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1  Mass balances for metabolites lie at the
basis of constraint-based modeling

Metabolism is essentially a large network of coupled chem-
ical conversions (reactions) catalyzed mostly by enzymes.
In this process, nutrients are converted into building
blocks, such as nucleotides, fatty acids, lipids, amino
acids, and free-energy carriers, for the synthesis of macro-
molecules, such as DNA, RNA, and proteins. These macro-
molecules are required for the maintenance of cellular
integrity and formation of new cells. Fundamental process-
es in metabolism are enzyme-catalyzed reactions. In a sin-
gle reaction, substrates are converted into products and
the number of atoms of a given type, such as C, H, O, N, P,

or S, and the net charge should balance on each side of the
equation [1]. These balancing principles are followed in
genome-scale metabolic reconstructions [2]. Some aspects
of balancing remain ambiguous, such as the protonation
states of some of the metabolites, because this may be
dependent on intracellular properties, such as pH and ion-
ic strength. Every reaction occurs at a rate that depends on
the concentrations of the enzyme reactants, possibly a few
effectors, and the enzyme kinetic properties described by
enzyme kinetics. Any reaction j can be written as Eq. (1):

(1)

in which we consider a network with a total of m metabo-
lites (reactants), denoted by xi. The n+

ij and n–
ij coefficients

denote product and substrate stoichiometric coefficients,
respectively, and equal the number of molecules pro-
duced and consumed per unit reaction rate. The reaction
rate is denoted by vj and typical units are mM min–1 or
mmol h–1 (g biomass)–1. The net stoichiometric coefficient
of metabolite i in reaction j is defined as nij = n+

ij – n–
ij.
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The rates of change of the concentration of every
metabolite can be equated in terms of reaction rates and
net stoichiometric coefficients, which gives rise to the set
of ordinary differential equations given by Eq. (2):

(2)

The metabolite or state vector x is m × 1 in dimension.
The r × 1 rate vector, v, contains the rate equations of the
r reactions in the network, which are typically expressed
in terms of enzyme kinetics. The stoichiometric matrix N
is m × r in dimensions and contains as its i,jth entry the
net stoichiometric coefficient, nij, of metabolite i in reac-
tion j. The coefficient nij < 0 if metabolite i is a substrate
in the net stoichiometry of reaction j and nij > 0 if metabo-
lite i is a product in the net stoichiometry of reaction j. The
kinetic and environmental parameters are elements of the
vector p and t denotes time. Note that metabolites that
are held at a fixed concentration (boundary metabolites)
do not enter the stoichiometry matrix because they do not
have a rate of change. They enter as parameters in the
parameter vector p.

Because our interest is in stoichiometric models, we
will not discuss further enzyme kinetics that enter the rate
vector v, see [3]. The stoichiometric matrix is the princi-
ple object of study in stoichiometric modeling. Herein, we
discuss basic analyses of the stoichiometric matrix.

2  Chemical moiety conservation

In metabolism, metabolites tend to occur that are solely
recycled. Examples of such metabolites include ATP,
NAD(P)H, and coenzyme A. As a consequence of recy-
cling, the maximum concentration of those metabolites is
constrained by a total concentration of a chemical moiety.
For instance, in the case of phosphate and adenosine moi-
ety conservation, the relationships given by Eq. (3) hold
true at any moment in time:

PT = 3ATP + 2ADP + AMP + P (3)
AT = ATP + ADP + AMP

with total phosphate and adenosine levels given as PT and
AT. Taking the derivative of Eq. (3) with respect to time
gives Eq. (4):

(4)

Equation  (4) indicates linear relationships between the
rows of the stoichiometry matrix and allows for the
expression of the rate of change of one metabolite in terms
of other rates of change [4]. In matrix form, we can write
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this as Eq. (5) for the general case of metabolites of a meta-
bolic network:

(5)

The vectors xD and xI denote the vector of dependent and
independent metabolite concentrations. The matrix L0
expresses the linear combinations of the rates of changes
of the independent metabolites. In integrated form, Eq. (5)
becomes Eq. (6):

(6)

with t as the vector of total concentrations of chemical
moieties. By way of illustration, the vectors xD and xI and
the matrix L0 are determined for the moiety-conservation
relationships given in Eq. (3) by Eq. (7):

(7)

Using this L0 matrix, the dynamics of all metabolites (ATP,
ADP, AMP, and P) can be obtained from the dynamics of
the independent metabolites (ATP, ADP). In other words,
the dependent species are redundant for determining the
species dynamics. Note that different combinations of
independent metabolites can be chosen. This can intu-
itively be seen from the relationships given in Eq. (3). For
example, by choosing ATP and AMP as independent
metabolites, the concentration of ADP can be determined
from AT = ATP + ADP + AMP. Subsequently, the concen-
tration of P can be determined from PT = 3ATP + 2 ADP +
AMP + P. 

The relationship given in Eq. (5) dictates the decom-
position of the stoichiometric matrix into two blocks, giv-
en by Eq. (8):

(8)

in which N is decomposed into blocks of NR, which is the
reduced stoichiometry matrix, and N0 [5, 6]. Together, the
relationships shown in Eqs. (5) and (8) give rise to Eq. (9):

(9)

and indicate that the moiety conservation matrix in
Eq. (10):

(10)

can be derived from the left null-space of the stoichiome-
try matrix [7, 8]. Typically, NR is identified in N after the
null-space has been calculated. The number of independ-
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ent metabolites, m0, is denoted by the rank of N. Thus, the
reduced stoichiometry matrix NR will be m0 × r in size.
This indicates that the stoichiometry matrix N has m0
independent rows and m – m0 moiety-conservation rela-
tionships.

In genome-scale models, a biomass reaction is typi-
cally used to describe cell growth. This biomass reaction
is used as a sink for biomass precursors (e.g. DNA, RNA,
proteins, lipids) that together define the biomass compo-
sition of the cell. These biomass precursors contain moi-
eties, such as adenosine, that require the continuous syn-
thesis of adenosine. Therefore, a non-zero flux through
this biomass reaction results in a drain of the moieties.
Hence, in such a genome-scale metabolic model, a strict

application of moiety conservation detection along the
lines detailed above, will result in fewer moieties. Yet, to
understand the dynamics of metabolic pathways, they are
relevant because the turnover of ATP is much larger than
the rate at which the adenosine moiety will be synthe-
sized.

3  Steady-state flux modes

By definition, at a steady state of the metabolic network,
Eq. (11) holds: 

(11)=N J 0R
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Figure 1. A simplified metabolic pathway to illustrate the concept of flux modes. (A) A network diagram of a simplified metabolic network. Arrows indicate
reactions and are labeled as Rn. Double-headed arrows indicate reversible reactions. Irreversible reactions are indicated by single-headed arrows, which
point in the thermodynamically preferred direction. Underlined metabolites are considered to be fixed in concentration to allow for a steady state. Note that

all reactions are uni–uni reactions, except R25, which has stoichiometry of . We can rewrite this stoichiometry as A2 + P → AP + A to 

illustrate that there is no stoichiometric inconsistency with the isomerization reactions. To deal with thermodynamic inconsistencies, imagine adding fixed
metabolites V and W to R24 to drive this reaction forward. A description of this model in the SBML level 3 package can be found in the Supporting infor-
mation. (B) An overview of the seven flux modes. Colors correspond to flux values.
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Here we used the convention that the reaction rate vec-
tor, v, at steady state is denoted by J, which is the flux
vector. Equation  (11) gives rise to m0 flux relationships,
each of which represent a linear combination between
fluxes. As a consequence, r – m0 fluxes are minimally
required to determine all  fluxes. Hence, Eq.  (12) must
exist because it describes all linear combinations of inde-
pendent fluxes (JI ) that give rise to the dependent fluxes
in JD:

(12)

Thus, the right null-space of the (reduced) stoichiometry
matrix equals the kernel matrix, given by Eq. (13):

(13)

Note that the columns of NR may have to be reordered to
write the null-space in this form. In addition, each column
of K can be divided by any number; all resulting vectors
continue to lie in the null-space of NR. The rows of K rep-
resent the flux values of a specific reaction.

If we denote the ith column of K by ki, any flux vector
J can be written as a linear combination of the columns of
K, as given by Eq. (14):

(14)

in which the weighting coefficients, αi, can take any val-
ue. The set of all flux vectors of the metabolic network is
contained within the null-space of NR. However, this is a
huge space and below we discuss definitions that reduce
this space by incorporating additional thermodynamic
information or postulating optimal metabolic functioning.
Equation (14) illustrates that the definition of K cannot be
unique because multiplication of the multipliers αi by any
factor λ can be compensated for by the division of every
element in ki by λ. Because no restrictions apply to the
values of the multipliers, K cannot be uniquely chosen. 

The vectors ki have a network topological interpreta-
tion. They represent routes through the network along
which every metabolite is at steady state, if the fluxes car-
ry the values dictated by ki. This is why the ki terms are
often called flux modes. In Fig. 1A, a toy metabolic net-
work is shown. It contains 26 reactions and 23 metabo-
lites. The external metabolites T, U, X, and Y are consid-
ered to be fixed; the other 19 metabolites are considered
to be variable. The stoichiometry matrix has full rank and,
therefore, no conserved chemical moieties occur. The
number of independent fluxes equals seven (=26–19).
Thus, seven flux modes exist and they are displayed in
Fig. 1B. The color codes of the reactions indicate reaction
rate values and it can be easily verified that all variable
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metabolites are at steady state for all flux modes. Because
all of these metabolites along a flux mode are required to
operate a steady state, the flux modes have to be either
cycles or routes from source to sink metabolites. 

Note that the flux modes do not necessarily agree with
thermodynamics, since several irreversible reactions are
forced to have a negative flux. In addition, the flux mode
in the upper-right part of Fig. 1B is complex and could be
swapped for a simpler flux mode if desired. This indicates
the problems associated with analysis of the null-space
and explains why alternative definitions for steady-state
flux routes in metabolic networks have been developed;
these are introduced and discussed in sections 4 to 9.
These alternative definitions are unique representations
of the null-space and agree with the thermodynamic pref-
erence of the reactions.

4  Flux balance analysis (FBA)

In Section 3, we discussed the steady-state relationship
NRJ = 0. We illustrated that this system of equations was
underdetermined; more unknown fluxes occurred than
the number of linear relationships (r > m0). Therefore, the
null-space of the stoichiometric matrix N did not lead to a
unique flux vector, but a whole solution space. To realisti-
cally narrow down the solution space, FBA selects only
those flux values that together can optimize some biolog-
ically relevant objective, such as maximum biomass rate
or maximum ATP production rate [9]. This optimization is
achieved by a linear programming approach [10, 11] and
FBA can be mathematically represented by Eq. (15):

(15)

in which vector c dictates a linear relationship between
fluxes of J that forms the objective function Z. J min and
J max are vectors of minimum and maximum values,
respectively, that any flux of vector J can attain during
this optimization. These flux bounds can represent
experimental measurements by bounding all known flux
values within experimental errors or they can derive from
thermodynamic considerations that force fluxes to be
either strictly negative or positive. This linear program
narrows down the feasible steady-state flux space of the
stoichiometric matrix by applying stoichiometric, ther-
modynamic, and environmental constraints and by opti-
mizing an objective function. Hence, this linear program
results in an optimal solution space, which only contains
those solutions for fluxes that, in combination, give a
unique and maximum value for the objective function Z.
This space is considerably smaller than the space dictat-
ed by K.
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Performing FBA on the toy metabolic model shown in
Fig. 1A with the input flux R01 ≤ 1, and maximization of
the flux through R26 as the objective function yields a flux
distribution, one of which is presented in the upper-left
part of Fig. 1B. This example indicates that the flux dis-
tribution that results from FBA can be (a linear combina-
tion of the) flux modes of the stoichiometric matrix.

We also performed FBA on the iAF1260 model of
Escherichia coli with input fluxes representing a mineral
medium [12] supplemented with glucose (uptake flux of

8 mmol g–1h–1), in the presence of oxygen (uptake flux of
18.5 mmol g–1h–1) and free exchange of ammonia, water,
carbon dioxide, protons, phosphate, sulfate, and other
metal ions. As the metabolic objective, we considered
maximization of the rate of biomass synthesis. This opti-
mization predicts a growth rate of 0.73 h–1 and a flux dis-
tribution in which 82% reactions are inactive; only 18%
reactions of the whole metabolic network are used
(Fig. 2B).
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Figure 2. FBA and flux variability analysis (FVA) of E. coli model iAF1260 in a defined mineral medium. (A) FVA performed on the toy metabolic model.
Resulting spans are shown for all reactions in which zero span is for fixed (in-)active reactions (gray, R25 is inactive), a span of one is for active but variable
reactions (purple), and large spans are for reactions (red) in cycles. (B) Flux distribution resulting from FBA on the genome-scale model predicted that
82% of the reactions were inactive (Ji = 0) and only 18% of the fluxes carried a non-zero flux (Ji ≠ 0). (C) Analysis of the results of FVA revealed that 94% of
the metabolic network was fixed (fixed fluxes) and only 6% of all fluxes (variable fluxes) could vary without changing the growth rate. 49% of these variable
fluxes have a finite span, while 51% have an infinite span, suggesting their involvement in infeasible cycles. Out of those fixed fluxes, 84% never carry any
mass (Ji = 0) and 16% are active (Ji ≠ 0). (D) Absolute spans of some reactions, resulting from FVA, are presented. All reaction names are taken from the
model itself.
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5  Flux Variability Analysis (FVA)

FVA maximizes and minimizes each flux of the metabolic
network, while satisfying all given constraints at the opti-
mal objective function value [13]. It is a useful tool to gain
an insight into network flexibility. It gives the span of the
fluxes that exist within the optimal solution space defined
by the linear program given in Eq. (15). The linear program
for FVA can be written by Eq. (16): 

(16)

in which Zobj is the objective function value of the previ-
ous FBA program. By fixing the objective function value
at the value obtained from the FBA optimization, FVA
determines the range for each flux within which all
numerical values are valid FBA solutions. Using the
results of FVA optimization, we can determine the spans
(= |Ji

FVA max – Ji
FVA min|) as an absolute difference between

the FVA maximum (Ji
FVA max) and FVA minimum (Ji

FVA min)
values of each flux Ji within the optima. On the basis of
these spans, we can determine the fixed and flexible parts
of the metabolic network while it achieves a particular
metabolic objective. These spans can hit infinity because,
in an optimal flux distribution of the metabolic network,
some reaction rates may not be constrained at all. The
FVA span gives an indication of the range of values that a
reaction may attain. However, the actual value it can take
in a particular flux distribution depends on the entire
reaction network: fluxes cannot be changed independ-
ently because this would violate the steady-state con-
straint [14].

In Fig. 2A, the absolute spans resulting from FVA for
all fluxes in the toy metabolic model are shown. The con-
straints for this FVA are identical to the FBA calculations
for this model discussed above and infinity flux bounds
are represented by a large value of 1000. This analysis
depicts the reactions that have a fixed flux and a span of
zero (gray arrows) and reactions that have variable fluxes
with a span of one (purple arrows). Here, reactions with a
span of zero are either active (essential) reactions because
alternative optimal paths are not present or inactive (non-
essential) reactions because they yield a sub-optimal FBA
solution (R25). Some reactions (red arrows) have large
spans because they are part of metabolic cycles (R02–R04,
R14 and R19–R21, and R23–R24). In any optimal FBA solu-
tion with a maximal flux of one through R01, a net flux of
one is required from R01 to R05. Therefore, the allowed
flux values of R02–R04 are between -999 and 1000 (span =
1999); a flux of -999 through R02 results in a flux of 1000
through R03 and R04 and vice versa. In contrast, no net
flux is required through the second metabolic cycle (R14
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and R19–R21) to obtain an optimal FBA solution. For
example, a flux of one through R16–R18 results in no flux
through R13–R15 in any optimal FBA solution. As a result,
the reactions of this metabolic cycle can operate at their
maximum bounds in both directions without violating
optimal metabolic functioning (span = 2000). Also, a net
flux of one is required from R22 to R26. Because R24 is irre-
versible, the maximal flux R23 can obtain in any optimal
solution is one (with JR24 = 0). Since R23 is reversible, an
optimal FBA solution can be obtained if the fluxes through
R23 and R24 are -999 and 1000, respectively. As a conse-
quence, the spans of R23 and R24 are 1000 (R23: –999 to 1
and R24: 0–1000).

We also performed FVA on the E. coli model iAF1260
with the same constraints and objective function value as
the FBA optimization described above. Analyzing the
spans of all fluxes revealed that only 6% reactions could
vary in the optimal solution space. Of the 94% fixed reac-
tions, 16% carry a non-zero flux and the remaining 84%
are inactive (Fig. 2C). This means that 21.04% (6% + 0.94
× 16%) reactions can have a non-zero flux. The percent-
age of non-zero fluxes in a FBA outcome (Fig. 2B) will be
equal or lower, because some variable fluxes can also be
zero in a FBA solution.

Further analysis of the variable fluxes (6% of total flux-
es) revealed that 49% of them had a finite span. The
remainder (51% of fluxes with infinite spans) get their
variability due to metabolic cycles in the metabolic net-
work. In section 9 we explain how these cycles can be
interpreted. The spans of some of the reactions in the
model, as obtained by FVA, are shown in Fig. 2D.

6  Interpretation of the sensitivity parameters
associated with FBA solution

Two sensitivity parameters – reduced costs and shadow
prices – are associated with a FBA solution. A reduced
cost (ri) can be interpreted as the sensitivity of the objec-
tive function with respect to the change in the ith flux val-
ue. In biological terms, this can be interpreted in the fol-
lowing manner: If a flux Ji has a reduced cost of ri in a par-
ticular FBA solution and this flux value is increased by ΔJi,
then the objective function value will be changed to 
Z + riΔJi. Reduced costs assigned to nutrient uptake
 fluxes give us an indication of the growth-limiting com-
pounds in the medium. The reduced costs assigned to the
uptake fluxes of substrates that are not allowed to be con-
sumed identify which nutrients could be added to the medi-
um to achieve a higher growth rate [15]. Sometimes, inac-
tive substrate fluxes are of no interest and scaled reduced
costs (sri) [16] are used to identify the limiting substrates.
Scaled reduced costs can be represented by Eq. (17):

(17)sr
r J

Zi
i i 
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The toy metabolic network shown in Fig. 1A contains
28 EFMs, as shown in Fig. 3. In this toy model, we can
identify all three types of EFMs earlier defined. To begin
with, there are 24 type  I EFMs that characterize all
 optimal pathways, which are shown in Fig. 3A–X. Any
route from metabolite X to Y, ignoring reaction R25, is 
a type  I EFM. In this network, there is only one type  II 
EFM that gives a sub-optimal yield (Fig. 3Y). Thus, any
route from metabolite X to Y, involving reaction R25,
results in a sub-optimal yield because R25 has stoichio-

metry . Finally, there are three type  III

EFMs that characterize the internal loops of this metabo -
lic network, as shown in Fig.  3Z–AB. Generally, these
cycles are responsible for the large number of EFMs. To
illustrate this point, without these three cycles the toy
metabolic network has only five EFMs. Then, there would
be four EFMs to characterize all optimal pathways, one
EFM to characterize the sub-optimal pathway, and zero
EFMs to characterize internal loops.

8  Extreme pathways

The alternative approach, ExPas, determines the edges of
the cone that describe the steady-state solution space
and the thermodynamic preference of reactions [20]. The
set of ExPas does not have to contain all pathways with
an optimal and sub-optimal yield, in contrast to the EFMs.
Convex combinations of ExPas that satisfy the three EFM
conditions, however, can be used to obtain all optimal and
sub-optimal pathways. In addition to the three conditions
of EFMs, ExPas require two additional conditions: (iv) net-
work reconfiguration and (v) systematic independence. 

Network reconfiguration results in a classification of
each reaction as an internal or exchange reaction. More-
over, each internal reversible reaction is split into two irre-
versible reactions: a reaction describing the forward reac-
tion and a reaction describing the backward reaction.
Systematic independence guaranties that an ExPa can-
not be represented by a non-negative linear combination
of other ExPas. Because of the systemic independence
condition, ExPas are always a subset of the EFMs. In oth-
er words, each ExPa is also an EFM, but not necessarily
vice versa. This can result in fewer ExPas than EFMs for
the same metabolic network. For a metabolic model of the
human red blood cell, the average number of EFMs used
for a given ExPa was about four [24]. However, if all
exchange reactions in a metabolic network are irre-
versible, the sets of relevant EFMs and ExPas are identi-
cal. This is a general property of EFMs and ExPas [24, 25].
Note that each originally reversible internal reaction, split
into two irreversible reactions, fulfills all ExPa and EFM
conditions, resulting in additional ExPas and EFMs.
These ExPas and EFMs can be considered irrelevant [24,
25] because they only redefine reversibility. In more math-
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A shadow price (γi) is the sensitivity of the objective func-
tion with respect to the change in a constraint [17]. Con-
sequently, if metabolite i is added, then objective function
value Z will change according to the shadow price. Shad-
ow prices have been used to analyze the effects of sub-
strate availability on the growth in phenotypic phase
plane analysis [18]. 

7  Elementary flux modes

Elementary flux modes (EFMs) and extreme pathways
(ExPas) were developed to uniquely characterize the right
null-space K of a stoichiometry matrix. In contrast to FBA-
related techniques, EFM and ExPa analyses are only
based on network stoichiometry and therefore allow an
unbiased analysis without imposing an optimization prin-
ciple. These definitions rely on a convex set of flux vectors
[19, 20]. By taking a convex combination of these flux vec-
tors (en), any possible steady-state flux distribution (J )
can be generated. Assuming that we have N EFMs, we
can write this as Eq. (18):

(18)

Here αi are non-negative weighting coefficients that total
one (Eq. 19)

(19)

Both EMFs and ExPas can be exploited to evaluate, for
instance, pathway redundancy, to find (sub-)optimal
pathways for the investigation of pathway properties,
such as cost and length, and to study the effect of gene
deletions [21–23]. Unfortunately, both approaches suffer
from excessive running times, that is, characterizing the
right null-space of the stoichiometric matrix is a non-
deterministic polynomial-time (NP)-hard computational
problem.

EFMs [19] fulfill three conditions: (i) (pseudo-)steady
state, (ii) thermodynamic feasibility, and (iii) non-decom-
posability. These conditions have several consequences.
First, internal metabolites of an EFM are neither net con-
sumed or produced due to the steady-state condition.
Second, all flux rates of an EFM are thermodynamically
feasible in contrast to the flux modes, ki. Third, no subset
of an EFM exists that fulfills the first two conditions with-
out violating the third. The complete set of EFMs can be
partitioned into three types: (I) all optimal yield pathways
converting one or more substrates into a product (e.g. bio-
mass), (II) all sub-optimal yield pathways converting one
or more substrates to a product, and (III) internal loops in
the metabolic network.
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Figure 3. Topological characterization of all EFMs.
(A)–(X) Type I EFMs. (Y) Type II EFM. (Z)-(AB) Type IV
EFM. Visualizing ExPas requires decoupling of all reversible
reactions into two irreversible reactions. Because all
exchange reactions are irreversible, the set of relevant 
ExPas match this set of EFMs. Colors correspond to
 reaction values (red = 1, blue = 1/2).



responsible for the increase in the number of type I and II
EFMs and ExPas. Alternatively, rays and linealities do not
influence the number of CoPE-FBA sub-networks. 

Any optimal flux distribution that satisfies the meta-
bolic optimum obtained in the FBA calculation can be
written in terms of the vertices, rays, and linealities using
the Minkowski sum given in Eq. (20) [26, 27],

(20)

in which the vectors ϕi, φi, and ψi represent the vertices,
rays, and linealities, respectively. The weighting coeffi-

cients obey the following restrictions: , αi > 0,

βi > 0, and γi can take any value. These definitions indi-
cate that the vertices can be summed in a convex man-
ner, the rays as a conical sum, and a linear combination
can be taken over the linealities. 

The sub-networks that can be identified with CoPE-
FBA and explain the numbers of vertices for a given FBA
problem satisfy three conditions: (i) only reactions belong-
ing to a specific sub-network display correlation in flux
values across the optimal solution space, (ii) fixed net
input–output stoichiometry of reactants, and (iii) thermo-
dynamic feasibility.

As a result, these sub-networks contain reactions that
vary independently across all vertices of the optimal solu-
tion space. Therefore, without violating the optimality
condition, sub-networks with alternative internal flux dis-
tributions can be independently chosen. For this reason,
the number of vertices can be determined by multiplying
the number of alternative internal flux distributions for
each sub-network [27]. This illustrates the likely combi-
natorial explosion for the number of vertices of the optimal
solution space for larger metabolic networks.

The toy metabolic network contains two CoPE-FBA
sub-networks given in Fig. 4F. Each sub-network has two
alternative internal fluxes distributions: the top and bot-
tom branch. Multiplying the number of alternative flux
distributions for each sub-network, 2 × 2 = 4, gives the
number of vertices. Larger metabolic models tend to con-
tain more vertices, while the number of sub-networks
stays small. For instance, the genome-scale metabolic
model iAF1260, consisting of 2374 reactions and 1668
metabolites, has about 1.7  × 106 vertices when studied
under glucose growth conditions [27]. Still, only four sub-
networks, which contain about 5% of the total number of
reactions in this model, are enough to characterize the
optimal solution space [27]. Comparing the number of
EFMs (i), ExPas (j), vertices (k), and CoPE-FBA sub-net-
works (m) gives an indication of the level of compactness
of these approaches. Typically, for larger models the num-
ber of EFMs, ExPas, and vertices will explode, which
gives i ≥ j > k >> m.
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ematical terms, the EFMs and ExPas are the extreme rays
that span the flux cone, C, defined by C = {J |NJ = 0,J ≥ 0}.

Because the exchange reactions (R01 and R26) in this
toy metabolic network are irreversible, the sets of relevant
EFMs and ExPas are identical. Nevertheless, the network
contains 38 ExPas and 28 EFMs. The additional 10 ExPas
arise because of the network reconfiguration condition.
Each of these 10 ExPas (not shown) is also an EFM that
will be detected if they are determined after reconfiguring
the network.

9  Unique representations of the optimal 
flux space

FBA can be exploited to calculate the maximum yield of a
product on a certain substrate. FBA simulation provides a
steady-state flux distribution, which corresponds to a
point in the (optimal) solution space. Typically, a unique
optimal steady-state flux distribution through the meta-
bolic network cannot be guaranteed because the con-
straints defined by the stoichiometric network are insuf-
ficient. Accordingly, a solution space of optimal steady-
state flux distributions exists that each give rise to the
maximal yield. This solution space represents a polyhe-
dron [26] and this space is considerably smaller than the
entire steady-state solution space characterized by flux
modes, EFMs, or ExPas. This reduction in solution space
is achieved in FBA by the consideration of additional con-
straints, a particular nutrient environment, and the
demand for flux distributions that optimize a metabolic
objective. Characterizing the optimal solution space of
FBA remains a NP-hard computational problem. Above,
we characterized the variability of the flux values within
the optimal solution space. Next, we characterize this
solution space in network topological terms.

In contrast to both the EFMs and ExPas approaches,
comprehensive polyhedra enumeration flux balance
analysis (CoPE-FBA) characterizes only the optimal solu-
tion space, which is done in terms of a compact set of sub-
networks [27]. These sub-networks account for all alter-
native flux distributions in the optimal steady state pre-
dicted by FBA. CoPE-FBA therefore provides the topolog-
ical structure underneath flux variability, at least in the
optimal solution. The solution space of optimal flux distri-
butions contains three topological features: (i) vertices, 
(ii) rays, and (iii) linealities.

Vertices are optimal paths of the metabolic network,
including reactions with fixed and variable fluxes. Rays
are irreversible, thermodynamically infeasible cycles and
linealities are reversible cycles in the metabolic network.
No net conversion occurs in either the rays or linealities of
the FBA polyhedron. The toy metabolic network has four
vertices (Fig. 4B–E), one ray, and two linealities (Fig. 4A).
Note that the EFMs and ExPas also consist of these three
topological features. Therefore, rays and linealities are

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 1005
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Figure 4. Topological characterization of the optimal FBA solution space. (A) This FBA program contains one ray (blue; R23 and R24) and two linealities
(green; R02–R04 and R14, R19–R21). (B)–(E) Visualization of the four vertices this FBA program contains. Each vertex represents a route from substrate to
product with a maximum yield. The values indicate the predicted flux values. Reaction R01 was bounded between zero and one. (F) The two sub-networks
detected with CoPE-FBA. Both sub-networks contain two alternative flux distributions, resulting in 2 x 2 possible vertices shown in (B)–(E).



10  Biological implications of stoichiometric
network analysis

The predictions made by any mathematical model
depend heavily on the underlying assumptions. The defi-
nitions of ExPas, EMFs, and those related to FBA have the
steady-state assumption in common. In general, the
steady-state assumption is assumed to be valid because
of the timescale separation between (fast) intracellular
metabolic conversions and (slow) genetic regulation [28,
29]. 

In addition to the steady-state assumption, FBA
assumed optimization of an objective function, which
could, in some cases, be debatable from a biological per-
spective. Typical objective functions are the yield of the
biomass reaction or ATP production. Optimization of
these objectives is always bounded by capacity con-
straints of other reactions that ultimately bound the
steady-state solution space. In other words, FBA opti-
mizes an objective function relative to a limiting input
flux. Thus, optimization of any reaction rate in FBA is
always the optimization of a yield defined as the objective
reaction rate divided by the limiting input. Optimization
of growth rate rather than growth yield is a completely dif-
ferent strategy; this can be easily understood because the
yield does not fix the rates of the metabolic processes.
Selection for yield only occurs in the absence of competi-
tion for nutrients, which is an unlikely scenario in biology.
The assumption of one objective may actually not always
reflect reality: the occurrence of trade-offs between two
metabolic objectives may cause cells to optimize both of
them simultaneously (possibly, with different weights),
leading to Pareto optimization problems [30].

11  Concluding remarks

We provided an overview of the most common mathe-
matical techniques used in the stoichiometric analysis of
metabolic networks. We have not described in any detail
the application of these techniques to biological prob-
lems, which is found elsewhere [31–33]. These applica-
tions to biology are the reasons for the existence of path-
way analysis, and there are a number of success stories
[34, 35]. Yet, the simplifications and subsequent limita-
tions of the described techniques are also clear and exten-
sions to pathway analysis methods include the incorpora-
tion of dynamics (such as in dynamic FBA [36]), addition-
al constraints (such as space or resource limitations
[37–39], multidimensional optimality [30], and extensions
to multi-species FBA [40–42]. It is therefore to be expect-
ed that such analysis will penetrate biology in increas-
ingly many ways to provide rigorous and quantitative
hypotheses and fundamental understanding.
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