate between that of a liquid and a crystal with long-range order. We
estimate the corresponding entropy with the coarse-grained description of a many-particle system
used in the classical density functional model. We demonstrate that intermediate localization of the
particles results in a change of the entropy from what is obtained from a microscopic approach using
for sharply localized vibrational modes following a Debye distribution. An additional contribution is
included in the density of vibrational states g(ω) to account for this excess entropy. A corresponding
peak in g(ω)/ω2 vs. frequency ω matches the characteristic boson peak seen in amorphous solids.
In the present work, we also compare the shear modulus for the inhomogeneous solid having
localized density profiles with the corresponding elastic response for the uniform liquid in the limit
of high frequencies.

Keywords: density functional theory; vibrational modes; free energy landscape

1. Introduction

In isotropic fluids, the constituent particles move randomly, with the corresponding
time-averaged density being constant at all points. This random movement in space is
absent at lower temperatures or higher densities, and the crystalline state forms. The latter
has a characteristic inhomogeneous density ρ(x) having the symmetry of the corresponding
crystal. The particles vibrate around the respective lattice points. Even in computer simula-
tions of a system of hard spheres, it has been seen [1] that a fluid to crystal transition occurs.
The hard-sphere fluid transforms into an inhomogeneous state with the particles vibrating
around the points of an fcc lattice. This transformation is a result of the competition be-
tween the energetic and entropic contributions to the free energy and occurs at the packing
ρ0σ3 = 0.502, which is much lower than the close pack fcc structure with ϕ = 0 .740. The
classical density functional theory (DFT) presents a theoretical model [2] for understanding
the freezing transition by treating the coarse-grained one-particle density ρ(x) as an order
parameter [3]. A typical parametrization of the inhomogeneous density function for the
crystalline state involves superposition of Gaussian density profiles centered on a lattice
with the long-range order of the crystalline state [4].

ρ(r) = ∑
i

φ(|r− Ri|), (1)

where the {Ri} denotes the underlying lattice. The function φ is taken as the isotropic
Gaussian φ(r) = ( α

π )
3
2 e−αr2

. The parameter α characterizes the inverse width or spread
of the Gaussian density profile and represents the degree of mass localization in the
system. The homogeneous liquid state density is described by Gaussian profiles of very
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large widths in the limit α→0. Metastable states with aperiodic structures [5–7] have also
been studied using DFT. They have free energies intermediate between a crystal and a
homogeneous liquid state. These metastable states consist of localized density profiles
around the respective points {Ri} of an amorphous lattice. Such local minima of the free
energy functional exist for hard-sphere interactions and hard-core Hertzian potentials.
The thermodynamic properties of the inhomogeneous amorphous solid are computed,
assuming the system to be in a single phase. The amorphous nature of the underlying
structures plays a crucial role in producing the metastable free-energy minima. Breaking of
the isotropic symmetry of the liquid state leads to the development of the transverse sound
modes in the crystal which are of the Goldstone modes [8]. Transverse sound modes occur
in the amorphous solid state as well. However, the vibrational states of glassy materials
are beyond the simple plane-wave phonon picture for crystals.

The crystalline and the amorphous (termed as glass) states of matter have a character-
istic high degree of mass localization compared to that of the liquid state. In the present
context of DFT, this refers to free-energy minima for the system corresponding nonzero
values of the parameter α. The localized particles in the disordered glassy state are on
a metastable amorphous lattice structure without any long-range order. The individual
particles vibrate around the sites, which remain localized on a disordered lattice over
long times. For the amorphous solid, density of vibrational modes is modified from the
predictions of the Debye distribution. The excess in the density of states (DOS) g(ω) for a
disordered system is at the THz frequency (ω) range and appears as a peak in the reduced
DOS representation as in g(ω)/ω2 vs. ω plot. This peak is analogous to the so-called
boson peak, whose height decreases and location shifts towards the higher frequencies
with the increase of pressure or density. Inelastic scattering studies of light and neutron
from amorphous solids [9,10] has established the presence of the boson peak.

Several authors have studied various models for understanding the boson peak forma-
tion. These include analysis based on (a) potential energy landscape description to describe
a transition from a saddle-point-dominated phase without phonons to a minima-dominated
phase with low-energy phonons [11], (b) localized phonons in cohesive clusters [12,13],
(c) an-harmonic interaction potentials [14] for a cluster of particles, (d) domain walls be-
tween configurations forming a mosaic of disordered states [15], (e) descriptions in terms of
crystalline lattices of springs with randomly assigned stiffness [16], (f) randomly fluctuating
elastic constants [17,18], and (g) the disordered network solids with fixed bond connec-
tivity [19]. The model for a disordered solid is studied [16] in terms of a geometrically
perfect crystal with random interactions between nearest neighbors or in terms of a crystal
having particles with different masses. A common aspect of the boson peak models is
that they are based on the existence of localized modes in the amorphous solid [20] and
are a manifestation of the disorder. The system’s free energy reaches a minimum in the
equilibrium state with contributions from the vibrational modes in the solid.

In the present work, we demonstrate the role of disorder in producing the metastable
states with a degree of mass localization, intermediate between a liquid and a crystal
with long-range order. Using coarse-grained description in terms of the density field, we
obtain that localization of the particle over intermediate length scales makes a change in
the system’s entropy. This modified entropy is obtained by including the excess density
of states in the form of a boson peak. For the inhomogeneous states using the standard
formulation of DFT, thermodynamic properties like pressure and elastic constants like
shear modulus are also obtained. For this, we compute the first and second derivatives of
the free energy with respect to the average density. In the present work, we also consider
how the solid-like properties, like the shear modulus for the inhomogeneous disordered
states (with mass localization), change compared to the similar property for the uniform
liquid in the high-frequency limit. We organize the paper as follows. In Section 2, we
discuss the calculation of entropy of the hard-sphere system using a continuum model in
terms of the coarse-grained density. We consider a model for the solid-like system in terms
of vibrational modes and a choice of the appropriate density of states g(ω). In the next
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section, we discuss the calculation of the total free energy taking into account the role of
the interaction and identify the amorphous metastable states with inhomogeneous density
ρ(x). We analyze the appropriate density of states for the solid-like state with a low degree
of mass localization (compared to a crystal) and identify the characteristic boson peak. In
Section 4, we calculate the elastic constants for the amorphous solid-like state by extending
the DFT to include the weighted density approximation. The paper ends with a discussion
of the key points.

2. Entropy of Delocalization
2.1. The Coarse Grained Model

Let us consider a system of N identical particles of mass m and the position and
momentum coordinates {rα, pα}, for α = 1, ..N. The whole set of phase space variables
are to be denoted as {rN , pN}. At the microscopic level, the one particle density ρ̂(x) is
formally defined as a function of the phase space variables (rN , pN),

ρ̂(x) =
N

∑
α=1

δ(x− rα). (2)

The microscopic Hamiltonian for the system of N particles is given by

HN =
N

∑
α=1

p2
α

2m
+ U + Uext ≡ H0

N + Uext . (3)

where H0
N is the intrinsic part of the Hamiltonian N particle system, and U(r1, ...., rN) is

the interaction energy of the N particle system. Uext is the external field contribution to
the Hamiltonian and is obtained as an interaction term with a local field arising from a
one-body potential φ,

Uext = ∑
α

φ(rα) =
∫

dxφ(x)ρ̂(x) . (4)

The coarse-grained density function corresponding to the distribution function f is then
obtained as ρ(x) = Trρ̂(x) f , where the operation “Tr” refers to statistical mechanical
average. For the equilibrium density, we choose the standard grand canonical ensemble.

The free energy of the liquid is obtained as a functional of the coarse-grained density
function ρ(x) as a sum of two parts—the ideal gas term and the interaction term:

F[ρ] = Fid[ρ] + Fex[ρ]. (5)

The ideal gas part Fid is obtained exactly by setting the interaction potential U = 0 in
the Hamiltonian. In this case, Hamiltonian Ho

N of the N particle system only has the
kinetic energy term K = ∑α p2

α/2m and thus explicitly integrating out the 3N momentum
variables, the grand canonical partition function Ξ is obtained as

Ξ = Tr exp[−β{Ho −∑
α

u(rα)}] = exp
[

Λ−3
0

∫
dxeβu(x)

]
(6)

where u(x) = µ − φ(x), in terms of the external field φ and Λ0 = h/
√

2πmkBT, is the
thermal de Broglie wavelength for the liquid particles. Using the expression (6), the coarse
grained density is obtained for noninteracting case in the exact form,

ρ(x) =
exp[βu(x)]

Λ3
0

, (7)
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where βu(x) = ln[Λ3
0ρ(x)] . The free energy functional F[ρ(x)] for the noninteracting

system is obtained in terms of the coarse grained density by generalization of the corre-
sponding thermodynamic relation,

Fid[ρ] = µ
∫

dxρ(x)−
∫

dxφ(x)ρ(x)− β−1
∫

ρ(x)dx (8)

We have used the ideal gas equation of state in writing the second term on the right-hand
side. Therefore, using the expression (7) we obtain

Fid = β−1
∫

dxρ(x)[ln(Λ3
0ρ(x))− 1]. (9)

For the noninteracting system of N particle, the partition function is ZN = (V/Λ3
0)

N/N!,
and thus the ideal gas free energy is obtained from the logarithm of ZN for the equilibrium
state. Therefore, βFid = Vρ0(ln(ρ0Λ3

0)− 1) for the uniform density fluid ρ0, which is the
limit ρ(x)→ρ0 in Equation (9). From Equation (9), it is easy to see that the entropy drops
upon localization of the particles due to the restriction of available phase space. The ideal
gas contribution for the N particles system changes by an amount ∆Fid when ρ0→ρ(x):

∆Fid = ρ0

∫
drρ̃(r)[ln ρ̃(r)], (10)

where ρ̃(r) = ρ(r)/ρ0. As by definition the quantity ρ̃(r) is always positive, using the
Gibbs inequality {x ln x− x + 1} ≥ 0 for positive x, it follows that ∆Fid ≥ 0. The relation (7)
between the chemical potential and the density is inverted here, giving an exact expression
for the free energy functional. In this regard, it is essential to note that the corresponding
free energy for the system, expressed as a function of the density ρ(x), is exact. It is,
however, possible only for the so-called ideal-gas contribution for the noninteracting
system. The role of interactions are accounted for by introducing the direct correlation
functions c(i)’s for i = 1,2,3, which are defined as successive order functional derivative of
an excess contribution Fex to the free energy due to interactions. We will be discussing the
interacting system in the next section.

Two length scales are inherent in the coarse-grained picture for the solid presented
above. The interaction potential between the constituent particles has the characteristic
length scale, which is the hard-sphere diameter σ in the present case. The other length
is ` = 1/

√
α used in parametrization of the inhomogeneous density function (1). In the

coarse-grained description, the scale ` signifies the degree of localization of mass in the
system, and the limit ασ2 → 0 or ` >> σ represents density profiles of uniform liquid
with an average ρ0 = N/V. In this case, the sum in the RHS of Equation (1) has matching
contributions from a large number of terms, each of which corresponds to a Gaussian
profile centered on a corresponding site ∈ {Ri}. On the other hand, the limit ασ2 >> 1 or
` << σ corresponds to sharply localized density profiles like that in a crystal. The ratio
`/σ is generally referred to as the Lindeman parameter for the crystal. For ασ2 ≥ 50, the
density ρ(r) is constructed in terms of the contributions from non-overlapping density
profiles and Equation (9) is well approximated by its asymptotic value for large α,

fid[ρ] ≈ −
5
2
+ ln

[
Λ3

0

( α

π

) 3
2
]
. (11)

For lower values of α where the overlapping of the Gaussian profiles from different sites
are relevant in the sum in Equation (1), fid is evaluated numerically from the integral

fid[ρ] =
∫

drφ(r)
{

ln
[

Λ3
0

∫
dRφ(r− R)(δ(R) + ρow(R))

]
− 1
}

. (12)
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The free energy in the right-hand side of (12) is averaged over a random set of Gaussian
centers {Ri} for the density profiles, and is obtained in terms of the site–site correlation
function w(R). However, it is helpful to note here that even if the Gaussian centers are
on a regular crystalline lattice, the result for the non-interacting system is not changed.
It follows directly by expressing the inhomogeneous density function ρ(r) in terms of
reciprocal lattice vector (RLV) expansion:

ρ(r) = ρ0 + ρs ∑
i

ζieiGi .r, (13)

where {Gi} denotes the RLV [21], and for the fcc structure the solid density ρs = 4/a3
0 in

terms of the lattice constant a0. The RLV expansion for the density reduces to the form (1)
when we identify ζi = exp[−G2

i /(4α)]. For smaller values of α, the sum in the expansion
for density has to include contributions from increasingly the larger number of RLVs.

Figure 1 shows the variation of the total entropy S (in units of kB) obtained by evalu-
ating the ideal gas part of the free energy fid from the expression (9) using two different
approximations for the inhomogeneous density ρ(x). First, in Equation (1), ρ is described
with in terms of Gaussian density profiles centered on a random lattice {Ri} in real space.
Second, in Equation (13), density is expressed in terms of an expansion in reciprocal wave
vectors {G} corresponding to a regular lattice with long range order. We use the fcc struc-
ture going up to Gσ = 14. The ρ(x) in the respective cases are used in expression (9) to
obtain the fid. These results shown in the main panel correspond to a hard-sphere system
with packing-fraction ϕ = πρ0σ3/6 = 0.576. The thermal wavelength is kept a constant
at Λ = 0.025σ. For a crossover value of α≤α0, the entropic contribution is evaluated nu-
merically from the integral given in Equation (12). The pair function w(R) is approximated
here with pair function for the Bernal’s random structure [22] and is generated through
Bennett’s algorithm [23]. We have obtained w(R) using the following relation:

w(R) = gB

[
R(ϕ/ϕ0)

1
3
]
, (14)

where ϕ denotes the average packing fraction and ϕ0 is a scaling parameter for the struc-
ture [24] such that at ϕ = ϕ0, Bernal’s structure is obtained. The important thing to note
here that for α < α0, the free energy curve (shown as the solid line) deviates completely
from the asymptotic result. This line extends to the correct α→0 limit (ln{ρ0Λ3} − 1)
corresponding to the uniform liquid state. In the DFT model with coarse-grained density
ρ(x) expressed in terms of Gaussian profiles of inverse width α, a corresponding α0 is
identified such that for all α<α0 the asymptotic formula (11) deviates from the entropy
curve (shown in Figure 1) of the coarse-grained model. The inset of Figure 1 shows the
weak dependence of α0 on density ρ0.

Note, here, that the modified entropic contribution discussed above, corresponding to
small values of α or more spread out density distributions, be it around a random structure
or a regular set of lattice points, it is a manifestation of the delocalization of the particles
and in the α→0 it goes to the case of an isotropic liquid.
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S

Figure 1. Entropy per particle S in units of kB at packing fraction ϕ = 0.576, obtained from the density functional result
(9) (solid line) and from the asymptotic formula (11) (dashed line). Arrow marks location of α0, such that for α < α0

the asymptotic formula deviates from the exact result. Inset shows α0 ( in units of σ−2 ) vs. density ρ0σ3 for the hard
sphere system.

2.2. Microscopic Description

As an alternative to the coarse-grained model, evaluating the corresponding partition
function (for a microscopic model) obtains the free energy for the system. The micro-
scopic description is introduced here to focus on the density of vibrational modes in the
amorphous state with inhomogeneous mass distribution. The description involving the
vibrational modes is needed to study the corresponding modifications of the density of
states in the metastable liquid. Though no long-range symmetry breaking occurs, the glassy
state still supports transverse sound waves. These transverse modes are described in terms
of vibrational excitations over an amorphous structure constituting the phonon modes. The
respective free energies obtained from the continuum and microscopic approaches closely
agree in the form of parameters of the (density) field-theoretic model that are identified
with the density of states and characteristic cut-off frequency of the vibrational modes.
The set of vibrational modes for the density of states g(ω)dω between frequencies ω and
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ω + dω contributes to this. For an average ρ0 number of particles per unit volume, we have
a constraint on g maintaining the total number of vibrational modes in three dimensions,∫ ωm

0
g(ω)dω = 3ρ0 . (15)

The cut-off frequency ωm is a characteristic property of the material and sets the shortest
time scale for the vibrational modes. For fixed ρ0, the upper cut-off ωm[g] in the integral in
Equation (15) is treated as a functional of the density of states g(ω). In the constant NVT
ensemble, the partition function for 3N harmonic oscillators is

Z =
3N

∏
i=1

∞

∑
ni=0

exp
[
−h̄ωi
kBT

(
ni +

1
2

)]
, (16)

where ωi is the frequency of the i-th vibrational mode in the system. The free energy of the
non-interacting system is obtained in units of β−1 as

f̂ [ḡ] ≡ Ē− TS
V

=
∫ 1

0
κ(εmx)ḡ(x)dx , (17)

where Ē denotes the average kinetic energy of the N particles and scaled energy εm = βh̄ωm.
We write the free energy as f̂ with a hat to indicate that it is obtained from microscopic
considerations. The density of states g(ω) is written in Equation (17) in a scaled form ḡ(x),
as a function of the variable x = ω/ωm, i.e., ḡ(x) = (3ρ0)

−1ωmg(ω). In this case, ḡ(x) is
only nonzero for 0 ≤ x ≤ 1. The function κ(y) in the right hand side of Equation (17) is
obtained as

κ(y) = −1
4
{y + ln[1− e−y]− 2y/(ey − 1)}. (18)

Please see Appendix A for details of obtaining the above result for the function κ(y). The
function κ(εmx) determines the functional dependence of f̂ [g] on the scaled density of
states ḡ as given in Equation (17). A link between the density of states g(ω) and the mass
localization parameter α, is obtained by equating the results (9) and (17) for the ideal
gas part of the free energy following respectively from the coarse-grained model and the
microscopic calculation.

2.2.1. Debye Distribution

If the density of states is the Debye distribution, we obtain

g(ω)≡gD(ω) ≡ 9ρ0

ω3
D

ω2, (19)

where the upper cut-off ωm is the Debye frequency ωD = (6πρ0)
1/3c, in terms of the

speed of sound c. The corresponding scaled distribution ḡD is obtained as a function of
the scaled variable ḡD(x) = 3x2 where x = ω/ωD. In terms of the reduced variables, we
obtain εm≡εD=βh̄ωD. In the limit, εD << 1, when the density of states g(ω) is the Debye
distribution g≡gD in Equation (17), we have to the leading orders in εD:

f̂ [ḡD] = −
5
2
+ 3 ln εD + O(ε2

D). (20)

The result (20) for the free energy per particle calculated from the partition function of
the microscopic model is identical to the asymptotic formula (11) where we obtain the
(reduced) Debye frequency as

βh̄ωD≡εD =

√
α

π
Λ. (21)
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By comparing numerical evaluation of the integral on the right hand side of Equation (17)
(for the choice ḡ≡ḡD), with the asymptotic result (20) for different values of εD, a maximum
value εmax

D of εD is identified. It is εD up to which the two results agree. Figure 2 shows
this comparison. The point at which the two curves (approximate and exact) as given by
Equations (20) and (17), respectively, deviate is marked with an arrow at εmax

D = 2.5 in
the main panel. In the inset of the same figure, we show the corresponding agreement
between the two formulas for entropy (calculated from DFT) shown in Figure 1. The arrow
shown in this inset corresponds to εD = 0.069, i.e., using the relation (21), it follows that
(for Λ/σ = 0.025) the corresponding α = 24 ≈ α0. From this, it is clear that over the entire
range of α values in the DFT model, the Formula (11) is in agreement with the results of the
corresponding microscopic model with a Debye density of states. However, as the actual
entropy, S, deviates from the asymptotic Formula (11) for α<α0, the corresponding density
of states g(ω) in the microscopic model gets modified from the Debye form.

10
-2

10
-1

ε
D

10

15

20

S

2 3 4

ε
D

0

1

2

3

S^

Figure 2. Main Panel: Comparison of the integral in right hand side of Equation (17) and the asymptotic form (20). The
arrow indicates the value εD = 2.5 at which the asymptotic result separates from the exact value. Inset focus on the part of
the curve for the α range given in Figure 1 and arrow indicates the location of α0 in terms of εD. The width parameter α is
related to εD through Equation (21).
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2.2.2. Excess Density of States

To summarize the previous section, the free energy curve using DFT for α ≥ α0 follows
the asymptotic form (11), and this is identical with the form (20) obtained in the microscopic
framework using the Debye distribution gD(ω) as density of states g(ω). However, for
α < α0, the departure of the entropy curve from the asymptotic form (11) as shown in
Figure 1 requires modifying in the microscopic model the corresponding density of states
for g(ω) from the Debye form gD(ω). The normalization condition (15) for the modified
g(ω) is maintained with a corresponding upper cut-off in frequency ωm or equivalently εm
(=βh̄ωm) which is different from that of the Debye distribution. The upper cut-off ωm (and
thus εm) will depend on the form of function g(ω) as well as the value of width parameter
α(<α0), as the corresponding entropy, calculated in the coarse grained model has to match
with the microscopic results (17)–(18) with the modified g(ω). We require that the function
εm(α)→ εD(α) (of Equation (21)) as α→ α0. The correction part in this functional relation
is denoted by C(α), such that εm(α) = εD(α0) + C(α) with C(α)→0 as α→α0. For the
scaled distribution function ḡ(x) we make a modification over the corresponding Debye
form ḡD(x) = 3x2 in terms of the function ∆, such that ḡ(x, xm(α)) = 3x2(1 + ∆(x, α)). As
α→α0, we must have g→ ḡD for all frequencies x, and we express ∆ with the separation of
variables: ∆(x, α) = B(α)∆̃(x), where B(α)→0 as α→α0. In order to maintain the positivity
of the density of states, we also require that the function ∆̃(x) is in the range ±1. The x
dependence of the ∆̃(x) is chosen to have an intermediate peak over the whole frequency
range, and the position of the peak of ∆̃(x) is kept fixed at x = 0.22. In Figure 3, we show
the results obtained for the appropriate density of states ḡ(x) which reproduce the fid for
α < α0. We study a hard sphere system at a fixed density ϕ = 0.576. The reduced density of
states g(ω)/ω2 vs. ω/ωD is shown in Figure 3 for five different values of the localization
parameter ` = 1/

√
α. The variation of the corresponding upper cutoff ωm with width

parameter α is shown in the main panel of Figure 4. The peak frequency ωm is smaller than
the Debye frequency ωD for α < α0 and approaches ωD as α→α0.

0 0.2 0.4 0.6 0.8 1
ω

0

0.1

0.2

0.3

0.4

0.5

g
(ω
)/
ω
2

10
14
18
22
24

Figure 3. The reduced density of states g(ω)/ω2 in units of c3 ( c is the sound speed) vs. ω/ωD (ωD

is the upper cutoff of Debye distribution or Debye frequency) corresponding to the width parameter
α: 10 (solid), 14 (dashed), 18 (dot-dashed), 22 (dot-dashed) 24 (dot-dot-dashed) for a hard sphere
system at packing fraction ϕ = 0.574.
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α

0.6

0.8

1

ω
m

0.54 0.56 0.58

ϕ

2.6

2.7

2.8

ω
D

Figure 4. For a hard sphere system at packing fraction ϕ = 0.576, the upper cutoff (ωm) of the density of states g(ω)

(modified from the Debye form) vs. ασ2. The frequency ωm on the y axis is is scaled with the corresponding cutoff ωD for
the Debye distribution gD(ω). The solid line is a guide to eye. Inset: ωD in units of c/σ (c is the speed of sound) vs. packing
fraction ϕ.

3. The Free Energy Landscape

In the density functional theory, for identification of the equilibrium state of the fluid,
a proper thermodynamic potential or free energy is minimized with respect to the density
ρ(x). Free energy is expressed as a sum of two parts which are, respectively, the free energy
of the non-interacting system Fid and the contribution Fex due to interactions between
the particles. The part Fid we have already discussed in details above. The interaction
part Fex of the free energy is obtained in a functional Taylor series expansion around the
corresponding free energy for the uniform density state in terms of the density fluctuation
δρ(x) = ρ(x) − ρ0. For the N particle system we obtain, the Ramakrishnan–Yussouff
(RY) functional,

∆Fex = −1
2

∫
dx1

∫
dx2c(|dx1−x2|; ρ0)δρ(x1)δρ(x2) . (22)

At low densities, the state with spatially uniform mass distribution has the lowest
free energy. However, at higher densities, the crystalline state with highly localized
density profiles centered around the points of a lattice with long-range order has lower
free energy and represents the equilibrium state. Metastable minima corresponding to the
above free energy functional, intermediate between the isotropic liquid and the crystalline
state, have been identified in several extensions of traditional DFT methods [5,6]. Those
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metastable states have characteristic ρ(r) represented in terms of Gaussian profiles centered
on the points of an amorphous lattice. However, the inverse width parameter α for these
metastable states is generally lower than those for the sharply peaked density profiles
depicting the crystalline state. A qualitatively different free energy minimum, with the
optimum density function characterized by much smaller α values, has also been obtained
subsequently [7]. The low α minimum appears at α ≈ 18 for ρ0 = 1.12. We have chosen
here to describe the amorphous lattice {Ri} in terms of the Bernel structure. However,
metastable minima with the less localized density profiles also occur for other choices of the
random structure {Ri} [25,26]. The expansion (22) for the free energy of the liquid works
as a better approximation when the coarse-grained density corresponds to a low degree of
mass localization compared to that for the crystalline state with sharp density profiles.

The role of the interaction term enters here through the direct correlation function
c(r). The local minima of the free energy, signifying a low degree of mass localization,
have been obtained for various interaction potentials. These include hard sphere interac-
tion [7,27], Lennard–Jones [28], soft-sphere interaction [29], and Hertzian potentials [30].
A typical result obtained for the hard-sphere system in which the solution of the Percus–
Yevick equation [31] has been used to compute the direct correlation function c(r), is
displayed in Figure 5. In this case, minimization of the total free energy shows that disorder
plays a vital role in producing (in the free energy landscape) the local minima, which signify
the metastable states [32] in the partially delocalized region (α ≤ α0). The modified entropy
is matched with changed density of vibrational states, and is apparent from the fact that
the interaction part of the free energy Fex is very different in the respective cases of ordered
and disordered structures. If the Gaussian profiles for ρ(r) have their respective centers on
a lattice with long-range order similar to the crystalline state, no metastable minimum for the
total free energy is obtained in the small α (< α0) region. Figure 6 shows this case with no
minima appearing in the low α region. These low α or partially localized state exists only
if Fex is computed with the lattice points {Ri} on a random structure. Thus, disorder is
essential for the metastable minimum of the free energy in the delocalized region (α ≤ α0).
For disordered systems with weaker mass localization than the crystal, the corresponding
density of states g(ω) differs from the Debye distribution. This modified density (over
Debye) produces the entropy contribution appropriate for the delocalized amorphous state.
This density of states is consistent with a boson peak seen in amorphous solids.

For a specific interaction potential, density (ϕ) dependence of properties like peak-
height (Bh) and peak-position (ωp) of g(ω) is determined in terms of the optimum αmin. In
Figure 7, we show for the hard sphere potential, the dependence of αmin on the packing
fraction ϕ. Using this dependence, we obtain the corresponding boson peak curve (see
Figure 3, for example). In each case, the properties Bh and ωp for the distribution curve
at the αmin corresponding to packing fraction ϕ are obtained. Linking of αmin to ϕ is done
using Figure 7. The density (ϕ) dependence of height and position of the boson peak are
displayed, respectively, in Figures 8 and 9. Insets of Figures 8 and 9, respectively, display
the corresponding results from experiments. The trends seen from the experimental data
are the same as the theoretical model shown in the respective main panels. With the increase
of density, the boson peak height decreases, and the peak shifts to higher frequencies. Thus
accounting for the entropy for delocalized states by modifying (in the microscopic model)
the corresponding density of states in the form of boson peak agree with the experimental
data for amorphous metastable systems. Further studies with various interaction potentials
are needed to better understand this link between microscopic and coarse-grained models.
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Figure 5. For hard-sphere system, the optimum value of the width parameter αmin at which the total
free energy has a metastable minimum vs. packing ϕ. The solid line is a guide to the eye.
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Figure 6. For the metastable inhomogeneous state of the hard sphere system, total free energy ∆ f ,
in excess of that of the uniform state (solid line) vs. width parameter α (in units of σ−2) has a clear
minimum at ασ2 = 14. The corresponding interaction part ∆ fex (dashed line) is calculated with
density ρ(x) in Equation (1) defined in terms of Gaussian profiles centred on an amorphous lattice (see
text); the ideal gas part ∆ fid of the free energy difference ∆ f is shown as dotted line. All free energies
on the Y axis are in units of β−1. Packing fraction for the hard sphere system is ϕ = 0.576.
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Figure 7. For the metastable inhomogeneous state of the hard sphere system, total free energy ∆ f ,
in excess of that of the uniform state (solid line) vs. width parameter α (in units of σ−2) has no
minimum in the range of α shown in Figure 6. The corresponding interaction part ∆ fex (dashed line)
is calculated with density ρ(x) in Equation (1) defined in terms of Gaussian profiles centred on a
regular fcc lattice with long range order; the ideal gas part ∆ fid of the free energy difference ∆ f is
shown as dotted line and is identical to that shown in Figure 6. All free energies on the Y axis are in
units of β−1. Packing fraction for the hard sphere system is ϕ = 0.576.
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Figure 8. Results for properties of the modified density of states g(ω), e.g., shown in Figure 3
for the (amorphous) metastable hard sphere system with a low degree of mass localization. Main
panel: boson peak height Bh in units of c3 (c is the sound speed) vs. packing fraction ϕ. Inset:
experimental data [33] for boson peak height Bh (in units of 5.5× 10−4 meV−3) vs. density ρ0 (in
units of 3.66 gm/cm3).



Entropy 2021, 23, 1171 14 of 22

0.52 0.54 0.56 0.58 0.6

ϕ

0.45

0.5

0.55

0.6

ω
p

1 1.1 1.2

ρ

1.2

1.6

2

ω
p

Figure 9. Results for properties of the modified density of states g(ω), e.g., shown in Figure 3 for the (amorphous) metastable
hard sphere system with a low degree of mass localization. Main panel: boson peak frequency ωp in units of c/σ (c is the
sound speed) vs. packing fraction ϕ. Inset: experimental data [33] boson peak height ωp (in units of 3.2 meV) vs. density ρ

(in units of 3.66 gm/cm3).

4. Elasticity of the Localized State

The elastic constants for the amorphous metastable state is an important property to
understand its solid-like nature. In the DFT, equilibrium free energy of the inhomogeneous
state is obtained as a function of the average density ρ0. The bulk modulus K of the isotropic
solid is obtained in terms of the second derivatives of the free energy [24] with respect
to ρ0.

K = ρ2
0

∂2 f
∂ρ2

0
. (23)

The pressure in the solid is also obtained from the first derivative of the free energy as

P = ρ0
∂ f
∂ρ0
− f . (24)

We use the modified weighted density functional approximation (MWDA) [34] for cal-
culating the free energy of the inhomogeneous liquid in the metastable state. This is an
effective medium approach in which the nonuniform solid is mapped to an equivalent ho-
mogeneous liquid of lower density. In calculating the excess part per particle fex = Fex/N
using MWDA [35–38] in the canonical ensemble, a self-consistent integral equation [34]
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is obtained for the density of the effective liquid ρ̂. The corresponding packing fraction
ϕ̂ = πρ̂σ3/6 in terms of the suitably chosen free energy function fex(ϕ̂).

ϕ̂ =
I(ϕ̂, α)

2 f ′ex(ϕ̂) + ϕ f ′′ex(ϕ̂)
(25)

where the integral I is defined as

I = N−1
∫

dx
∫

dx′ρ(x)ρ(x′)c(|x− x′|; ϕ̂) . (26)

I is evaluated using the density in the parametric form (1). The latter involves the set of
points {Ri} at which the Gaussian density profiles are respectively centered. Averaging
over the different choices of this amorphous lattice, we express the final result in terms of a
site–site pair correlation function w(r) for the lattice points.

I = −
∫

dr1

∫
dr2

∫
dRc(|r1 − r2|; ϕ̂)φ(r1 − R)φ(r2)[δ(R) + ρ0w(R)] . (27)

The single and double primes over fex(x), in the above Equation (25), respectively, denote
the first and second derivatives of the function with respect to the argument x. For solving
Equation (25), the free energy fex(ϕ) is taken from the standard expression of excess free
energy of a hard-sphere system [39], in the form

fex(ϕ) =
3
2

[
2ϕ− ϕ2

(1− ϕ)2

]
− ln(1− ϕ) . (28)

The Percus–Yevick solution for the hard sphere system [31,40] is used for the direct correla-
tion function c(r) in the integral Equation (25).

For a fixed value of ρ0, the total free energy (sum of the respective ideal and excess
parts of the free energy) is obtained over a range of the width parameter α values by solving
the MWDA equation in each specific case. Metastable amorphous states, distinct from the
uniform liquid state, are identified by locating the intermediate minima of the correspond-
ing free energy with respect to the mass localization parameter α at α = αmin for different
values of the packing fraction ϕ. The quantity ` = 1/

√
αmin is the localization parameter

scaled with respect to σ. With increasing ρ0 or ϕ, the particles are more localized, and thus
the amplitudes of vibration of the particles around their respective mean position fall.

A class of minima corresponding to heterogeneous structures characterized by weak
mass localization for low values of α is detected [27]. Close to freezing, these delocalized
structures are more stable than the highly localized “hard-sphere glass”. However, at high
densities, or packing fraction ϕ > 0.500, the highly localized states corresponding to large
values of α (which signifying strong localization) become more stable. In Figure 10, we
show the free energy minima for different ϕ at 0.617, 0.581, and 0.554. As the packing frac-
tion increases, the curvatures of the free energy plots with respect to the width parameter α
keeps changing. The solid-like behavior of these amorphous states with inhomogeneous
density distributions is manifested in the corresponding elastic constants. The elastic
constants are calculated by analyzing the nature of the local free-energy minima. We use
the formulas (23) and (24) to compute the pressure and the bulk modulus by computing
first and second derivatives of the free energy at the two respective minima shown in
Figure 10. Using the K and P, in the Cauchy relation,

K =
5
3

G + 2(P− 1) . (29)

For the isotropic solid, we obtain the corresponding shear modulus G. These DFT results
for K, P, and G are, respectively, shown in the main panel as well as in the two insets of
Figure 11. We show the results for the two type minima depicted in Figure 9. For low
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packing fractions (ϕ < 0.580), the less localized (low α) state has higher values for the elastic
constants. For high packing fractions (ϕ > 0.580), the corresponding elastic constants are
higher for the sharply localized (high α) state. The corresponding pressure, calculated
from the same DFT results, however, does not show any cross over in trend like the elastic
coefficients and is always lower for the less localized state, i.e., the pressure for the less
localized state is always more than that for the sharply localized state. This is shown in
the inset of Figure 10. For the elastic constants, qualitative changes in relative behavior
between high and low alpha minima occur with increasing packing fraction due to subtle
changes in the curvatures of the corresponding free energy curves (shown in Figure 9).

10 100 1000

log(ασ
2
)

5

6

7

8

9

10

11

f

Figure 10. Results for free energy obtained with MWDA over a wider range of width parameter values α. The effective
medium for the inhomogeneous state is calculated here with density ρ(x) (Equation (1)) defined in terms of Gaussian
profiles centred on an amorphous lattice (see text). The free energy f of a hard sphere system vs. width parameter α (in units
of σ−2), for packing faction ϕ = 0.617 (dashed), = 0.581 (solid), and = 0.554 (dot-dashed).

Even a uniform liquid behaves like a solid over very short time scales, or equivalently
in the high-frequency limit [41]. We studied this short-time elastic response of the uniform
hard-sphere liquid in terms of the high-frequency elastic constants. The high-frequency
elastic constants for a many-particle system with pairwise interaction are expressed in the
well-known Mountain–Zwangig formulas [42,43]. However, these formulas do not go to a
finite limit (at a fixed density) for the pure hard-sphere interaction.
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Figure 11. Elastic constants K, G, and pressure P (all three quantities in units of ρ0kBT) of the inhomogeneous isotropic hard
sphere system vs. packing fraction ϕ. Results shown are obtained from respective DFT-formulas (23) for the bulk modulus
K (main panel); (24) for Pressure (Inset I); (29) for Shear modulus G (Inset II). In all three respective figures solid(dashed)
lines are for results obtained for the metastable state corresponding to low(high) width parameter (α) value (see text). The
three vertical arrows in main panel and inset II correspond to packing fraction values, ϕ = 0.554, 0.581, and 0.617 for which
the respective free-energy curves are shown in Figure 10.

Therefore, to calculate the high-frequency elastic constant, we use for the elastic
moduli of the hard-sphere system, formulas obtained through an analysis of the stress
tensor [44]. For local equilibrium, the stress tensor is expanded in terms of strains [45]
assuming only instantaneous binary collision between the hard spheres. Three particle and
higher-order collisions are being ignored here. From the long-wavelength expansion of the
stress tensor, the corresponding shear modulus, G∞, and bulk modulus, K∞, are obtained
(in units of ρ0kBT) in the form [46],

G∞ = 1 +
18ϕ2(1 + ϕ)(2− ϕ)

5(1− ϕ)4 . (30)

K∞ =
5
3

G∞ + 2[Z(ϕ)− 1] +
2
3

[
Z2(ϕ)− 1

]
. (31)

where P/(ρ0kBT) = Z(ϕ). In reaching the above relations we have used for thermodynam-
ics pressure P for the hard-sphere system the Carnahan-Starling approximation [39] as,

Z(ϕ) =
1 + ϕ + ϕ2 − ϕ3

(1− ϕ)3 . (32)
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We assume that the three quantities K, G, and P are related through the Cauchy linear
relation (29) as was the case for the DFT model. Therefore, the bulk modulus K is obtained
using the same linear relation. Results for these short time or high-frequency quantities are
shown with dashed lines in Figure 12. We express these three thermodynamic quantities in
units of ρ0kBT where T is the temperature.
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0.5 0.55 0.6
ϕ

10
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Figure 12. Main panel: high-frequency limit of the shear modulus G∞(solid) and bulk modulus K∞(dashed) for the uniform
density hard sphere system vs. packing fraction ϕ. Inset: pressure P for the uniform hard sphere liquid vs. packing fraction
ϕ. Here G∞, K∞, and P (all expressed in units of ρ0kBT) are respectively obtained [44,46] using formulas (30)–(32) in the text.

5. Discussion

In the present work, we obtained the entropy of the metastable hard-sphere liquid
with inhomogeneous (coarse-grained) density, a (functional) Taylor series expansion of
the free energy functional around the homogeneous state used in classical DFT models.
The result from coarse-grained density functional model is matched with that from the
microscopic model by using a modified distribution for the vibrational modes in the
amorphous solid-like state. By choosing the modified density of states in the form of a
boson peak, seen in amorphous solid-like states, we estimated the characteristic properties,
like the height of the peak or position of the peak frequency. The theoretical predictions
obtained from the model agree with the corresponding trends seen in experiments. With
increasing density, the height Bh of the peak decreases, while the position ωp of the peak
shifts to higher frequencies.

An essential characteristic of the boson peak is that it gets weaker with increasing
fragility, which is related to the long-time relaxation behavior of the glass-forming material.
This observed behavior follows naturally in the present model. The stronger the liquid
is, the more it displays an increasing tendency to form network structures. The density
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profiles are more localized for the stronger glasses. Therefore the increase of fragility is
synonymous with decrease of α, i.e., in the coarse-grained DFT models discussed here. Due
to the fact that, as discussed above, the boson peak height decreases with decreasing α, it
also implies a weaker boson peak for more fragile systems [47,48].

The coarse-grained model of DFT considered here can be linked to more traditional
models of disordered solids built in terms of springs. The phenomena of boson peak in
the disordered system are also studied in terms of a geometrically perfect crystal having
random interactions between the neighbors [16]. For large values of α in the DFT model,
the sharply localized density profiles are non-overlapping and are interpreted as individual
harmonic oscillators having spring constant κ proportional to α [49,50]. Including fluctua-
tions of α at different sites on the amorphous structure will be a natural extension of the
present model to make it more appropriate to describe the heterogeneous glassy state.

For calculating free energy, we have used the MWDA of DFT to account for the
inhomogeneous density distributions of the amorphous solid with purely hard-sphere
interaction. The weighted density approximation [51], keeping up to second-order density
fluctuations, accurately maps a purely repulsive hardcore system in terms of an equivalent
low-density fluid. In this regard, it is useful to note that the hard-sphere solid is somewhat
anomalous in the usual descriptions of lattice dynamics. In a microscopic level description,
no expansion in terms of displacements from equilibrium sites exists for the Hamiltonian
with purely hard-sphere interactions. Collisions entirely control the system, and between
the collisions, motions of the hard spheres lose coherence very rapidly. This ballistic motion
of the freely moving hard spheres in the crystal between collisions is quite analogous
to the corresponding motion of the particles in the low-density fluid. In MWDA, the
thermodynamic properties of the hard-sphere solid is successfully computed in terms of
an equivalent liquid of much lower density.

The equivalent density ρ̂ of the crystalline state in MWDA is generally much smaller
than ρ0, and thus for the low-density system, the PY approximation (28) for the free energy
is appropriate to use. However, when MWDA is applied to describe the amorphous
solid state, two qualitatively different types of minima occur, as discussed in the previous
section. First, the low α minimum, the ρ̂ comes out to be close to ρ0, and is not small in
the metastable region beyond the freezing point. Thus, the approximation (28) is not well
applicable in this case. On the other hand, for the highly localized state (for large α), the ρ̂
is much smaller than ρ0, and, in this case, the approximation (28) is more appropriate. For
the low α minimum in the MWDA results for free energy, the boson peak is identified by
accounting for the new entropy in terms of a modified density of states. This was described
in the previous section. For the other minimum (see Figure 9) at α = αmin on the higher
side, the corresponding entropy Ŝ calculated from the partition function of the microscopic
model with a Debye density of vibrational states, will agree (as shown in Figure 2) with
the corresponding DFT result for the entropy obtained using the asymptotic Formula (11).
This matching of entropy from the coarse-grained and microscopic models indicates that
any correction for the density of vibrational modes over the Debye distribution gD(ω) will
imply a zero correction to entropy S. How this will affect the height and position of the
boson peak for amorphous states with a high degree of mass localization (αmin >> α0),
will be studied elsewhere.
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Appendix A

In a constant NVT ensemble comprising of 3N harmonic oscillators, the logarithm of
the partition function is obtained as

lnZ = ln

[
3N

∏
i=1

∞

∑
ni=0

exp
{
−βh̄ωi

(
ni +

1
2

)}]

= −V
∫ ωm

0
dωg(ω)

[
βh̄ω

2
+ ln

(
1− e(−βh̄ω)

)]
. (A1)

In writing the last equality, we change from discrete to continuum limit and express the sum
over possible states in terms of the density of states g(ω). The latter is assumed to be nonzero
up to an upper cutoff of frequency ωm. Using the standard thermodynamic relations,

TS = β

(
∂F
∂β

)
V

, (A2)

we obtain the entropy from the logarithm of ZN as,

− TS = V
∫ ωm

0
dωg(ω)h̄ω

[
β−1 ln

(
1− e−βh̄ω

)
− h̄ω

eβh̄ω − 1

]
. (A3)

Derivative of Equation (A1) with respect to −β obtains for average energy as,

E = −∂ lnZ
∂β

=
∫ ωm

0
dωg(ω)h̄ω

[
1
2
+

1
eβh̄ω − 1

]
. (A4)

Taking the average kinetic and potential energies to be the same (Ē) and equal to half of the
total energy E, we obtain

βFid = β(Ē− TS)

= V
∫ ωm

0
dωg(ω)

[
βh̄ω

4
+ ln

(
1− e−βh̄ω

)
− βh̄ω

2(eβh̄ω − 1)

]
. (A5)

Since the total number of vibrational modes in the system is 3N, we have the following
constraint in terms of the scaled frequency x = ω/ωm,∫ 1

0
ḡ(x)dx = 1 , (A6)

where the scaled density of states has been defined as ḡ(x) = (3ρ0)
−1ωmg(ω). Now,

Equation (A5) gives the free energy density for the noninteracting system in terms of the
scaled frequency as,

β f̂id =
∫ 1

0
κ(εmx)ḡ(x)dx, (A7)

where we have defined the function κ(y) as,

κ(y) =
1
4

[
y + 4 ln

(
1− e−y)− 2y

ey − 1

]
, (A8)

and εm = βh̄ωm.
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