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A B S T R A C T   

Recent outbreaks of infectious diseases such as Covid-19 that have fever as one of the symptoms drive the search 
for systems to track people with fever quickly and non-contact, also known as sanitary barriers. The use of non- 
contact infrared-based instruments, especially the infrared thermal imager, has widely spread. However, the 
screening process has presented low performance. This article addresses the choice of regions of interest on the 
human face for the analysis of the individual’s fever, deals with the temperature thresholds used for this analysis, 
as well as the way to issue the recommendation to screen the person or not. The data collection and statistical 
analysis of temperatures of 198 volunteers allowed us to study and define the most appropriate face regions as 
targets for these barriers, as well as the temperature thresholds to be used for screening for each of these regions. 
Besides, the paper presents a probabilistic method based on the metrological quality of the sanitary barrier to the 
emission of recommendation for screening potentially febrile people. The developed method was tested in 
feverish and non-febrile volunteers, showing complete assertiveness in the tested cases.   

1. Introduction 

Recent outbreaks of infectious diseases, such as severe acute respi-
ratory syndrome (SARS) in 2003, influenza A (H1N1) in 2009, Ebola 
virus disease (EVD) in 2014, which have fever as one of the symptoms, 
demand technological tools for screening of febrile people. Some situ-
ations require measuring instruments whose approaches occur without 
the need for physical contact, quickly, with reasonable reliability, and 
without the need for sterilization. The pandemic of Covid-19 (Corona- 
Virus – Disease-2019) has boosted the search for these systems to track 
possibly infected people, aiming to reduce the disease transmission. 
Faced with this scenario, management of places such as airports, shop-
ping malls, schools, and others are implementing sanitary barriers to 
detect feverish people, preferably using non-contact infrared based in-
struments (NCIR-based), such as thermal imagers and pyrometers, to 

measure body temperature [1–11]. 
Temperature measurement in humans and animals for disease 

detection is usually performed by measuring core body temperature by 
rectal, vaginal, vascular or digestive tract via sensors [12], that is, 
invasively. However, NCIR-based instruments have been widely used in 
these febrile screening systems. Its working principle is based on the 
theory that every object with a temperature above absolute zero (0 K or 
− 273.15◦C) emits radiation that propagates in the infrared region of the 
electromagnetic spectrum. These instruments capture this infrared ra-
diation and perform calculations that correlate this radiation to the 
surface temperature of the analyzed body [13]. In the case of the py-
rometer, which is one of the most used types of infrared thermometers in 
sanitary barriers, there is only one detector responsible for capturing 
this radiation, so the measurement is performed at only one point on the 
surface of the analyzed body. On the other hand, thermal imagers have 
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thousands of detectors responsible for capturing this radiation and the 
instrument’s return, instead of a single temperature value, is a two- 
dimensional thermal image that graphically represents the different 
temperatures of the surface of the analyzed body [5–7,14]. 

However, several studies have pointed out that the screening of 
febrile people by temperature measurement using NCIR-based in-
struments has low reliability, with a high rate of false negative diagnoses 
[15–18]. Fever, whose characteristic is an elevation of the body’s ther-
mal threshold usually maintained around 37◦C, triggers metabolic re-
sponses of heat production and conservation, for example, tremors and 
peripheral vasoconstriction. These responses help raise body tempera-
ture to a new threshold. After the fever is resolved or treated, the 
threshold returns to the initial point and the processes of heat loss, like 
peripheral vasodilation and sweating, begin. In the febrile response, 
thermoregulation is preserved usually at a higher temperature level 
[19,20]. The temperature threshold to determine whether a patient is in 
a feverish state varies among different authors. However, the most 
adopted thresholds for core body temperature are 37.5◦C [21–23] and 
38.0◦C [24–26]. 

In a sanitary barrier, surface or peripheral temperatures of the 
human body are measured, instead of the core temperature. The pe-
ripheral concerns the temperatures of more external organs, such as the 
skin, muscles, and subcutaneous tissues, while the core temperature 
refers to internal body temperatures, such as the cranial, thoracic, and 
abdominal cavities [27–29]. While the hypothalamus regulates the core 
temperature, external influences, such as ambient temperature, air hu-
midity and radiation affect the face temperature. In this case, the core 
temperature remains constant in healthy individuals, while the surface 
temperature may considerably vary. This fact can generate surface 
temperature measurements that do not effectively correspond to the 
core temperature [27,30]. 

Besides natural variations, surface temperatures are lower than the 
core temperature [3,31–34]. Thus, adopting core body temperature 
thresholds for the diagnosis of fever from surface temperature mea-
surements is not an adequate procedure. 

The gold standard for temperature measurement considers core 
temperature, which is commonly measured in the rectum, esophagus, or 
intestinal tract [30,35,36]. However, the aforementioned methods are 
invasive and not applicable in environments such as a sanitary barrier, 
whose aim is to identify possible febrile individuals quickly, reliably, 
and safely. 

Some sanitary barriers that use NCIR-based instruments measure the 
maximum temperature on the person’s face and compare it to a refer-
ence, issuing an eventual recommendation to separate the person for 
analysis of febrile status [37,38]. It turns out that the different surface 
parts of the head have different typical temperatures [39,40], therefore, 
a single temperature threshold criterion is not recommended for the 
analysis of possible fever. Sanitary barriers based on NCIR-based in-
struments have presented sensitivity from 44% to 75% [22,26]. 

For the surface of the human face, regions that present better con-
ditions for the analysis of the person’s fever are already known. Such 
areas have a greater correlation with the core temperature and less 
variability due to external influences. These regions of interest (ROIs) 
are the corner of the eye (inner eye), the ear cavity, and the forehead 
[34,40–43]. In sanitary barriers that aim to influence the flow of people 
as little as possible, it is not convenient to ask passers-by to stop and 
expose the ROIs. Thus, eventually hair, respiratory masks, glasses, or 
other shields to the propagation of infrared radiation may cover some 
ROI [44,45]. Therefore, it is important to have all ROIs in the NCIR- 
based instrument’s field of view, so that, the measurement of the sur-
face temperature of at least one ROI is possible. 

This research experimentally evaluated suitable temperature 
thresholds for the different ROIs of sanitary barriers using NCIR-based 
instruments, as well as proposing a screening criterion for potentially 
febrile people based on the probability of their core temperature being 
above the thresholds traditionally applied. 

2. Methodology 

This work is a quantitative study of a descriptive nature, about which 
temperature values of regions of interest (ROIs) should be adopted as 
thresholds for screening potentially febrile people. It is applied research 
since it aims to generate knowledge to improve the performance of 
sanitary barriers. 

The Research Ethics Committee of the Federal Institute of Espírito 
Santo, linked to the National Research Ethics Commission of the Min-
istry of Health of Brazil, approved this research under the Certificate of 
Presentation and Ethical Appreciation (CAAE) 33502120.2.0000.5072, 
opinion number 4.180.201, on 29 July 2020. 

The volunteers who participated in this research were informed 
about the objectives, the scope of their participation, the confidential 
treatment of their data, and the consolidated statistically grouped 
method of disclosing data. The volunteers who participated in this 
research were informed about the objectives, the scope of their partic-
ipation, the confidential treatment of their data, and the consolidated 
statistical grouped method of disclosing data. All participants provided 
written permission. 

The inclusion criterion considered the volunteers 18 years old or 
older and the signature on the consent term of free participation without 
any burden or bonus for the volunteer or researchers, with the possi-
bility of withdrawing from the study at any time. 

This research complied with the ethical principles contained within 
the Declaration of Helsinki of the World Medical Association. 

2.1. Materials and methods 

Although recommendations for human thermography point to 
controlled conditions; such as atmospheric temperature and relative 
humidity, person atmosphere, thermal imager resolution and uncer-
tainty; the sanitary barriers currently in use are intended to be quick, 
non-invasive, and affordable cost. More eminent thermal imager man-
ufacturers have commercialized instruments with an uncertainty of 2% 
or 2◦C [37,46,47], as well as recommending ordinary calibration pro-
cedures based on [48,49], despite the existence of specific calibration 
procedures for human thermography [38,43,50,51]. Thus, aiming to 
reproduce the conditions usually used, this research considered thermal 
imagers with characteristics similar to those marketed and recom-
mended by large manufacturers for use in sanitary barriers and their 
calibration procedures. 

Two thermal imaging cameras, Flir E60® and Testo 885®, were used 
to capture thermal images of each volunteer. Table 1 shows the model, 
resolution and precision of the instruments used [52,53]. 

Taking into account that in the literature, there is no consensus on 
the value of skin emissivity, and the authors adopt values between 0.95 
and 0.99, in this study, the authors adopt the value of 0.98 of emissivity 
for parameterization of thermal imagers used [54–57]. 

In addition, to correct the systematic errors of the thermal imagers 
used in the study, the calibration procedure of these equipment was 
carried out from a calibrated black body as the true value, i.e., the 
physical object that is characterized by having an emissivity of 1.0, 
which means that it perfectly absorbs 100% incident thermal irradiation 
and radiates 100% own thermal radiation [38]. The adopted calibrated 
temperature range was compatible with the expected human tempera-
tures, defined as (30 to 40)◦C. Five calibration points were adopted, with 
double measurements, varying the blackbody temperature value up and 
down. This procedure was repeated 10 times [58]. 

Table 1 
Measuring instruments used in the research.  

Brand Model Resolution (◦C) Precision 

Flir® E-60® 0.1 2% 
Testo® 885® 0.1 2%  
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Carrying out the calibration procedure and subsequent correction of 
the thermal imager’s measurement tendency makes it possible to 
reproduce this methodology in any sanitary barriers. The systematic 
measurement errors were corrected, leaving only random errors, also 
known as uncertainty. Systematic errors were virtually the same as those 
found in previous calibrations performed in the previous two years. The 
expanded uncertainty to a 95% confidence level, or random error, was 
0.3◦C, also similar to previous calibrations. Even considering that the 
calibration only portrays the momentary condition of the measuring 
instrument, it is noted that the instruments demonstrate stability in this 
regard over time. Furthermore, the influence of the thermal imager 
uncertainty on the measurement result is much smaller than the influ-
ence of the emissivity uncertainty [59]. 

Considering the analysis of the surface temperature of the human 
face, at sanitary barriers where passers-by may have body parts covered 
by glasses, masks, hair, etc., which can act as a shield for the NCIR-based 
instrument, the authors adopted the three ROIs for this study: temporal 
and supratrochlear commissure (forehead), medial palpebral commis-
sure (corner of the eye) and external auditory meatus (ear canal). Fig. 1 
highlights these ROIs. In the experiment to capture the thermographic 
images, the adopted distance between thermal imagers and volunteers 
was of 1.5 m. This distance is feasible in sanitary barriers and adequate 
to the optical focus and angular resolution of the thermal imagers used. 
The procedure captured three images of each volunteer aiming to obtain 
data covering the different ROIs: frontal, left lateral and right lateral. 

Source: elaborated by the authors. 
The software used to manipulate these images provides the three 

temperatures of delimited area: average, maximum and minimum. Re-
gions containing hair, clothing, or background scenes naturally experi-
ence lower temperatures. Therefore, to avoid these interferences, the 
chosen temperature value for each ROI was the maximum within its 
respective area. Based on these assumptions, it was possible to create a 
database with consistent information about volunteer temperatures. 

In this work, the ROIs were manually delimited in each thermogram. 
However, this research team has already developed an automatic 
detection system of the defined ROIs based on computer vision, which 
has achieved above 95% of accuracy [60]. This software will be inte-
grated with the other developed systems. 

The study has as base information obtained from 198 non-febrile 
volunteers, aged 18 years or older, from August 2020 to January 
2021, in the Metropolitan Region of Grande Vitória / ES, Brazil. Given 
the difficulty in recruiting volunteers during the Covid-19 pandemic due 
to the recommendations for isolation and social distancing established 
by the Ministry of Health of Brazil, this 198 volunteer amount is 
considered excellent for metrological and statistical purposes [61]. 

The method of estimating the probabilistic temperature character-
istics of ROIs of non-febrile persons and classifying persons who have a 
temperature higher than these characteristics was adopted for the 

following reasons: infeasibility of recruiting a significant sample of 
feverish volunteers given the determinations of isolation of people 
during the COVID-19 pandemic, and of immediate administration of 
antipyretic drugs, minimizing fever; guidance from the Ministry for 
symptomatic patients to avoid going to health centers, except in cases of 
more severe symptoms; debilitated state of febrile patients who refused 
to volunteer for research. In two months of volunteer’s recruitment only 
four people in feverish situation were identified. Given the scarcity of 
feverish volunteers, this lower sampling of febrile people was used to 
test the developed methodology. Cases of small availability of volunteers 
for the construction or evaluation of biomedical equipment have been 
recurrent and have not made the research unfeasible [62–64]. 

Although some authors claim that it is possible and others correlate 
ROI surface temperatures with core body temperature [32,39,65], this 
research team chose to analyze the temperature of each ROI separately, 
without correlating them with core body temperature, since the team 
intends to embed this method to other algorithms developed, as well as 
further procedures under development in a single device. This proposal 
eliminates a data processing stage, decreasing the combined uncertainty 
of the final result, as well as the computational effort. Furthermore, 
several studies have shown that temperature measurement in ROIs is 
suitable for screening febrile persons [26,33,38,39]. 

Table 2 lists the locations where experiments with volunteers were 
performed. 

Screening systems for febrile people need agility, therefore, they do 
not investigate individual characteristics of passers-by. In addition, 
these systems must operate in different types of buildings, at any time 
and day of the week. This experiment tried to reproduce the same sit-
uation. Thus, the temperature measurements took place at different 
times and establishments, taking the temperature of male (87 volun-
teers) and female (111 volunteers) volunteers. In addition, human sur-
face temperatures vary mainly as a function of the circadian cycle, 
external factors, and the person’s previous resting condition 
[31,32,40,43]. Likewise in sanitary barriers, these factors were not 
controlled in this experiment. 

Aiming to classify non-febrile and potentially febrile people, the 
temperature values obtained from the volunteers were used to deter-
mine a specific temperature threshold for each ROI. Thus, to calculate 
the probability of the passers-by being feverish, their ROIs’ measured 
temperature and their respective uncertainties must be compared to the 
corresponding screening thresholds. 

3. Results 

Table 3 shows the mean of the maximum temperatures for each 

Fig. 1. Regions of interest (ROIs) for the research: 1 – temporal and supra-
trochlear commissure (forehead); 2 – medial palpebral commissure (corner of 
the eye); 3 – external auditory meatus (ear canal) 

Table 2 
Volunteer approach and temperature measurement locations.  

Establishment City Number of 
volunteers 

Name Type 

IFES – Campus Vitória Teaching and Research 
Institution 

Vitória/ES 20 

Edifício Wimbledon Residential 
Condominium 

Vitória/ES 10 

Thermovit Center Physiotherapy’s Clinic Vitória/ES 8 
Construtora 

PauloOctavio Civil Construction Site Vitória/ES 2 

Igreja Sagrada 
Família 

Church Vitória/ES 53 

Igreja Universal do 
Reino de Deus 

Church Vitória/ES 24 

Igreja Batista da 
Lagoinha Church Vitória/ES 12 

MasterPlace Mall Mall Vitória/ES 54 
3 D Centro de 

Treinamento Gymnastics Academy 
Cariacica/ 
ES 25 

Total of volunteers 198  
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region of interest on the face of the 198 non-febrile volunteers: right 
external auditory meatus (R-EAM), left external auditory meatus (L- 
EAM), forehead, and medial palpebral commissure (MPC). The coeffi-
cient of variation enables a comparison between groups with different 
mean values [66]. 

The R-EAM, L-EAM and MPC regions have a lower coefficient of 
variation when compared to the forehead. Therefore, they are more 
suitable ROIs since, with less variation, it is possible to establish a more 
accurate temperature threshold to separate febrile from non-febrile 
people. However, in actual sanitary barrier, it is not rare that only the 
forehead can be visible, naked, and accessible to the thermal imager’s 
field of view. Since it is common to use half-face masks, long hair over 
the ears, furry ears and glasses. Thus, despite having inferior perfor-
mance in terms of confidence interval, the forehead cannot be ruled out 
as a ROI. 

The Z-Test was carried out to verify statistically whether it is possible 
to say, whether the ROIs have significantly different temperatures when 
compared to each other. Table 4 displays the comparison among the 
ROIs and the corresponding p-value. The ROI taken as a reference is 
arranged vertically, and the ROIs whose temperature is compared to the 
reference ROI are laid out horizontally. If the p-value is lower than 0.05, 
the evaluated ROI has a temperature significantly greater than the 
reference ROI, with a confidence level of 95%. 

We can verify that the temperatures of both ear canals (R-EAM and L- 
EAM) are predominantly higher than the temperatures of the other ROIs. 
The temperature of the left ear canal tends to be higher than that of the 
right ear canal, however, this trend cannot be certified, given the sta-
tistical conditions established. Notice that the eye corner temperature 
(MPC) is higher than the forehead temperature. In conclusion the typical 
surface temperatures of the different ROIs adopted for the human face 
are significantly different from each other, even though the temperature 
of each ROI is correlated with the core body temperature, agreed as 
unique. Therefore, the criterion based on a single temperature threshold 
value for all ROIs is not recommended for screening potential febrile 
people. 

3.1. Temperature thresholds for screening febrile people 

Since the different established ROIs have different typical tempera-
tures for non-febrile people, it is necessary to adopt different threshold 
temperatures for screening potentially febrile people. 

Establishing a temperature threshold to separate febrile from non- 
febrile people entails running the risk of classifying some non-febrile 
people as febrile and vice-versa. 

Considering the coefficients of variation of the experimental results 
presented in Table 3 and international metrological recommendations 
[48], the 95% confidence level was adopted, which means that there is 

the risk of classifying 5% of non-febrile people as febrile is admitted. 
The statistical tool used to interpret the temperatures of non-febrile 

people was the one-tailed Student’s t-test, with a confidence level 
already established at 95% one-tailed. For the number of samples in this 
study, n = 198, the t-statistic value tSTUDENT is 1.645 [66]. To determine 
the threshold temperature for screening febrile people, the equation Eq. 
1 was used [66]: 

TSCREENING = TAVERAGE + SD.tSTUDENT (1) 

Where TSCREENING is the threshold temperature for suspected febrile 
state; TAVERAGE is the typical average temperature of the ROI as per the 
Table 3; SD is the standard deviation of typical ROI temperature as 
Table 3 shows; tSTUDENT is the t-statistic for the desired one-tailed con-
fidence level. 

Table 5 shows the proposed threshold temperatures for screening 
febrile persons for each ROI. 

Notice that for all the ROIs studied, the proposed fever threshold 
temperature is lower than the value adopted when measuring the human 
body’s core temperature, 37.5◦C or 38.0◦C. 

Fig. 2 shows the normal distribution of the temperature for the R- 
EAM, the adopted threshold of 37.1◦C. The shaded area, in black color, 
corresponds to the assumed risk of a 5% chance of classifying a non- 
febrile individual as febrile. 

3.2. Screening method for febrile people 

When measuring the temperature of a passerby by an NCIR-based 
instrument, the value obtained has an associated standard uncertainty, 
relative to the instruments and measurement methods used, typically on 
the order of (1.6 to 1.9)◦C, considering the state-of-the-art knowledge of 
human skin emissivity, and thermal imager “precision” of the order of (1 
to 2)◦C [67]. The thermal imager calibration procedures adopted in this 
research, and mentioned in Section 2.1, indicate a “precision” of the 
order of 0.3◦C for the considered temperature measurement range. This 
same magnitude order as also adopted for the standard uncertainty of 
the measurement. Therefore, it is the responsibility of the users to esti-
mate the standard uncertainty to be associated with their measurement 
system [48]. 

Thus, the temperature measurement of one or more ROIs of a pass-
erby, which consists of its base value associated with a standard un-
certainty, should be compared to the temperature thresholds of febrile 
people presented in the Table 5. This means that the probability of a 
person has a fever corresponds to the probability that the passerby’s 
temperature is higher than the proposed temperature threshold. And 
this can be calculated based on the temperature measured in the ROI, its 
base value, and standard uncertainty. 

As an example, the proposed method will be applied to two hypo-
thetical sanitary barriers, one based on a 0.5◦C uncertainty thermal 
imager, and another one of 1.0◦C. Six hypothetical passers-by will be 
analyzed whose ROI MPC temperatures would be (35.5; 36.0; 36.5; 37.0; 
37.5; and 38.0◦C). The method consists of, for each passerby, for each 
sanitary barrier, plotting its temperature probability curve, in a similar 
way to Fig. 2, identifying the temperature threshold for a feverish state 
in this curve, and calculating the probability of the passerby’s temper-
ature being above this threshold, which is represented by the black 
hatched area in Fig. 2. 

The results in Table 6 show that when the sanitary barrier has greater 

Table 3 
ROI temperatures of the face of non-febrile volunteers.  

ROI Maximum temperatures of ROIs 

Average Standard deviation Coefficient of variation 

R-EAM 35.6◦C 0.9◦C 2.5% 
L-EAM 35.6◦C 0.8◦C 2.3% 
MPC 35.2◦C 0.9◦C 2.6% 
Forehead 34.4◦C 1.1◦C 3.2%  

Table 4 
Comparison of temperatures in different regions using the Z-Test.  

REFERENCE ROI ROI COMPARED TO REFERENCE ROI 

L-EAM R-EAM MPC 

R-EAM 0.162 – – 
MPC 5.14 × 10− 18 1.42 × 10− 13 – 
Forehead 1.10 × 10− 104 9.20 × 10− 89 1.07 × 10− 33  

Table 5 
Temperatures for screening possibly febrile people.  

ROI Fever temperature threshold 

R-EAM 37.1◦C 
L-EAM 36.9◦C 
MPC 36.7◦C 
Forehead 36.2◦C  
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measurement uncertainty, it tends to issue a diagnosis of greater prob-
ability of fever when the person’s temperature is lower than the 
screening threshold temperature. On the other hand, when the person’s 
temperature is above the threshold temperature, the less accurate bar-
rier tends to give diagnoses whose fever probability is lower than 100%. 
Hence the importance of minimizing the measurement uncertainty of 
the sanitary barrier. 

Notice that in addition to properly estimating the threshold tem-
perature for screening febrile people, as a function of each ROI, it is also 
necessary to establish a screening criterion by the barrier as a function of 
the probability of a febrile state. Thus, the criterion to be established by 

the barrier operator must minimally consider the measurement uncer-
tainty of its barrier, the flow of people, the type of screening environ-
ment, and the capacity to attend and treat screened people. 

Fig. 3 illustrates the case of measured temperature of 37.0◦C in MPC. 
Figure (a) shows the situation for the sanitary barrier of standard un-
certainty of 0.5◦C, and Figure (b) for the 1.0◦C case. The hatched areas, 
in black color, indicate the probability of fever, 72.6%, and 61.8%, 
respectively. It is noted that, for the case of uncertainty of 0.5◦C, the 
probability distribution of the temperature of the individual is closer to 
the mean, since the quality of measurement is better, bringing a diag-
nosis with a higher probability of febrile state. 

3.3. Test of the proposed method 

The proposed model for sanitary barrier was tested with four febrile 
volunteers and five non-febrile volunteers in the Emergency Health Care 
of Praia do Suá, Vitória / ES, Brazil, from July to August 2021. 

Some factors were responsible for not obtaining a greater number of 
volunteers, for example, administration of antipyretics to reduce and 
control fever, not volunteering in the face of the person’s debilitated 
state, and sanitary restrictions on interaction with feverish people. 

A health professional previously diagnosed all nine volunteers as 
febrile or non-febrile, by axillary temperature measurement with a 
contact thermometer, following the Manchester Triage System (MTS) 
[68]. 

The adopted temperature thresholds are described in the Table 5. 
The standard uncertainty of the temperature measurement has been 
estimated at 0.3◦C. The test results are condensed in the Table 7, which 
shows the temperatures of the ROIs of each volunteer and their proba-
bility of a feverish state according to the proposed. 

Notice that for all volunteers previously diagnosed as non-febrile, the 
proposed sanitary barrier indicated a probability of fever between 0.0 
and 1.3%. Considering the low number of test measurements, only four 
volunteers, this is an expected result since the confidence level adopted 
was 95%. 

During the image capture of feverish volunteers, there were situa-
tions in which the ROI was not in direct view of the measuring instru-
ment (thermal imager). In these cases, the angle of sight between the 
thermal imager and the normal to the inspected surface was not zero, 
and the measurements were not accurate. Usually, these cases present 
results lower than the expected values [69]. Such situations eventually 
occur in sanitary barriers since the passerby can walk with their head 
positioned in different directions. This situation corroborates the deci-
sion to have several ROIs to support the diagnosis, maximizing the 

Fig. 2. Temperature distribution for the right external auditory meatus – R- 
EAM (mean = 35.6◦C; standard deviation = 0.9◦C; temperature threshold for 
feverish state = 37.1◦C). 
Source: Elaborated by the authors. 

Table 6 
Example of calculating the probability of fever with temperature measured at 
the Medial Palpebral Commissure (MPC), whose fever threshold is 36.7◦C.  

Measured temperature Standard uncertainty of the used sanitary barrier 

0.5◦C 1.0◦C 

35.5◦C 0.8% 11.5% 
36.0◦C 8.1% 24.2% 
36.5◦C 34.5% 42.1% 
37.0◦C 72.6% 61.8% 
37.5◦C 94.5% 78.8% 
38.0◦C 99.5% 90.3%  

Fig. 3. Probability of a feverish state with a measured temperature of 37.0◦C on the medial palpebral commissure (MPC), using a standard uncertainty thermal 
imager of 0.5◦C (a) and 1.0◦C (b). 
(Source: Elaborated by the authors.) 
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possibility that at least one of the ROIs is in direct view of the thermal 
imager. These events are highlighted with (*) in Table 7. It is worth 
mentioning that, among the feverish probability recorded in Table 7, all 
febrile volunteers presented their respective highest values equal to or 
greater than 94.0%. 

4. Conclusions 

From the analysis of our database with the surface temperatures of 
the adopted ROIs, temporal and supratrochlear commissure (forehead), 
medial palpebral commissure (MPC), and right and left external audi-
tory meatus (R- and L-EAM), the results corroborate the following 
conclusions: 

The ROIs present temperatures different from each other, and a 
single temperature threshold criterion cannot be adopted for screening 
febrile persons. This work experimentally analyzed and proposed 
different criteria for these different regions. 

The regions that present the smallest temperature variation among 
non-febrile individuals are the ears canals (R- and L-EAM). However, 
these ROIs are not always in direct view of the thermal imager, which 
can lead to measurement with temperature results considerably lower 
than the true values. Thus, in an efficient sanitary barrier, without 
stopping, and adequate positioning of the NCIR-based instrument, it is 
important to detect and measure the temperature in the greatest amount 
of ROIs possible, avoiding false-negative diagnoses of febrile state. 
Therefore, all ROIs must be considered, including those that naturally 
have lower metrological performance. 

The measurement uncertainty of the sanitary barrier influences the 
screening of febrile people proposed in this work, which is based on an 
indication of the probability that the person has a fever. Thus, the 
operator of the sanitary barrier must be aware of the quality of their 
equipment and estimate their measurement uncertainty, so that they can 
screen potentially febrile people based mainly on these two parameters. 

This work proposed a method of screening febrile people with new 
approaches: distinct screening temperature thresholds for each ROI; 
separate temperature measurement at each ROI in the NCIR-based in-
strument’s field of view; consider the quality of the temperature mea-
surement instrumentation, i.e., metrological uncertainty; concluding 
with the assessment of the probability of the individual being febrile. In 
this way, several of the limitations and difficulties listed in the scientific 
literature are mitigated. 

Superficial temperature measurement of human beings for screening 
of febrile persons is feasible through NCIR-based sensors, rather than 
invasive sensors, under metrological reliability, provided that parame-
ters for analyzing the results are adequate. These parameters should not 
be the same as those used for measuring core body temperature. 
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Table 7 
Test of the proposed methodology with feverish and non-febrile volunteers.  

Previous diagnosis Region of interest 

R-EAM L-EAM MPC Forehead 

T/◦C Prob T/◦C Prob T/◦C Prob T/◦C Prob 

Non-febrile 

34.3 0.0% 33.3 0.0% 33.9 0.0% 33.5 0.0% 
33.7 0.0% 34.5 0.0% 34.5 0.0% 33.4 0.0% 
33.8 0.0% 34.9 0.0% 34.6 0.0% 34.1 0.0% 
34.5 0.0% 34.5 0.0% 34.4 0.0% 33.8 0.0% 
35.8 0.0% 35.7 0.0% 36.0 1.3% 34.9 0.0% 

Febrile 

36.9 (*)20.3% 37.4 94.0% 36.9 69.3% 36.6 93.1% 
38.7 100% 39.3 100% 39.3 100% 39.0 100% 
37.3 70.6% 37.9 99.9% 37.1 88.3% 35.9 (*)18.0% 
37.4 81.2% 37.6 98.7% 37.1 88.3% 36.4 78.8% 

Prob: Probability of having a fever. (*): Situation without direct sight between thermal imager and ROI. 
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