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Many terrestrial plants are C3 plants that evolved in the Mesozoic Era when atmospheric CO2
concentrations ([CO2]) were high. Given current conditions, C3 plants can no longer benefit from high
ambient [CO2]. Kaempferia marginata Carey is a unique understory ginger plant in the tropical dry forests
of Thailand. The plant has two large flat leaves that spread on the soil surface. We found a large difference in
[CO2] between the partly closed space between the soil surface and the leaves (638 mmol mol21) and the
atmosphere at 20 cm above ground level (412 mmol mol21). This finding indicates that the plants capture
CO2 efflux from the soil. Almost all of the stomata are located on the abaxial leaf surface. When ambient air
[CO2] was experimentally increased from 400 to 600 mmol mol21, net photosynthetic rates increased by 45 to
48% under near light-saturated conditions. No significant increase was observed under low light conditions.
These data demonstrate that the unique leaf structure enhances carbon gain by trapping soil CO2 efflux at
stomatal sites under relatively high light conditions, suggesting that ambient air [CO2] can serve as an
important selective agent for terrestrial C3 plants.

T
he geological record indicates that the C3 land plants originated during the middle to late Ordovician period
(450 to 440 million years ago) when atmospheric CO2 concentrations ([CO2]) were still very high (approxi-
mately 4% compared with 0.039% at present) and O2 concentrations ([O2]) in air were low (approximately

15% compared with 21% at present)1,2. Although the down-regulation of Rubisco (ribulose-1,5-bisphosphate
carboxylase/oxygenase) under high [CO2] is a well-known phenomenon3, high [CO2] and low [O2] in the ancient
air would have contributed to an increase in carbon assimilation rates (A) due to the kinetics of Rubisco. A meta-
analysis of FACE (free-air CO2 enrichment) experiments revealed that the average maximum carboxylation rates
under doubled [CO2] were 217% in C3 crops and 24% in C3 trees due to dawn-regulation. On average, the
increase in light-saturated net photosynthesis under doubled [CO2] was 13% in C3 crops and 47% in C3 trees3.
This finding may indicate that C3 plants in the past exhibited increased carbon (C) gain and that more extensive C
cycling occurred in forest ecosystems compared with the present era. During the Cenozoic era, atmospheric O2

concentrations increased and atmospheric [CO2] became largely depleted, with record minimum [CO2] during
the Oligocene/Miocene epoch (24 million years ago)4. Since the advent of the Industrial Revolution, atmospheric
[CO2] has increased rather rapidly due to the modernization of human society and increasing reliance on coal and
oil burning. In the photosynthetic CO2-response curves of C3 plants, the transition of the limitation from
ribulose-1,5-bisphosphate (RuBP) carboxylation limitation to RuBP regeneration limitation is typically observed
between ambient and doubled ambient [CO2]5. Thus, C3 plants are constrained by the carboxylation limit of
RuBP in the present-day air [CO2]. In contrast, photosynthesis in C4 plants is not limited by low air [CO2]6

because these plants possess the appropriate enzyme (PEP carboxylase) and the specific anatomy in bundle sheath
cells required to increase the CO2 partial pressure around Rubisco sites7. C4 plants have evolved to improve plant
carbon and water relations simultaneously during photosynthesis and to cope with declining atmospheric [CO2]
and increasing water demand4,8,9. However, C3 plants have not evolved carbon-concentrating mechanisms in
their physiology and anatomy.
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Even in present-day ecosystems, sites with high air [CO2], such as
forest floors10 and volcanic vents11 are observed. The high [CO2]
found on forest floors originates from the respiration of soil organ-
isms and plant-root systems. Attention has been focused on the large
contributions of sunflecks or sun patches to net C assimilation rates
(A) in forest understory plants, indicating strong light limitation12,13.
However, the potential effects of rising [CO2] on A in understory
plants have rarely been evaluated. High [CO2] should contribute to
the survival of understory plants that experience reduced photosyn-
thetic rates due to water stress14. The stable carbon isotope ratios of
understory plants indicate that these plants re-fix the efflux C in
tropical15 and cool-temperate forests16.

High [CO2] that originates from the soil surface dissipates rapidly
due to diffusion and mass flow caused by wind. Although wind
velocity is reduced near the understory, an extremely gentle breeze
is sufficient to diffuse CO2 from the soil surface17. Therefore, for
understory plants to effectively use this high soil-efflux [CO2], they
must trap CO2 near the soil surface. In the present study, we report
the discovery of an understory ginger plant, Kaempferia marginata
Carey (Zingiberaceae), which effectively traps soil-efflux CO2 in the
closed space between the soil surface and its leaves. This plant
enhances photosynthesis by 45 to 48% under relatively high light
conditions. It is a drought-deciduous, perennial herb found in trop-
ical dry forests in Southeast Asia. Based on measurements of ambient
air [CO2], photosynthetic capacity, and the stable carbon isotope
ratios in the lamina, we demonstrate that this ginger plant makes
effective use of high [CO2] on the forest floor.

Results
The ginger plant has a unique leaf structure; the individual plant has
two flat leaves that spread on the soil surface, and the leaf edges are
often curled downward to capture the air under its leaf blades (Fig. 1).
The root system is small, indicating that this plant has a poor water
uptake capacity. The uppermost height of a single leaf blade is only
24 mm above the ground surface on average and defines a relatively
closed space between the leaf blade and the soil surface (Table S1).
The stomatal densities were 1.6 mm22 and 20.9 mm22 on the adaxial

and abaxial leaf surfaces, respectively, indicating that approximately
all stomata face the soil surface. The distributions of leaf sizes and leaf
morphologies indicate that as the leaf size increases with time, the
leaf shape gradually becomes rounder (Fig. S1), contributing to an
increase in the efficiency of trapping CO2 efflux from the soil surface.

On a sunny day during the rainy season, the average daily [CO2]
was 412 mmol mol21 in the open air at 20 cm above the ground and
638 mmol mol21 in the space between the leaves and soil surface
(Fig. 2). The maximum [CO2] observed in the air space was greater
than 1000 mmol mol21. Nevertheless, [CO2] in the space largely fluc-
tuated with temporal variations in wind velocity. The values (mean
6 SD) of the stable carbon isotope ratios (d13C) in the lamina were
234.9 6 1.5 % in the ginger plants and 229.1 6 1.5 % in the upper
canopy leaves of woody plants in the dry evergreen forest (our
unpublished data on woody plants). The low d13C value in the ginger
plants indicates high internal [CO2] in the leaves during the day.

When the ambient-air [CO2] was artificially increased from 400 to
600 mmol mol21, the A under near-light saturated conditions
(800 mmol m22 s21 PPF: photosynthetic photon flux) increased from
5.8 to 8.2 mmol m22 s21, a 45% increase (Fig. 3A). In contrast, under
low light conditions (less than 70 mmol m22 s21 PPF), no significant
increase was detected in A after elevating [CO2] from 400 to 600
mmol mol21. We also measured ambient-air CO2 response curves
under 500 and 40 mmol m22 s21 PPFs. Both RuBP carboxylation
and RuBP regeneration rates were reduced by the low PPF
(Fig. 3B). When the ambient-air [CO2] was increased from 400 to
600 mmol mol21, A increased by 48% under relatively strong sunlight
(500 mmol m22 s21 PPF) and by 36% under reduced light (40 mmol
m22 s21 PPF) conditions. The data indicate that a significant increase
in A in response to elevated [CO2] was more pronounced under
sunlit conditions compared with shaded conditions. Sunflecks must
thus cooperate with rising [CO2] for enhancing of A12,13.

Discussion
The data presented here indicate that the unique leaf structure of
ginger plant enhances C fixation under high light conditions by
effectively trapping high [CO2] efflux in the relatively closed space
between their leaves and the soil surfaces. In tropical forests, high
termite activity at ground level prevents fallen leaves from covering
the leaf surface of the ginger plants (Fig. 1A); the leaf litter layer
typically remains fairly thin and does not persist for a long period
of time. This may be a factor in explaining why the ginger plant has
evolved to capture CO2 efflux from soil respiration in tropical forests.

Another unique morphological characteristic of the ginger plant is
the small root system (Fig. 1B). Large non-photosynthetic organs are
found to have large respiration requirements18,19. However, its small
root system, the ginger plant has a very low CO2 compensation point
at the whole plant level, similar to leafy plants14. Because of the small
root system, the ginger plant can only grow during the favorable
rainy season as an ephemeral plant. Another advantage is the high

Figure 1 | An understory ginger plant, Kaempferia marginata Carey,
with a unique leaf structure in a tropical forest in Southeast Asia. (a) field-

grown plants, (b) A plant removed from the soil; two large leaves and a

poor root system are evident.

Figure 2 | Diurnal time variations in air CO2 concentration at 20 cm
above the ground (open circles) and in the air space between the leaf blade
and soil surface (blue circles).
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soil respiration during rainy seasons. In tropical dry forests in
Thailand, where the ginger plant is a native species, the soil respira-
tion rates become double during the rainy seasons20. The mean soil
respiration rate is approximately 7.67 mmol m22 s21 in the rainy
season and approximately 3.63 mmol m22 s21 in the dry season.

A relatively high irradiance is required to effectively enhance A
under elevated [CO2] (Fig. 3B); light levels greater than approxi-
mately 6.4% of full sunlight appear to be required to maintain a
population of the ginger plant (see Environmental description in
Supplementary information). Under sunlit conditions, the risk of
photoinhibition increases even in tropical climates, particularly in
shaded plants at relatively high temperatures21,22. However, in the
ginger plant, xanthophyll-cycle dependent non-photochemical
quenching (NPQ) appears to prevent chronic photoinhibition (Fig.
S3). This unique adaptation to specific microhabitats is reflected by
the plant distribution. In the tropical dry forests, the ginger plant is
primarily located in the drought-deciduous forests with sparse tree
cover and lightly shaded forest floors. In contrast, the ginger plant is
exclusively located on the edges of dry evergreen forests with closed
canopies.

The discovery of the morphological adaptation of the ginger plant
is the first demonstration of the effective use of high CO2 efflux from
soil in understory C3 plants. Their unique structure of this plant is
characterized by large, flat leaves, thus earning the nickname ‘‘ter-
restrial water lily’’. The shape delimits the space between the leaves
and the ground surface (Fig. 1A). Plants with such an ideal leaf
structure are rare even in the tropics. We suggest that the C3 ginger
plant evolved to cope with low atmospheric CO2 by morphologically
trapping high CO2 efflux from the soil, whereas C4 plants did so by
physiologically concentrating CO2 within the plant body. In adult
trees of certain woody plants, the respiration rates per unit stem
surface at breast height ranges from 1.2 mmol m22 s21 to 3.5 mmol
m22 s2123,24,25. The CO2 efflux from the stem surface is due to numer-
ous parenchyma cells located within stems18, carbon transport in
phloem from the leaves to the roots26, and CO2 up-flow from root
systems due to transpiration-driven sap flow20,27,28,29. Although the
stem respiration rates of large trees are reduced compared with than
the soil respiration rates during the rainy season, stem respiration
may be valuable as a CO2 source for living plants. Therefore, a mech-
anism similar to that of the ginger plant may be identified among the
lichens, mosses, ferns, orchids, and vines growing not only on the
ground but also on the trunks of large trees. We hypothesize that the
combination of a closed air space and relatively high sunlight is
required to exploit extremely high efflux CO2.

The pulse-labeling method has been used to determine the time lag
from CO2 efflux from soil to leaf C assimilation30. The time lag ranges
from 12.5 6 7.5 (mean 6 SD) h in grasses to 4 to 5 days in trees.
Although the data indicate that interactions between the soil and
plants in the C cycles within a single ecosystem exist, most CO2 that
originates from the soil will have dissipated from the ecosystem by
diffusion during this time period. The low d13C values of ginger
plants indicate that they were exposed to high [CO2] and used large
amounts of C emitted from the soil. Nevertheless, shady conditions
increase internal [CO2] in leaves due to the reduced A, consequently
decreasing the d13C values in laminae31. Therefore, we cannot use
d13C values to distinguish between the two potential sources of the
effects, shade and high ambient air [CO2]. Overall, we can conclude
that root and microbial-derived CO2 are major contributors to car-
bon assimilation in this ginger plant.

Methods
The study was conducted in July 2008 in a dry evergreen forest in Thailand (14u 299N,
101u 559E, 563 m ASL) approximately 180 km northeast of Bangkok during the
middle of the rainy season32. We selected a population of ginger plants found roadside
in a forest with a dense canopy. During three successive days, the diurnal time courses
of PPF, ambient air temperatures and relative humidity in air were measured near the
center of the plant population (data shown in Fig. S2). On a relatively sunny day, the
diurnal time courses of leaf gas exchange and chlorophyll fluorescence were measured
from predawn to dusk using an open, portable measurement system (LI-6400, LI-
COR, Lincoln, NE) and a chlorophyll fluorescence meter (Mini-PAM, Walz,
Effeltrich, Germany), respectively. These measurements were conducted in eight
individual plants with relatively large leaves.

While measuring diurnal leaf gas exchange, the diurnal variations in ambient air
[CO2] were simultaneously measured with thin-film capacitance CO2 sensors
(GM70, Vaisala, Helsinki, Finland) without tube-absorbing air. The CO2 sensors
were set at two heights: 1) 20 cm above the ground and 2) in the air space between the
leaf blade and the ground surface in an individual plant with a relatively large leaf area.
The diameter of the CO2 sensor probe was 18.5 mm, and the leaf diameter was greater
than 100 mm. Because of without tube-absorbing and given a large leaf, [CO2] in the
air space below the leaf could be directly measured (Fig. S4); it is possible that we did
not completely avoid air leaks along the side of the prove, possibly resulting in an
underestimation of [CO2].

In the following days, to evaluate the interactive effects of light intensity and [CO2]
on A, we measured photosynthetic light responses (PPF-A curve) under different
ambient air [CO2] levels and photosynthetic ambient air CO2 responses (Ca-A curve)
under different light levels during the daylight hours (Ca refers to ambient air [CO2]).
To evaluate the average internal [CO2] in leaves over a long time period, carbon
isotope ratios in the eight laminae were examined with an isotope ratio mass
spectrometer (DELTA V Plus, Thermo Fisher Scientific Inc., Cambridge, UK). More
detailed information is described in the supplementary information.
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