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Abstract RNA has a myriad of biological roles in con-

temporary life. We use the RNA paradigm for genotype-

phenotype mappings to study the evolution of multiple

coding in dependence to mutation rates. We study three

different one-to-many genotype-phenotype mappings which

have the potential to encode the information for multiple

functions on a single sequence. These three different maps

are (i) cofolding, where two sequences can bind and ‘‘co-

fold,’’ (ii) suboptimal folding, where the alternative foldings

within a certain range of the native state of sequences are

considered, and (iii) adapter-based folding, in which proto-

cells can evolve adapter-mediated alternative foldings. We

study how protocells with a set of sequences can code for a

set of predefined functional structures, while avoiding all

other structures, which are considered to be misfoldings.

Note that such misfolded structures are far more prevalent

than functional ones. Our results highlight the flexibility of

the RNA sequence to secondary structure mapping and the

power of evolution to shape the genotype-phenotype map-

ping. We show that high fitness can be achieved even at high

mutation rates. Mutation rates affect genome size, but dif-

ferently depending on which folding method is used. We

observe that cofolding limits the possibility to avoid mis-

folded structures and that adapters are always beneficial for

fitness, but even more beneficial at low mutation rates. In all

cases, the evolution procedure selects for molecules that can

form additional structures. Our results indicate that inherent

properties of RNA molecules and their interactions allow the

evolution of complexity even at high mutation rates.

Keywords RNA evolution � Genotype-phenotype

mapping � Mutation rates � Genome structure � Information

threshold � Origin of life

Background

The RNA-model can be used not only to unravel the role of

RNA in the evolution of complexity, but also helps in

identifying important general properties of information pro-

cessing, i.e., genome architecture and its mapping to func-

tions. As such, the genotype-phenotype mapping of RNA is

considered to be a paradigm model to study the evolutionary

processes (Fontana and Schuster 1998; Fontana 2002).

In the light of bioinformatic processes, RNA was long

considered to be only an intermediate molecule, translating

genetic information, stored on DNA, into functional pro-

teins. Yet, besides a plethora of new functions of non-

coding RNA (not encoding proteins) which have been

discovered in the past years (Bompfünewerer et al. 2005),

more and more evidence is revealed about a layer of reg-

ulation largely consisting of RNA, which actually governs

information to function processing. That is, most cellular

processes may be modulated by micro-RNAs (van Kou-

wenhove et al. 2011), and it is generally accepted that

phenotypic divergence in animals is based not only on the

divergence of genetic information itself, but also on the

variation of the regulatory information that controls the

expression (Mattick et al. 2010). In other words, the

already complex mapping between information and func-

tionality is often also subject to modifications and/or

dependent on interactions between molecules.

In addition, in contemporary organisms, the use of

information is not as straightforward as originally thought:

genetic information is frequently arranged in an interleaved
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fashion in both DNA and RNA, and two or more transcripts

from the same locus might use a common sequence in dif-

ferent ways, to perform distinct biological roles (Tuck and

Tollervey 2011). For example, next to coding and non-cod-

ing RNAs, bifunctional RNAs also exist;these RNAs carry

both RNA-translatable and RNA-intrinsic functions

(Ulveling et al. 2011) and RNAs may have multiple func-

tions (Dinger et al. 2011). Moreover, functions can be coded

as alternative conformations of a single RNA sequence. Such

alternative conformations of RNA are known to be selected

for, and thus likely play functional roles in, even the most

structured of RNAs (Ritz et al. 2013). Collectively, we refer

to such phenomena as multiple coding.

In this paper, we investigate whether the propensity of

RNA for multiple coding and as a modifier of information

expression could have had a role in early evolution as well.

It is well known that genome size is severely constrained at

high mutation rates (Eigen 1971). If a simple one-to-one

genotype-phenotype map is assumed, functionality is also

severely constrained at high mutation rates. The research

presented here will explore to what extent the flexibility of

the RNA genotype to phenotype mapping can alleviate this

constraint. We will refer to genotype-phenotype map

flexibility as the range of possibilities determined within a

predefined genotype-phenotype map to alter the mapping

between genetic information and function. In particular, we

are interested in the role of one-to-many mappings of RNA

in the evolution of multiple functions in early evolution. In

other words, we will explore the evolution of ‘‘coding

structures’’ as a function of mutation rates, where coding

structure refers to how functionality is coded for on a

genome, and the mapping from this code to (a) particular

function(s).

To address this question, we consider the evolution of

abstract protocells, consisting of RNA sequences, which

can attain fitness by the ability to generate a particular set

of RNA secondary structures (and avoid all other struc-

tures). With these protocells, we can dissect different RNA

genotype-phenotype mappings and determine their effects

that could influence functional diversity and fitness. We

consider three different genotype to phenotype mappings

which allow multiple coding, namely adapter-based fold-

ing, suboptimal folding, and cofolding. In adapter-based

folding, the folding of RNA can be modified by binding to

an ‘‘adapter’’ molecule. Recently, we showed that the

inclusion of such adapter-mediated alternative foldings

(through evolving RNA-adapters) can lead to a complex

multiple coding structure and a high degree of functionality

also at high mutation rates (de Boer and Hogeweg

2010; de Boer and Hogeweg 2012). Yet, besides this

explicit mechanism for one-to-many coding, RNA itself

already has the propensity for multiple coding in several

ways, i.e., by the ability of RNA to adopt alternative

(energetically suboptimal) states and the ability of RNA

sequences to cofold with each other. Here, we investigate

whether these inherent mechanisms of RNA for multiple

coding provide comparable results as adapter-based folding

for evolving a coding structure such that high functionality

can be attained for a broad range of mutation rates.

Importantly, we explicitly address the possible risks of

multiple coding. While on the one hand, multiple coding

has been recognized as possibly one of the key features for

evolvability through the variability it can provide on a

phenotypic level (Ancel and Fontana 2000), the risks have

been recognized as well. RNA must avoid the problem of

folding into non-functional structures (Herschlag 1995),

and it has to do so in a highly crowded cellular interior

(Ellis 2001), where molecules are prone to inappropriate

interactions with other molecules (Dobson 2003). Longer

RNA sequences have a higher propensity of alternative

foldings (misfoldings) and may therefore, be disadvanta-

geous despite their higher evolvability (Lorsch 2002). In

our model, we therefore, set a dual requirement for high

fitness, i.e., maximizing the set of (predefined) functional

structures that can be generated, while avoiding all other

structures (misfoldings). Note that the set of functional

structures is very small relative to the set of misfolded

structures.

The Model

We study a minimal model to investigate the role that

multiple coding might have in accumulating functionality

despite high mutation rates. The model consists of a pop-

ulation of ‘protocells’ that consist of a variable number of

RNA sequences. The secondary structure of the sequences

determines functionality and/or toxicity (by misfolding) of

the sequences. Selection of protocells takes place to max-

imize the number and quality of available functional folds

and minimize misfoldings. For simplicity (and in line with

most previous studies on the impact of mutation rate on

information accumulation (but see Ancel and Fontana

(2000)), we ignore the kinetics of the folding and of the

replication of RNA sequences and protocells. Details of the

model are as follows:

Protocell Genotype

Collection of RNA sequences of variable length (initiated

at L = 50 ± 10, N = 5).

Protocell Phenotype

Collection of RNA secondary structures. The secondary

structures are characterized by (1) their course-grained
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Shapiro structure (Shapiro 1988) to determine functional-

ity, (2) the full secondary structure to determine quality of

function in terms of distance to the target structures (using

the tree-based distance measure defined in the Vienna

package), and (3) their free energy. Three different folding

protocols for calculating the phenotype are used (see

Fig. 1). In all cases, the minimal energy folding (MFE) of

each sequence is included.

Sub-optimal energy folding (Vienna package (Wuchty

et al. 1999; Lorenz et al. 2011)): The folds within

.5 kcal/mol of the minimal energy are included. Relative

frequency is ignored.

Cofolding (Vienna package (Bernhart et al. 2006)):

Each pair of sequences is cofolded and the resulting

secondary structure is added if differing from the

concatenation of the single sequence folds (i.e., MFE

of cofold smaller than the sum of MFE of each

sequence). Because the Shapiro structure is order

sensitive regarding the cofolded sequences, only the

one folding into a functional structure (if any) is taken

into account.

Adapter-based folding (Vienna package (Hofacker et al.

1994; Lorenz et al., 2011), (de Boer and Hogeweg

2012)): An ‘adapter’ is predefined as a single hairpin

loop. It shields the nucleotides to which it binds

maximally (and with binding \ -4.0 kcal/mol) from

within sequence binding. The resulting secondary struc-

ture of the bound/modified RNA is added to the

collection. The adapter itself is neither functional, nor

toxic.

To assess the potential of each of these folding proto-

cols, they are studied separately. In addition, the combi-

nation of the separate regimes is studied. However, because

of computational intractability, no full combinatorial

combination is considered, i.e., suboptimal foldings of

cofoldings and adapter-based foldings are not considered.

Selection

Selection is based on two properties of the phenotype, that

is on the collection of functional secondary structures and

on the collection of misfoldings. Secondary structures are

defined to be functional if their course-grained structure

matches a Shapiro structure from a predefined set of

functional structures. This set (see Fig. 2) was a priori

selected, with being ‘different’ as the main criterion and

earlier work indicates that this does not influence the

results qualitatively (de Boer and Hogeweg 2012). When

several RNA structures match the same target structure,

only the one with the least energy is taken into consider-

ation. Its contribution to fitness is proportional to the dis-

tance of the full secondary structure without its dangling

ends to the target structure.

For proteins aberrant foldings are often toxic, and

aberrant RNA-foldings can interfere with proteins. We

transfer this property here to RNA-only evolution, in order

to consider a worst-case scenario for evolving specific

functionality. Thus, any folds that do not match the target

set as course-grained structures are considered as a mis-

folding or ‘toxic’. For the ease of implementation and

Fig. 1 An example for each of

the different genotype-

phenotype mappings with the

phenotype produced by a

genotype. Genotype refers to all

the information kept in the

protocell, i.e., the different RNA

sequences. Phenotype refers to

all the structures which can be

produced with the folding-rules

given by the genotype-

phenotype map. Cofolding has 2

RNA sequences, which combine

in this case into three different

structures. The suboptimal

folding example has one

sequence which has four

alternative structures.

The adapter-based

folding example has three

adapters and one ‘normal’

sequence. Corresponding

binding sites are colored, which

result in three structures next to

the native fold
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evaluation, we separated these two aspects in different

parts of the selection function. The matching to the func-

tional set determines the chance of reproduction (referred

to as reproductive fitness or fitness for short), while the

mismatch (misfolding) determines the decay.

Reproduction and Decay of Protocells

In this study, the reproductive units are the protocells, not

the individual RNA strings. This is in contrast to many

previous models which studied multilevel selection (e.g.,

the error correction model of Szathmáry and Demeter

(1987), or stochastic corrector mechanisms described

in Hogeweg and Takeuchi (2003); Takeuchi and Hogeweg

(2009)). Here, we are interested instead in multiple coding

of a set of RNA sequences that are reproduced together. At

reproduction, a new protocell is created with copies of the

RNA sequences of the parent protocell subject to point

mutations, small insertion/deletion, and duplication or loss

of RNA sequences. Protocells decay with a probability

d ? nt, where n is the number of misfolded structures, and

d = .4 and t = .02 are the fixed decay and the extra decay

due to misfoldings, respectively. This fairly low value of

t is sufficient to result in strong selection against

misfoldings.

Population

We consider a spatially embedded population of a maxi-

mum of 50 9 50 protocells. Protocells compete locally for

resources (here empty space), on the basis of their repro-

ductive fitness f, given by the number of functional RNAs

and their relative distance to the targets. Strong selection is

used between 8 neighbors and the chance for each neighbor

to win the competition is defined as Pi ¼ fi
P8

j¼1

fiþ1

0

B
@

1

C
A

3

.

Fig. 2 All the used target structures. Exact fitness is based on

matching these structures (after removing dangling ends). However,

all secondary structures with the same course-grained structure are

considered functional. In our earlier work, we compared this set with

a random set, leading to similar results (de Boer and Hogeweg 2012).

The number of targets is chosen to be slightly larger than the

maximum that can be retained at the lowest mutation rate considered.

This choice is not structure specific: different structures are chosen in

different simulations
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Analysis

To characterize the outcome of the evolutionary process,

we focus on the structure of the ‘last common ancestor’

(LCA). The LCA is found by the backtracking of the extant

population at t = 500000. In practice, this LCA is found

within a 1,000 generations. That is, the populations are

evolutionarily converging quickly.

Results

Fitness is Almost Independent of Mutation Rates

For each of the three different genotype-phenotype map-

pings, we performed ten simulations with different starting

populations and random seeds, for each of four mutation

rates l = 1910-5, 1 9 10-4, 5 9 10-4, 1 9 10-3. In

Fig. 3 Fitness and derivative of

fitness of ten simulations for the

different genotype-phenotype

mappings. For most

simulations, the largest change

in fitness takes place within the

first 50,000 time-steps. After

that, protocells are still

evolving, but can be considered

to be in evolutionary stable state
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Fig. 3, all time-series are plotted. Evolution of protocells

with suboptimal or adapter-based folding reaches an evo-

lutionary stable state within 20,000 time-steps. For the

cofolding regime, the adaptive process is considerably

longer, but all studied protocells reach a state of equilib-

rium within the studied time frame. Note that the adapter-

based system keeps a higher rate of change in its evolu-

tionary stable state, compared to suboptimal and cofolding.

In Fig. 4, all these simulations are ranked according to

the acquired fitness of their LCAs. Note that all simulations

under the cofolding map have a considerably lower fitness

and more misfoldings than the other two maps. This is most

striking under the lowest mutation rates, where the other

two mappings are able to exploit the freedom of larger

genome sizes, whereas the cofolding mapping only allows

limited genome sizes. Fitness of the other two mappings is

comparable, and on average &18 % higher than cofolding,

while under the lowest mutation rate, l = 1910-5,

acquired fitness is even &31 % higher. Moreover, where

suboptimal and adapter-based foldings in most cases are

able to successfully avoid misfoldings, cofolding has an

average of more than 3 misfoldings per evolved protocell.

As a consequence of these high rates of misfoldings in

combination with low fitness, populations with cofolding

tend to be &25 % smaller (data not shown). Interestingly,

while fitness under the suboptimal and adapter-based

regime is somewhat higher under low mutation rates, fit-

ness under the cofolding regime is independent of mutation

rates. Moreover, misfoldings decrease under higher muta-

tion rates. That is, when mutational pressure limits genome

size, misfoldings can be avoided.

Gene Content is Restricted by Mutation Rates

The difference in genotypic variation between the different

regimes is considerably larger. The genome sizes in Fig. 4

show that cofolding protocells only maintain small-sized

genomes. These small-sized genomes consist on average of

less than seven sequences. This is in contrast with adapter-

based and suboptimal folding protocells which show a

large range in genome size and number of sequences. In the

case of adapters, the total number of sequences does not

decrease as dramatically as the total genome length. This is

because under higher mutation rates more sequences are

used to code for adapters. A distinction is made between

the part of the genome coding for ‘functions’ and the part

used to code for the modification machinery. Hence, when

adapters are used, they tend to be small, yet present in

considerable amounts (see also de Boer and Hogeweg

(2012)).

If we look at the variation over different mutation rates,

the differences in cofolding are small over the different

mutation rates. Genome size only decreases marginally

with mutation rates, as it is already small for low mutation

rates. This is due to the selection pressure against mis-

foldings: the number of foldings increases quadratically

Fig. 4 For the mutation rates l = 1910-5, 1 9 10-4, 5 9 10-4,

1 9 10-3, ten simulations for each genotype-phenotype mapping are

ranked according to their acquired fitness. Primary coded functions

are depicted as red; secondary coded structures using cofolding,

suboptimal folding, or adapter-based folding are in green, yellow, and

blue, respectively. Left shows fitness(positive axis) and misfold-

ings (black, negative axis) and right shows number of func-

tions (positive axis) and genome size (cyan, negative axis). The

cofolding regime has the highest numbers of misfoldings and all

simulations are ranked in the lower end of the fitness spectrum.

However, while fitness and genome size of cofolding seem indepen-

dent of mutation rates, the number of misfoldings decreases under

higher mutation rates with the number of sequences. Note that fitness

and misfoldings are explicitly separated over reproduction and

lethality, respectively. The simulation under l = 5 9 10-4 with the

lowest acquired fitness, corresponds to a protocell in the adapter

system that does not evolve adapters (see also Fig. 3) (Color figure

online)
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with the number of sequences. Indeed, the small decrease

in genome size (from eight to six sequences) results in a

difference of 13 structures.

Moreover, the ratio of ‘‘primary’’ coded functions to

secondary coded functions (see Fig. 4), is observed to be

comparable over the different mutation rates, while in the

cases of suboptimal and adapter-based folding, a transition

can be observed between ‘low’ and ‘high’ mutation rates:

under increasing mutational pressure, evolving protocells

primarily adapt their coding structure by decreasing the

number of sequences.

Adapters Increase Fitness

When adapters are used under low mutation rates (i.e.,

where they are not needed due to mutational pressure), this

allows protocells to gain higher fitness. As a default, when

multiple sequences code for the same function, only the

structures with the the lowest MFE are considered.

Therefore, taking into account the energy given by the

binding between adapters and sequences stimulates the use

of adapters, i.e., when multiple sequences code for the

same function, there is a small bias toward choosing strong

adapter-bound sequences. This results in the counter-intu-

itive observation of Fig. 5 that replicators can actually

achieve higher fitness under low mutation rates if the

choice between functional structures is based on energy

instead of fitness. With such an energy-based choice,

adapters evolve in more cases (see also de Boer and

Hogeweg (2012)). Note that the actual evolutionary

selection criterion and overall scheme are exactly the same.

In all cases, if adapters are evolved, fitness is considerably

higher.

Adopting Multiple Coding

In all folding methodologies, high functionality is achieved

by the use of multiple coding: at most half of the properly

folded structures are primary coded, i.e., are minimal

energy structures of single RNA sequences (red vs other

colored bars in Fig. 4). At high mutation rates, the number

of primary coded functions decreases even further and the

system ‘switches’ toward more ‘complex’ coding, within

the possibilities given by the different regimes. In the co-

folding regime, multiple coding is hard to avoid and, at low

mutation rates, leads to many misfoldings. The other

regimes can exploit multiple coding while largely avoiding

misfoldings.

The increase of multiple coding through adapter-based

folding under higher mutation rates is achieved by

increasing the use of adapters, as shown in Figs. 4 and 5.

This leads to an increase of possible structures produced

from a sequence. However, protocells with adapter-based

folding have relatively larger genomes under high mutation

rates, as almost half of the genome codes for the (partly

redundant) adapters.

In the case of suboptimal folding, a single sequence will

produce a larger set of functions, as compensation for the

genome size being restricted by high mutation rates. While

the number of sequences decreases under higher mutation

Fig. 5 The acquired fitness of twenty simulations with the adapter-

based genotype-phenotype mapping is ranked, for the mutation rates

l = 1910-5, 1 9 10-4, 5 9 10-4, 1 9 10-3. In one set of simula-

tions, the choice between functional structures is based on energy

(right panel), in the other set, this choice is based on fitness (left

panel). Primary coded functions are depicted as red; secondary coded

structures as blue. On the negative axis, the number of corresponding

misfolded structures (black) is shown. For a given mutation rate,

fitness is considerably higher when adapters are evolved (Color figure

online)
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rates, the number of produced structures is comparable.

That is, under both l = 1910-5 and l = 1910-4, the

average ensemble for all evolved sequences consists of 3.0

and 2.8 different foldings, respectively (as is the case for

random sequences), and under the mutation rates

l = 5910-4 and l = 1910-3 this increases to a median

of 6.0 and 6.6 different suboptimal foldings per sequence.

The cofolding mapping shows no significant decrease in

the number of sequences, nor an increase of multiple

coding, whereas both suboptimal and adapter-based folding

can increase the number of functions coded per sequence

without the cost of structurally increased misfoldings by

adopting a more dense multiple coding structure on their

genome.

The flexibility of these mappings allows for a range of

‘choices’ about how information (approximated by gen-

ome size) can be used to code for a phenotype under the

different imposed mutation rates. Flexibility is highest for

adapter-based folding, where a large range of coding

structures is used, allowing it to specifically adapt to the

mutation rates it is exposed to. Also the lack of flexibility

in the case of cofolding is clear: compared to suboptimal

folding and adapter-based folding, cofolding is least able to

adapt its genotype-phenotype mapping. It can expand its

phenotype, but not prevent the interactions.

Coding Regimes Combined

An obvious follow-up experiment is to combine the three

mappings within a single system. In Fig. 6, we ranked

simulations with the possibility of all three mappings side

by side with simulations where protocells can use both

suboptimal and adapter-based foldings (that is, cofolding is

not taken into account). The effect of adding cofolding to

the protocol is clear: Overall fitness is lower and the

number of misfolded structures increases. That is, because

of the selection pressure against misfoldings, genome sizes

with cofolding are very small under all mutation rates (data

not shown).

Interestingly, adapter-based functionality and fitness are

the highest under low mutation rates, while under high

mutation rates most functional structures are constructed

through suboptimal folding. This is because every

sequence has a suboptimal ensemble by default, while

adapters have to evolve first. Present from the start,

mutational pressure causes the suboptimal ensemble and its

multiplicity to be shaped by evolution, rather than the

invention of a complex adapter-based system. When gen-

ome size is restricted by the cofolding regime as described

above, a similar effect can be observed.

Folding Energies of Functional Structures

In Fig. 7, we focus on (the separate evolution of) subop-

timal and adapter-based folding by comparing the acquired

folding energies of the structures. The stability of the

evolved functional structures is an important observable to

characterize the evolved genotype-phenotype mappings.

The stability (energy) of the structures is only used as

selection between otherwise equal foldings. Figure 7 shows

that this stability in the adapter-based system leads to more

stable foldings (i.e., lower energies), whether or not we

include the free energy of the adapter-sequence bind-

ing (yellow bars). Comparing the free energies obtained

without including the adapter-sequence binding, overall the

difference is significant (p = 0.01, Mann–Whitney U test).

The most significant difference (p = 0.005, Mann–

Whitney U test) is under the highest mutation rate

Fig. 6 The acquired fitness of

five simulations with the

possibility of all three

mappings(1) and five

simulations with adapter based,

and suboptimal folding(2) are

ranked for the mutation rates

l = 1910-5, 1 9 10-4,

59 10-4, 1 9 10-3. Primary

coded functions are depicted as

red; secondary coded structures

using cofolding, suboptimal

folding, or adapter-based

folding are in green, yellow, and

blue, respectively. On the

bottom, the number of

corresponding misfolded

structures (black) is shown

(Color figure online)
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l = 1 9 10-3, while under l = 1 9 10-5, energies did

not significantly differ (p = 0.44, Mann–Whitney U test).

Thus, although both systems obtain similar fitness, the use

of adapters brings lower free energies in the system, pro-

viding robust interactions between adapters and sequences,

next to the highest flexibility in coding structure.

Discussion

We studied three different multi-molecule, one-to-many,

genotype-phenotype mappings: a map which superimposes

combinations of two sequences to cofold, a map where the

alternative states of all sequences are considered, and a

map which allows for a primitive form of RNA-modifica-

tion to evolve. The secondary structure is presently the best

compromise between theoretical tractability and empirical

accessibility (Higgs 2000; Fontana 2002), and it is mostly

considered to be a good approximation of the function of a

molecule. In our model, fitness depends on the secondary

structure, yet to be able to classify molecules into func-

tional and misfolded, the structure of molecules is trun-

cated at the level of the coarse-grained structure (as

proposed by Shapiro (1988)). In our opinion, the used

classification of ‘functionality’ is adequate, and we think

that a more realistic implementation will not lead to

qualitative differences.

In conclusion, the intrinsic properties of RNA can cope

surprisingly well with the dual constraint of functionality

and the penalty on misfoldings in a variety of ways under

different mutation rates. As mentioned above, there is no

negative effect on the size and variety of the suboptimal

ensemble (compare with Ancel and Fontana (2000)). Our

simulations show that the phenotypic variation of subop-

timal and adapter-based folding is comparable. However,

the genotypic variation and flexibility of coding by

evolving explicit adapters give more plasticity to cope with

the different mutational circumstances. In de Boer and

Hogeweg (2012), the advantage of adapters under high

mutation rates was emphasized. Now, in addition, we

observe that especially under low mutation rates adapters

enable protocells to acquire higher fitness and have higher

energy foldings overall. Whereas suboptimal folding can

only be oppressed, the adapter-based mapping enables

protocells to actively ‘choose’ between large genomes and/

or multiple coding under different mutation rates. Large

genomes are known to be advantageous for evolvabili-

ty (Knibbe et al. 2007; Cuypers and Hogeweg 2012;

de Boer and Hogeweg 2012), and the higher flexibility

without loss of functional specificity (see also de Boer and

Hogeweg (2012)), has been shown to facilitate evolution-

ary innovation (Matias Rodrigues and Wagner 2009; Es-

pinosa-Soto et al. 2011).

While misfoldings and fitness are explicitly separated in the

model, the cofolding mapping indicates a strong (indirect)

correlation between misfoldings and lack of fitness. RNAs

with functions dependent on cofolding are expected to evolve

much more slowly than RNAs with a function depending only

on their own structure (Attolini and Stadler 2005). Indeed, we

see exactly this. It is, however, interesting to see that mutation

rates have only a slight effect on the cofolding regime. In

contrast to the other cases, the cofolding regime performs even

better under high mutation rates, with regard to both mis-

foldings and fitness. With cofolding, flexibility of the geno-

type-phenotype mapping is low and the number of

sequences (and genome size) is inflexible. As a result, pro-

tocells with cofolding have a high number of misfoldings, low

evolvability, and lower fitness than the other two mappings.

An ‘ideal’ simulation involves the concepts of the three

mappings combined. Which strategy will dominate? This

cannot be entirely answered with our current model,

because functionality and molecular interactions within

protocells are collapsed over their lifespan and resources

are neglected. However, our results show, in the form of

cofolding, that too many (forced) interactions restrict

evolvability.

Fig. 7 For each mutation rate, the average Minimal Folding Energy of

all evolved structures within the target set is shown. In the adapter-

based simulations, the average MFE of the binding between adapters is

depicted in yellow. Note that this is the sequence-adapter interaction

only; energies of the base-pairing in the stem of the adapter are not

considered. Also note that some targets are more difficult, and

therefore, have a smaller sample-size or are not present under certain

mutation rates. Even without the adapters, average acquired MFE of

adapter-based protocells is stronger. The distributions of energies

(without adapter-energies, over all mutation rates) under the two

folding regimes differed significantly (p = 0.01, Mann–Whitney

U test). While the most significant difference (p = 0.005) is under

the highest mutation rate l = 1 9 10-3, under l = 1 9 10-5 energies

did not differ significantly (p = 0.44) (Color figure online)
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In the combined case, multiple coding is most often

accomplished by suboptimal folding. However energy-

wise, adapters do have an advantage over suboptimal

folding. That is, the observed minimal energies from

structures acquired with adapters are not affected by

increasing mutation rates. This suggests a possible role for

‘simple’ RNA-adapters and the evolutionary exploitation

of such binding-induced function-alterations. This sugges-

tion is reinforced by the parallels which can be observed

between our RNA-adapters and the widespread use of ri-

boswitches, that are able to regulate several processes by

changing their conformational states (Vitreschak et al.

2004; Serganov and Patel 2007; Montange and Batey 2008;

Zhang et al. 2010).

On the other side of the spectrum, a very interesting

question rises with the observed limitation of the cofolding

mapping: how are the unwanted interactions between

molecules avoided in a (proto)cell? In this light, compa-

rable to our results, it has been shown for proteins that

interactions pose a general structural (and energy binding)

constraint, through specific interacting interfaces, which

have to be maintained, while other interactions have to be

avoided (Deeds et al. 2007).

We conclude that evolved multiple coding can increase

fitness and evolvability both at low and at high mutation

rates. This potential is best realized in the adapter-based

regime that allows many functional foldings with high

stability and an absence of misfoldings, with small gen-

omes at high mutation rates and large genomes at low

mutation rates.

However, if multiple coding is hard to avoid or shape, as

is the case in the cofolding regime, genome size is

restricted also at low mutation rates. This leads to a rela-

tively low number of functional foldings and many mis-

foldings. Interestingly, when genome size is restricted due

to high mutation rates functionality is retained and mis-

foldings can be avoided.
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