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Introduction

Human neuroscience research continues to reveal the 
neural processes underlying high-level cognitive func-
tions (Turk-Browne 2013). Functional magnetic reso-
nance imaging (fMRI)-based analyses, by capturing 
patterns of brain activity that may be local or widespread 
in space, are uniquely suited to study such neural repre-
sentations and, by extension, brain organization.

Fundamentally, fMRI analyses all seek to identify 
spatiotemporal patterns of fluctuations in the blood-oxy-
gen level dependent (BOLD) signal (Fig. 1), but various 
methods exist to summarize these patterns. These meth-
ods broadly fall into two camps (Fig. 2). The first, which 
we will term “region-based analysis,” focuses on the fea-
tures of a discrete, clearly demarcated brain area. Such 
areas could be very small (e.g., a single voxel or region 
of interest; Fig. 3a and b) or large and relatively hetero-
geneous (e.g., a lobe or other macroscale region; Fig. 
3c), and they may be defined by any number of charac-
teristics, including myeloarchitecture (Fig. 3a), patterns 
of activity (Fig. 4a), and even interactions with the  
rest of the brain (see the discussion of connectivity 
hyperalignment [Guntupalli and others 2018] in  
section “Regional and Connection-Based Approaches to 

Individualization”); in practice, the regions studied tend 
to consist of many voxels selected based on some ana-
tomical (Fig. 3a and Fig. 4b) or functional (Fig. 3c and 
Fig. 4) principle. Regardless of their size, these regions 
have clear boundaries that can be drawn on the brain; in 
other words, they are physical entities that can be 
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interrogated as such (e.g., Fig. 5a). The second approach, 
which we will call “connection-based analysis,” summa-
rizes spatiotemporal patterns in the brain by explicitly 
comparing time courses of paired sources (e.g., voxels or 

multi-voxel nodes). Rather than focusing on an isolated 
region, this approach characterizes the interactions 
between regions, yielding metrics that, unlike region-
based measures, do not necessarily represent physical 

Figure 1.  Schematic depiction of functional magnetic resonance imaging (fMRI) data acquisition and processing. The basis of fMRI 
is the blood-oxygen level dependent (BOLD) signal, which relies on the premise that active neurons consume oxygen, changing 
the ratio of oxygenated to deoxygenated blood in active brain regions; because oxygenation affects the magnetic susceptibility 
of hemoglobin, this change can be detected via magnetic resonance imaging. In this figure, we schematically depict the scanning 
environment in which images are acquired. Images are acquired in two dimensions, with a full brain volume acquired over the 
course of one to several seconds. After image acquisition, data are preprocessed to remove sources of artefactual signal, align the 
structural image to a common reference space, and align the functional images to the common-space anatomical image, allowing 
comparison across subjects. The fundamental spatial unit of fMRI measurements is the voxel, which is a three-dimensional pixel 
(depicted schematically as a cube), each face of which is typically on the order of several millimeters.

Figure 2.  Schematic depiction of functional magnetic resonance imaging (fMRI) region- and connection-based analysis. After 
preprocessing, researchers may choose to study focal regions and/or the interactions among them. In this schematic depiction 
of such analyses, every voxel is assigned to a region, as defined a priori by a parcellation. All time courses for voxels in a given 
region are averaged to yield a mean time course of activity for each region. These regions can then be further characterized, and/
or the synchrony between pairs of such regions can be quantified to yield connection-based measures.
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brain entities (Fig. 5b; for examples, see Box 1). In graph 
theory terms, region-based analyses focus on nodes and 
connection-based analyses on edges.

While not mutually exclusive, this simple dichotomy 
(Friston 2011) facilitates the exploration of two funda-
mentally different ways of thinking about brain function. 
In what follows, we discuss the strengths and limitations 
of each, focusing primarily on the application of this 
framework to measures of functional connectivity (FC; 
Fig. 2). Given the complementary nature of these 
approaches, we will not advocate for one method over the 
other. Rather, we will consider how each method reveals 
distinct information about the organization of the brain. 
We review the advantages and disadvantages of region- 
and connection-based measures in three domains: neuro-
biological relevance, brain-behavior relationships, and 
individual differences in brain organization.

Using Regions and Connections to 
Reveal Neurobiological Insights

The utility of region- and connection-based approaches 
depends in large part on the extent to which they reflect 
underlying neurobiological properties—that is, the 
degree to which each approach represents physical pro-
cesses in the brain, and the sensitivity of each approach 

to neurobiological perturbation (Eickhoff and others 
2018). We turn next to a consideration of each of these 
questions.

Neurobiological Bases of Region- and 
Connection-Based Measures

Dating back to the work of Brodmann (1909), many 
have mapped discrete regions of the brain and assigned 
them specific functions (Broca 1861; Scoville and 
Milner 1957). More recent results support the idea that 
the brain can be divided into regions based on structural 
or functional features (a map often referred to as a “par-
cellation”; e.g., Amunts and Zilles 2015; Bludau and 
others 2014; Cohen and others 2008; Glasser and others 
2016; González de San Román and others 2018; Lorenz 
and others 2017; Shen and others 2013). Parcellations 
defined by connectivity patterns generally conform to 
task-activation maps and other neurobiological bound-
aries (Gordon and others 2016; Wig and others 2014), 
further evidence of regional homogeneity—and conver-
gence—of structure and function. Even large regions 
spanning the cortex have been found to exhibit similari-
ties in gene transcription (Hawrylycz and others 2015; 
Richiardi and others 2015), supporting the notion that 
regions have meaningful molecular bases. For example, 

Figure 3.  Example methods to define brain regions. Region boundaries may be based on anatomical features (e.g., 
myeloarchitecture [a]) or functional features (as in electrophysiological stimulation-based maps [b] or independent component 
analysis [ICA]-based maps [c]). Adapted with permission from: “a and b”: Amunts and Zilles (2015); “c”: Smith and others 2009).
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Richiardi and others (2015) demonstrated that, in human 
subjects, regions defined by independent component 
analysis (see Box 1) have correlated transcriptional pro-
files in a set of key genes linked to synaptic function. 
Other work similarly supports the idea that functional 
networks have a meaningful structural basis (Mišić and 

others 2016; van den Heuvel and others 2009), though it 
should be noted that structural and functional networks 
do not always show a one-to-one correspondence (Mišić 
and others 2016; Rodriguez-Vazquez and others 2019). 
In general, these studies all have leveraged an important 
aspect of region-based measures: they are physical 

Figure 4.  Functional and multiple modality-based methods to define brain regions. Region boundaries may be based on whole-
brain time course clustering-based maps (a) or a multimodal combination of anatomical and functional features (b). Adapted with 
permission from: “a”: Greene and others (2018); parcellation as described in Finn and others (2015) and Shen and others (2013); 
“b”: Glasser and others (2016).



Horien et al.	 121

Figure 5.  Example of region and connection-based measures using parcellation approaches described in Figure 4. (a) Examples 
of regional measures include, within each region, average task activation (colors indicate Z statistic values during a language task), 
average intracortical myelin (range 4% to 96%; hot colors indicate increased myelination), and average cortical thickness (range 
2.1–3.3 mm; hot colors indicate increased thickness). (b) Connection-based measures are concisely summarized in connectivity 
matrices, and relevant connections can then be projected onto the brain. Connection strengths may be quantified using a variety 
of measures, including correlation and partial correlation. Adapted with permission from: “a”: Glasser and others (2016); “b”: left 
panel—Glasser and others (2016); right panel—Rosenberg and others (2017).

Box 1.  What Are Regions and Connections, and How Are They Used?.

All functional MRI (fMRI) analyses seek to characterize meaningful patterns of brain activity across space and time, but 
approaches to study these patterns vary. Specifically, after defining functionally coherent regions (which, critically, can be 
based on anatomy, activation, or even connectivity with other regions), one can study properties of those regions (i.e., region-
based analyses) or relationships among them (i.e., connection-based analyses). That is, one can study a discrete region, around 
which boundaries can be drawn on the brain, or the interactions between regions. These approaches can be alternatively 
framed as segregationism and integrationism (Friston 2011; Genon and others 2018), and while many tend to conceptualize the 
brain in one way or the other, they are not mutually exclusive.

Take, for example, the popular application of independent component analysis (ICA) to fMRI data. In its most common application, 
spatial ICA decomposes the BOLD signal into spatial components that are maximally independent, each with a corresponding time 
course of activity (Calhoun and others 2009; McKeown and others 2003). In region-based analyses, these components, themselves, 
can be studied, for example, by comparing voxel loadings to a given IC across patient groups (e.g., Zhu and others 2012; Fig. 6a); such 
analyses shed light on group differences in within-network connectivity. Connection-based analyses can also be performed using ICA, 
by studying similarity between time courses from ICA components (e.g., (Calhoun and de Lacy 2017; Fig. 6b).

 (continued)
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Figure 6.  Some approaches (e.g., ICA) can yield both region- (a) and connection-based (b) measures, which can be used to 
study group and individual differences in both health and disease. That is, ICA defines regions that can, themselves, be studied, 
or that can be used to calculate connection-based measures. For example, in (a), default mode network FC differences between 
patients with depression and healthy controls are displayed. In (b), regions similarly defined using ICA are used to characterize 
communication between these regions, rather than characteristics of the regions, themselves. Adapted with permission from: “a”: 
Zhu and others (2012); “b”: Allen and others (2011).

Box 1.  (continued)

Network neuroscience offers additional examples of the complementary nature of region- and connection-based analyses. 
Nodal measures—for example, degree, or the number of connections incident to a given node (Rubinov and Sporns 2010)—
while based on connections, summarize a property of the region of interest. Conversely, characteristic path length, or the 
average shortest distance between all pairs of regions, is not specific to any area, but rather is an explicitly connection-based 
measure that reflects brain integration (Rubinov and Sporns 2010).
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structures in the brain that can be studied at multiple 
levels of analysis.

There is also evidence to suggest that connection-
based measures are structurally meaningful. While not all 
functional connections correspond to monosynaptic 
structural connections, data do exist showing that this 
assumption holds for certain parts of the brain. For exam-
ple, work from the mouse has revealed that, particularly 
for cortical and hippocampal areas, functional connec-
tions observed at rest conform to known monosynaptic 
structural connections (Grandjean and others 2017). For 
subcortical networks, polysynaptic connections were 
shown to be responsible for functional connections 
(Grandjean and others 2017). Other findings from the 
animal literature suggest that functional connections gen-
erally show good correspondence to structural connec-
tions (Mills and others 2018; Stafford and others 2014). 
Correspondence between structural and functional fea-
tures has been observed in humans, as well, in compari-
sons of functional connections and tracts defined by 
diffusion tensor imaging (Hermundstad and others 2013; 
Jarbo and Verstynen 2015; Liang and Wang 2017). In 
addition, knowledge of structural connections allows pre-
diction of functional connections (Goñi and others 2014; 
Honey and others 2009), though there are also cases, as 
for region-based measures, where structure-function rela-
tionships diverge (Honey and others 2009; Park and 
Friston 2013).

Sensitivity of Regions and Connections to 
Biological Disturbances

While there is evidence to support the neurobiological 
basis of both regions and connections, a separate consid-
eration is whether a particular measure is better suited to 
capture changes in underlying biology. That is, if a mea-
sure is more sensitive to underlying disturbances in brain 
function but lacks a precise neuronal correlate in human 
subjects, it arguably might be more valuable than a mea-
sure that is less sensitive but more biophysically realistic. 
Inspired by modelling (Achard and others 2006; Alstott 
and others 2009; Váša and others 2015) and clinical stud-
ies (Eldaief and others 2016; Henson and others 2016; 
Siegel and others 2016a), we provide toy scenarios of the 
effect of lesions on FC measures to illustrate this poten-
tial trade-off. We note that these scenarios are kept inten-
tionally simple to illustrate our points, though we include 
references to relevant work as appropriate.

First, consider the case in which a lesion affects con-
nection-based measures, but not regional measures. In 
this scenario, two areas of the brain may initially have 
similar time courses of activity and thus a strong func-
tional connection (Fig. 7a). One could imagine a distur-
bance that introduces a lag in the BOLD signal in one of 

these regions, perhaps reflecting a delay between neuro-
nal activity and the hemodynamic response (e.g., 
Amemiya and others 2014; Lv and others 2013; Siegel 
and others 2016b). If the two signals are now signifi-
cantly lagged (Fig. 7b), the correlation between the two 
regions might be decreased relative to their pre-lesion 
correlation, and the pathology would be evident in con-
nection-based measures, as described previously (Lv and 
others 2013; Siegel and others 2016b).

However, as we demonstrate in Figure 7b, certain 
regional characteristics, such as the amplitude of low fre-
quency fluctuations (ALFF; Zang and others 2007) or 
fractional ALFF (f/ALFF; Zou and others 2008), might 
not be affected by the disturbance. Indeed, this has been 
noted in previous work at certain frequencies (Siegel and 
others 2016b). If regional characteristics are used to 
define parcellation boundaries, as is often the case, it is 
possible that such boundaries in and near the affected 
area would not change. Thus, if only region-based mea-
sures were used, a pathological change with clear neuro-
biological importance might be missed.

As another example, consider a case in which the under-
lying neurobiology affects regional measures, but not con-
nection-based measures. In this example, as before, the 
two regions have highly correlated signals initially (Fig. 
7a), but now a disturbance affects both signals’ amplitudes 
(Fig. 7c) or frequencies (Fig. 7d), as can happen after loss 
of blood (Hudetz and others 1992; Kannurpatti and others 
2008), administration of anesthesia (Kiviniemi and others 
2000), or differences in brain state (Yuan and others 2014). 
Because the synchrony of these regions’ time courses 
remains unchanged, the areas would retain their high cor-
relation, as has been suggested previously (Paasonen and 
others 2018). Furthermore, if the effect on connectivity 
between the lesioned regions and the rest of the brain were 
small, subtle differences in whole-brain connectivity might 
be missed (Cremers and others 2017). Thus, relying only 
on connection-based analyses in this scenario might miss 
important information about pathological changes to the 
regions in question.

In a final scenario, it is possible to imagine situations in 
which incoming connection strengths might change for a 
given region, but the overall weighted degree of the region, 
or summed strength of connections incident to it, remains 
the same (Fig. 7e). Hence, even in these relatively straight-
forward examples, neither a region- nor a connection-
based approach, by itself, is sufficient to capture all 
biologically meaningful features of the system. Recent 
work suggests that these issues might not be merely theo-
retical and reinforces that signal changes in one region of 
the brain can affect estimates of FC to other regions of the 
brain (Duff and others 2018). Given the differential utility 
of these approaches for the study of neurobiology and the 
evidence supporting the biological basis of both, the choice 
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of one approach and/or the other requires that investigators 
carefully consider their question of interest. That is, the 
best approach must be chosen to detect relevant, underly-
ing neurobiological properties and—ultimately—their 
relationship to observable behavior. We turn next to the 
study of such brain-behavior relationships.

Relating Regions and Connections to 
Phenotypes

The neural bases of human behavior—from our relation-
ships, to our career choices, to what we eat for breakfast—
have long captured the imagination of neuroscientists, 
yielding an extensive literature on brain-behavior relation-
ships. Given this, it is worth considering whether region- 
or connection-based measures better reveal individual 
differences in brain functional organization that underlie 
individual differences in behavior and cognition.

Predictive modeling offers a useful framework to 
explore this question and generate specific neural 
hypotheses, as prediction depends on robust, behavior-
relevant individual differences in brain data. It should 
be noted that predictive modeling approaches are not 

without limitations—namely, the data-driven nature of 
the analyses may render interpretation of results diffi-
cult, especially in cases where mechanism is sought. 
However, predictive modeling mitigates the common 
problem of “overfitting” in human neuroimaging 
research. That is, given that the number of predictors 
(e.g., voxels, connections) is usually far greater than 
the number of observations (e.g., individuals), models 
often mistakenly fit sample idiosyncrasies and noise, 
yielding promising results that fail to generalize to 
novel individuals (Yarkoni and Westfall 2017). Because 
predictive models are trained in one sample and tested 
on another, previously unseen sample, they offer a rig-
orous test of the generalizability of brain-behavior rela-
tionships (Box 2; Fig. 8a). FMRI-based predictive 
modeling has already begun to yield important insights 
into the neural bases—and potentially clinically useful 
predictions (Woo and others 2017)—of many pheno-
typic measures, including brain maturity (Dosenbach 
and others 2010), attention (Rosenberg and others 
2015), fluid intelligence (Finn and others 2015), 
empathic care and distress (Ashar and others 2017), and 
depression subtypes and treatment response (Drysdale 

Figure 7.  Using region- or connection-based approaches in isolation potentially obscures changes due to a lesion. (a) Consider 
the two colored regions for which the BOLD signal is measured over time. The original signals have similar characteristics 
(amplitude of 1, frequency of 0.1 Hz) and are synchronized, resulting in a Pearson correlation coefficient of 0.82. (b) A 
disturbance results in one signal exhibiting a delay. Because the signals are now lagged, they have a correlation of approximately 
0, despite having the same amplitudes and frequencies as before the disturbance—regional measures, like the amplitude of low 
frequency fluctuations (ALFF) or fractional ALFF (f/ALFF) would be unaffected in this example. In (c) and (d), disturbances affect 
the amplitude (c) or frequency (d) of the signals. Because the two signals are still synchronized in both cases, the correlation 
remains high, but differences in the signal are clearly observed. In (e), the black node has the same overall weighted degree in the 
top and bottom panels, despite differences in connectivity between specific region pairs. a.u. = arbitrary units; f = frequency; A 
= amplitude; r = Pearson correlation coefficient.
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Box 2.  Overview of Predictive Modeling.

Using brain data to predict phenotypic measures has generated great excitement in the human neuroimaging community 
(Gabrieli and others 2015), both because resulting models may yield useful behavioral and clinical predictions (e.g., Drysdale 
and others 2016; Finn and others 2015; Rosenberg and others 2015), and because they permit characterization of the neural 
bases of predicted measures (Yarkoni and Westfall 2017). Such brain-behavior relationships have historically been studied by 
correlating brain and phenotypic variables, but results of these explanatory analyses frequently fail to generalize, likely due in 
large part to the use of small, idiosyncratic samples (Kharabian Masouleh and others 2019; Yarkoni and Westfall 2017). True 
prediction—training a model to predict a phenotype from brain data in one group and applying it to another group (Fig. 8a)—
reveals brain-behavior relationships that, by definition, generalize to unseen subjects, increasing models’ scientific and clinical 
utility (Dubois and Adolphs 2016; Woo and others 2017; Yarkoni and Westfall 2017).

While the specifics of predictive modeling approaches in human neuroscience vary, analyses typically follow a consistent 
framework. Below, we describe this framework for the prediction of continuous variables, rather than for classification of 
binary variables, though many of the same principles apply to both cases.

First, brain data are divided into training and test data. Training data are submitted to a machine learning algorithm (e.g., 
support vector regression, connectome-based predictive modeling [Finn and others 2015; Shen and others 2017], partial least 
squares regression, or recursive partitioning methods [e.g., random forests]). While the details of these algorithms again vary, 
they all involve (1) the selection of a set of brain-based features, (2) the development of a mathematical function that maps these 
features to the phenotypic measure of interest, and (3) the application of the resulting function, or model, to the unused test 
data, yielding predictions of the phenotypic measure for these left-out examples on the basis of their brain data (Fig. 8a). This is 
repeated iteratively, using different subsets of the sample as training and test data, a process called cross-validation (Yarkoni and 
Westfall 2017). By separating the training and test data, investigators ensure that their models generalize to unseen subjects—in 
other words, that their models are truly predictive, rather than descriptive. To quantify model performance, predictions can then 
be compared to observed measures (e.g., via correlation; for an example, see Finn and others [2015]). Additional post hoc analyses 
can be used to “look under the hood” of these models: model statistics (e.g., error measures) can validate model performance and 
utility, and interrogation of selected features and their weights, where relevant, can, by localizing predictive features, shed light on 
the neural representation of the predicted measure (see section “Relating Regions and Connections to Phenotypes”).

Figure 8.  (continued)
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and others 2016), but whether region- or connection-
based measures are better suited to reveal brain-behav-
ior relationships remains an open question.

More specifically, prediction has two components: the 
predictions, themselves, and the brain-based models that 
yield these predictions, which can in turn be interrogated 
to shed light on neural representation. The former is con-
strained by model input (i.e., predictions can only be as 
good as the measures on which they are based), and the 
latter reflects the interpretability of model output. The 
choice of how to represent fMRI data—based on regional 
features or on relationships among regions—affects both 
prediction accuracy and model interpretability; in what 
follows, we offer a framework to guide this choice for 
both model input and interpretation in order to best reveal 
brain-behavior relationships.

Model Input

The choice of features used as model input will in most 
cases depend on the measure being predicted: while 
region-based measures may yield accurate predictions of 
measures associated with low-level cognitive processes 
(e.g., sensory processes), connection-based measures will 
likely prove more useful for the prediction of (more fre-
quently modeled) higher level cognitive processes (Woo 
and others 2017). The study of visual processing offers an 
illustrative example. In work performed by Haxby and 
others (2001), multi-voxel pattern analysis (Norman and 
others 2006) was used to classify the object category 
being viewed on the basis of patterns of activity in ventral 
temporal (VT) cortex. Similarly, Kamitani and Tong 
(2005) demonstrated that patterns of activity in early 
visual cortex, alone, can be used to predict the orientation 
of a viewed stimulus. Models built using region-based 
features (which may be activation-based, as in these 
examples, anatomy-based [e.g., intracortical myelination, 
cortical thickness; Glasser and others 2016], or FC-based 
[e.g., node degree; Rubinov and Sporns 2010]) are thus 

likely to yield accurate predictions of measures or func-
tions associated with circumscribed brain regions (e.g., 
perception). In many such cases, given the lower dimen-
sionality (see section “The Trade-Off between Information 
and Complexity”) and increased interpretability (see sec-
tion “Model Output”) of region-based measures, their use 
for predictive modeling should be favored over connec-
tion-based measures.

In the case of more complex cognitive measures or 
behaviors, however, a region-based approach may prove 
less fruitful. VT cortex again demonstrates this point: 
while patterns of activation in this region alone can pre-
dict low-level visual processing (Haxby and others 2001), 
it is also involved in distributed neural circuitry underly-
ing more complex, context-dependent processes. In a 
study by Chadick and Gazzaley (2011), participants were 
shown images of faces and scenes simultaneously, but 
were told that only one image class would be task rele-
vant while the other would be task irrelevant. During 
blocks when faces were task relevant, the fusiform face 
area demonstrated increased FC with frontoparietal areas, 
while the parahippocampal place area demonstrated 
increased FC with the default mode network; these pat-
terns were reversed during blocks when scenes were task 
relevant. These distinct connection patterns, dependent 
on current task goals, would be overlooked if VT cortex 
were considered in isolation. Similarly, predictions of 
emotion intensity have been shown to be most accurate 
when features are drawn from a distributed “neural signa-
ture” rather than from isolated regions associated with 
emotion processing (Chang and others 2015). Such work 
is consistent with the growing consensus that, in most 
cases, brain regions do not work in isolation (Turk-
Browne 2013), and underscores the utility of connection-
based measures for prediction of high-level cognitive 
processes and behaviors. This preference is of course not 
absolute, and we close this section with a discussion of 
two additional considerations that may guide the selec-
tion of measures as model input.

Figure 8.  Predictive modeling follows a standard framework, and models are most effectively trained and summarized by using 
combinations of region- and connection-based measures. (a) Predictive modeling involves three general steps: feature selection, 
in which a subset of all features is selected from the training data; model building, in which those features are submitted to an 
algorithm that fits them to a set of observed measures; and prediction, in which feature selection is performed on previously 
unseen test data, and resulting features are submitted to the models to yield a prediction of the measure of interest (indicated in 
the figure by “phenotype?”). This process is repeated iteratively, with different divisions of data into training and test sets on each 
iteration. (b) While projecting connection-based features used for prediction onto the brain can become difficult to interpret due 
to the sheer number of features, using both region- (e.g., region weight [as indicated by node size] or network membership [as 
indicated by node color]) and connection-based measures (as indicated by lines between nodes) can aid model summarization 
and interpretation. Alternative visualization methods focus on one measure at a time to aid interpretation. In (c), nodes are 
colored according to their binary degree (total number of connections incident to that node in the given model), while in (d), 
each connection in the given model is assigned to a pair of networks (see inset for a visualization of the 10 networks used in 
this example). Together, such depictions provide complementary insights into the locations of overrepresented regions (c) and 
connections (d), while avoiding the difficulty of interpreting individual connections or model weights. Adapted with permission 
from: “b”: Dosenbach and others (2010) and “c-d”: Greene and others (2018).
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Getting the Regions Right.  When using region-based mea-
sures to relate individual differences in brain organiza-
tion to phenotypic measures, one important consideration 
is how to draw region boundaries. Regions that are too 
large may fail to capture the processes unfolding within 
them (for discussion of an example in visual cortex, see 
Turk-Browne 2013). Furthermore, one must consider the 
degree of region homology across subjects. Of note, 
Haxby and colleagues performed the image classifica-
tion analysis within-subject (i.e., patterns of activity dur-
ing the first half of the experiment in a given subject 
were used to classify patterns of activity for that subject 
in the second half of the experiment) due to individual 
differences in VT cortex response patterns (Haxby and 
others 2001). This reflects the important concern, and 
growing consensus, that functionally homologous 
regions may not have the same size, shape, or location 
across individuals (Bijsterbosch and others 2018; Braga 
and Buckner 2017; Dubois and Adolphs 2016) or even 
within a given individual across brain states (Salehi and 
others 2018a), and suggests the utility of individualized 
parcellations (e.g., Salehi and others 2018b; see section 
“Individualizing Regions and Connections”) and func-
tion-based (Guntupalli and others 2018) or multimodal 
(Robinson and others 2014) alignment strategies; such 
advances may, in turn, improve the precision and utility 
of measures of individual differences in functional brain 
organization (Braga and Buckner 2017; Guntupalli and 
others 2018), though connections, as a second-order 
measure, are likely more robust to minor adjustments in 
region boundaries than are region-based measures (Finn 
and others 2015; Greene and others 2018).

The Trade-Off between Information and Complexity.  While 
region-based measures may obscure information, con-
nections may yield the opposite problem: the sheer 
number of connections offers richness, but also redun-
dancy and noise, and because connections usually far 
outnumber subjects, connection-based models are par-
ticularly vulnerable to overfitting (Yarkoni and West-
fall 2017). Connection (i.e., feature) selection (Orrù 
and others 2012; Smith and others 2013) and summary 
(e.g., Shen and others 2017) may increase analysis sen-
sitivity, but care must be taken to address redundant 
connections (Orrù and others 2012), and to test the sig-
nificance of results generated via nonindependent anal-
ysis iterations that often involve many comparisons 
(e.g., via permutation testing and appropriate correc-
tion for multiple comparisons; Benjamini and Hoch-
berg 1995; Kriegeskorte and others 2009; Smith and 
Nichols 2018). Dimensionality reduction, while usually 
considered at the region level (e.g., node-to-network 
assignments, spatial ICA), can also be performed at the 
connection level (e.g., Kessler and others 2016), and 
may further mitigate these concerns, suggesting that the 
optimal feature for predictive model building may lie 
somewhere between region- and connection-based 
measures. As the increasing accessibility of big data 
continues to increase study sample sizes, and as rapidly 
evolving tools—such as deep learning approaches—
reveal complex, nonlinear features in such datasets, 
opportunities to bridge this gap between regions and 
connections will likely develop, further improve pre-
dictive model accuracy, and correspondingly reveal 
brain-behavior relationships (see Table 1).

Table 1.  Outstanding Questions.

1. � What is the neurobiological correlate of a functional connection? Does this differ by brain region or brain state? Does this 
differ as a function of development?

2. � If regions may be too coarse and connections too noisy, what is the optimal feature for predictive model building, and how 
does that feature map onto the brain? How might deep learning approaches best integrate across measures at multiple levels 
of analysis, and what will we learn about the brain from resulting models?

3. � How different are individualized parcellations from each other, and how do these differences relate to various individual 
differences in behavior, cognition, and clinical symptoms? How do these relationships change over the course of 
development? How do individualized parcellations change connection-based measures of FC, relative to connection-based 
measures derived from group-level parcellations? And how do these differences in regions and connections relate to 
differences at the circuit, synaptic, neuronal, and molecular levels?

4. � What are the effects of different preprocessing pipelines on individual differences in FC data? Are regions or connections 
more robust to different processing approaches?

5. � Given that most individualized FC approaches incorporate group-level information, what is the best way to apply these 
methods to idiosyncratic subjects? Similarly, given that most individualized parcellations have been developed in relatively 
healthy young adults, how do these methods perform in other populations?

6. � The likelihood that all individuals have precisely the same number of regions (i.e., nodes) is low. When parcellating the brain 
for FC analyses, how do we acknowledge heterogeneity within a sample, while also permitting between-subject comparisons 
(i.e., correspondence)?

7. � Is there a limit to the utility of individualized FC approaches? In what situations is it better to rely on group-level methods?
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Model Output

Once predictive models are built and validated, the next 
step is to ask how they map onto the brain (Scheinost and 
others 2019); that is, which connections or regions con-
tribute the most to the prediction of the given measure? 
Methods to determine the contributions of individual fea-
tures to a given model and to the representation of the 
measure of interest—as well as results of and confidence 
in these methods—vary by modeling approach (Kamitani 
and Tong 2005; Michel and others 2012; Norman and 
others 2006), but regardless of the method used, such post 
hoc analysis is critical, as it enables inference of the neu-
ral representation of the predicted measure.

Once features are identified, they must be summarized 
and situated within existing literature to facilitate inter-
pretation. Because networks underlying high-level cogni-
tive processes are distributed across the brain, successful 
connection-based models of related measures are simi-
larly broadly distributed (e.g., Finn and others 2015). 
Thus, while connections may be more useful than region-
based measures for building models to predict high-level 
cognition and behavior, the sprawling nature of the result-
ing models makes them difficult to interpret at the con-
nection level. The physical mapping of regions to the 
brain, taken with the extensive literature on localization 
of function, renders model summary at the region level 
logical and productive.

To validate and enrich these interpretations, models 
should be summarized at multiple levels of analysis, lever-
aging both region- and connection-based measures; for 
example, both individual connections and node degree can 
be projected onto the brain (e.g., Fig. 8b; Dosenbach and 
others 2010); or edge counts can be summarized and visual-
ized by coloring parcellation nodes according to their 
degree (e.g., Fig. 8c; Greene and others 2018), while the 
importance of interregional communication can be visual-
ized at the network level by assigning parcellation nodes to 
networks and counting connections within and between 
networks (e.g., Fig. 8d; Greene and others 2018). By con-
sidering regions at various scales as well as interactions 
among them, one avoids the likely oversimplified assump-
tion that a given region has a single identity or that a given 
function can be assigned to a single region (Genon and oth-
ers 2018), promotes reproducibility by requiring analyses to 
produce convergent results, and offers multi-scale, nuanced 
contributions to characterizations of neural representation.

Individualizing Regions and 
Connections

The development and deployment of predictive models 
depend on the existence of robust individual differences in 
fMRI patterns, and on the relationship of these differences 

to behavior and cognition (Barch and others 2013). 
Numerous groups have shown that individuals exhibit sig-
nificant, stable differences in functional brain organiza-
tion and that region- and connection-based measures can 
be used to capture and leverage these differences (Finn 
and others 2015; Gratton and others 2018; Horien and oth-
ers 2019; Salehi and others 2018b; Tavor and others 2016; 
Wang and others 2015). However, individual differences 
in fMRI data based on group-defined parcellations—and 
the relationship of these measures to phenotypes—may be 
confounded by individual differences in the spatial con-
figuration of brain regions (Bijsterbosch and others 2018). 
Such findings have motivated the development of indi-
vidualized analysis techniques, which, as before, may 
adopt one of two approaches: the personalization of region 
boundaries or of connections among regions. We note that 
these approaches are interrelated—an individualized par-
cellation yields, in a sense, individualized connections, 
and by choosing to individualize connections, one ulti-
mately ends up with regions that are individual-specific as 
well. And while both approaches are motivated by the 
desire to capture measures of brain organization that are 
more neurobiologically meaningful, they reflect funda-
mentally different assumptions about the source of indi-
vidual variability in organization. In this final section, we 
highlight examples of individualization using each 
approach and discuss the use of these techniques to reveal 
brain-behavior relationships.

Regional and Connection-Based Approaches to 
Individualization

A common way to individualize the study of brain func-
tional organization is to obtain individual-specific region 
boundaries (e.g., Gordon and others 2017b; Kong and 
others 2018; Salehi and others 2018b). By identifying 
functionally specialized regions that are more homoge-
neous in each person, such individualization of region 
boundaries would be expected to yield measures of brain 
activity that are more precise and neurobiologically 
meaningful. Indeed, these studies have shown that group-
level networks tend to obscure aspects of network organi-
zation that are apparent at the individual level (Gordon 
and others 2017a; Gordon and others 2017b; Laumann 
and others 2015; Wang and others 2015), and these indi-
vidualized network boundaries tend to follow individual-
ized neuroanatomical boundaries, such as those defined 
by intracortical myelin maps (Gordon and others 2017b). 
In addition to changing across individuals, region bound-
aries have also been found to reconfigure across task 
states within a given individual, and these changes are 
themselves functionally meaningful, serving as a region-
based signature of task state and predicting task perfor-
mance (Salehi and others 2018a).
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A variant of this approach is connectivity hyperalign-
ment (Guntupalli and others 2018), which aligns regions 
based on their whole-brain patterns of connectivity. This 
approach underlines the synergy between region- and 
connection-based approaches to studying the brain; even 
functional connectivity can be used to characterize a 
given region, and one can then study the hyperaligned 
regions or the connections among them. These connec-
tions are not, themselves, individualized, but their deriva-
tion from regions that may be more precise and 
functionally relevant will likely increase the precision, 
behavioral relevance, and interindividual correspondence 
of connection weights. Indeed, Guntupalli and colleagues 
found that FC measures after hyperalignment demon-
strated both increased intersubject correlation and a pres-
ervation of individual differences, supporting the idea 
that using connectivity patterns to individualize align-
ment reveals shared structure in connections across sub-
jects. Others have similarly used cortex-wide patterns of 
connectivity to draw—and in some cases individualize—
node boundaries (for a review, see Eickhoff and others 
2018). These methods, by identifying both shared and 
individual-specific structure in brain functional organiza-
tion, offer insights that may be obscured by group-level, 
areal parcellation-based analyses.

Methods that directly individualize connections are 
less common, but worthy of consideration; as with indi-
vidualized regions, individualized connections may be 
expected to be more meaningful, both statistically and 
biologically (Bijsterbosch and others 2018). For exam-
ple, in a study conducted by Ball and others (2014), a 
random parcellation was used to separate the brain into 
regions, which were thresholded by degree to identify a 
core network of structural connections in each individual. 
Resulting connectivity matrices were submitted to net-
work analyses to yield metrics such as rich-club organiza-
tion, which in turn revealed important insights into 
development of structural organization. While this exam-
ple is drawn from the structural connectivity literature, 
comparable FC analyses are possible; by randomizing 
region boundaries—a relatively common approach to 
brain parcellation (Behrens and Sporns 2012)—and 
instead individualizing connections, such work is in con-
trast to region-based individualization approaches, which 
assume that these boundaries are themselves meaningful 
and subject specific.

Whether individualizing regions or connections, a 
key question is how best to compare resulting measures 
across subjects. The majority of individualized analysis 
approaches maintain the correspondence of region 
labels across subjects (e.g., by using a group-level par-
cellation as a prior; for additional considerations 
required by this approach, see Table 1); this facilitates 
intersubject analyses, such as between-subject 

classification and predictive modeling. In cases in 
which correspondence is not ensured (e.g., when total 
region or connection number varies across individuals), 
measures must be rendered comparable (e.g., by impos-
ing sparsity thresholds) and summarized (e.g., via mea-
sures such as clustering coefficient and rich-club 
organization; Ball and others 2014). Whether corre-
spondence is necessary remains an important question 
for future work (see Table 1).

Using Individualized Measures to Reveal 
Biological Phenotypes

By potentially revealing more neurobiologically mean-
ingful regions and connections (see section “Using 
Regions and Connections to Reveal Neurobiological 
Insights”), individualized approaches may help reveal the 
neural bases of various phenotypic features. This is a 
critical test of the utility of individualized techniques; 
should subject-specific measures fail to more robustly 
predict phenotypic measures than group-level measures, 
one could argue that the costs of individualization—
namely, the increased quantity of data that the approaches 
often require (Braga and Buckner 2017; Gordon and oth-
ers 2017b; Laumann and others 2015)—outweigh the 
benefits and should prevent the widespread adoption of 
individualized approaches in research and clinical con-
texts (see Table 1).

In fact, clues are beginning to emerge that individual-
ized fMRI measures can be linked in meaningful ways to 
phenotypic and behavioral information. For instance, 
Salehi and others (2018a) determined that it is possible to 
predict in-scanner task performance using individualized 
node sizes as the predictive feature. Wang and others 
(2015) created individualized parcellations for a group of 
neurosurgical patients and showed that sensorimotor net-
works could be reliably located with higher accuracy than 
they could by using conventional task-fMRI methods, 
suggesting one potential clinical application and reinforc-
ing that precision medicine could benefit from individu-
alized analysis approaches. Finally, Kong and others 
(2018) recently generated individualized parcellations for 
subjects and used the spatial topography of networks to 
predict various measures of cognition, emotion, and per-
sonality. This work demonstrates that the additional neu-
roscientific insights to be gained from individualized 
measures are not simply theoretical, promising a future of 
improved understanding of brain functional organization 
and individual differences in this organization. While it 
remains to be seen if region- or connection-based meth-
ods will be more affected by individualized connec-
tomics, it is certain that both approaches will continue to 
benefit from the acknowledgment of individual differ-
ences in functional organization.
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Concluding Remarks

Over the past 20 years, fMRI has emerged as a critical 
tool to study macroscale neural circuitry. In the process, 
many have explored specific methods to characterize and 
quantify brain functional organization (Smith and others 
2011), but far less attention has been paid to a fundamen-
tal dichotomy in the field: Is the brain best studied as a 
compendium of discrete units (i.e., regions), or as a busy 
system of crisscrossed wiring among those units? In this 
work, we have juxtaposed these approaches to explore 
the different—and complementary—applications of 
region- and connection-based measures. Our hope is that 
this piece has encouraged the reader to carefully consider 
the best ways to interrogate macroscale neural circuitry. 
Whether using region- or connection-based metrics, 
thoughtful selection of fMRI measures to best suit the 
question of interest presents the exciting opportunity to 
probe neural representation; to predict behaviors, traits, 
and clinical outcomes; and, most fundamentally, to come 
ever closer to understanding how our brains make us who 
we are.
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