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Camera calibration is the most important aspect of computer vision research. To address the issue of insufficient precision,
therefore, a high precision calibration algorithm for binocular stereo vision camera using deep reinforcement learning is
proposed. Firstly, a binocular stereo camera model is established. Camera calibration is mainly divided into internal and external
parameter calibration. Secondly, the internal parameter calibration is completed by solving the antihidden point of the camera
light center and the camera distortion value of the camera plane. The deep learning fitting value function is used based on the
internal parameters. The target network is established to adjust the parameters of the value function, and the convergence of
the value function is calculated to optimize reinforcement learning. The deep reinforcement learning fitting structure is built, the
camera data is entered, and the external parameter calibration is finished by continuous updating and convergence. Finally,
the high precision calibration of the binocular stereo vision camera is completed. The results show that the calibration error of the
proposed algorithm under different sizes of checkerboard calibration board test is only 0.36% and 0.35%, respectively,
the calibration accuracy is high, the value function converges quickly, and the parameter calculation accuracy is high, the overall

time consumption of the proposed algorithm is short, and the calibration results have strong stability.

1. Introduction

At the moment, computer vision is a hot research field. It is
widely used in various fields and is particularly useful in UAV
visual positioning, robot navigation, and other areas [1, 2].
Binocular stereo vision is based on the premise of mimicking
human vision, and it employs two cameras to complete visual
measurement using parallax calculations. It offers numerous
advantages, including noncontact, high precision, and great
concealment. It is capable of meeting people’s growing
measuring and detecting requirements. Therefore, binocular
stereo vision has a promising application future [3]. High
precision camera calibration is one of the keys to ensuring the
effective functioning of a binocular stereo vision system. As a

result, it is vital to investigate the high precision calibration of
binocular stereo vision cameras.

The primary goal of binocular stereo vision calibration is
to calculate the internal parameters and spatial position
parameters of the camera, as well as to determine the
correlation between two-dimensional coordinates and
three-dimensional coordinates [4], thereby ensuring the
accuracy of the vision system measurement. Traditional
camera calibration and self-calibration are the two main
types of extant camera calibration technologies. The tradi-
tional camera calibration method computes the camera’s
internal characteristics based on a predetermined model and
appearance data such as target size. This calibration method
has the drawbacks of being difficult to use and being
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extremely dependent on the equipment. This calibration
method has the disadvantages of complex operation and
high equipment dependence. The self-calibration of cameras
does not need external help, but it only calculates the camera
parameters through the feature point data between the target
images. Despite the fact that this method is easier than
traditional camera calibration, the calibration accuracy is
low [5, 6]. Therefore, this paper proposes a high precision
calibration algorithm for binocular stereo vision camera
using deep reinforcement learning and attempts to combine
deep learning and reinforcement learning to give a new
concept for binocular stereo vision camera calibration. The
main contributions of this paper are as follows: (1) the
camera distortion is considered when calculating the in-
ternal parameters of the camera to improve the calculation
accuracy of the internal parameters; (2) the external pa-
rameters of the camera are calculated using deep rein-
forcement learning algorithm, which fully utilizes the
advantages of deep learning and reinforcement learning;
(3) the proposed algorithm can effectively complete the high
precision camera calibration and has a specific application.

2. Related Work

In the field of computer science, binocular stereo vision is a hot
topic. The method of camera calibration has been proposed by
a number of academics both at home and abroad. Literature
[7] proposed an alternative adjustment-based camera cali-
bration algorithm for binocular stereo vision systems, estab-
lished a binocular vision calibration system with left and right
camera coordinates as reference coordinates, and optimized
the internal parameters of the two cameras through alternating
adjustment experiments to achieve the best value. The optimal
distortion parameters and internal and external parameters are
then obtained by optimizing all internal and external pa-
rameters although the algorithm’s convergence time is slow.
The deep learning is updated using the projection vector of
feature points, and the best translation vector is found using
the projection vector of feature points. Literature [8] used the
singular value decomposition approach to calculate the rela-
tive attitude matrix during the absolute azimuth interpretation
stage. The posture estimation problem of a stereo vision
measuring system based on feature points is solved, and stereo
vision is expanded. In the image, just one pose parameter from
the two collected images is optimized. The algorithm is
designed in such a way that it does not effectively increase
camera calibration accuracy. Literature [9] established and
calibrated a heterogeneous binocular stereo vision system,
which included a high-definition color camera and an infrared
thermal camera system and designed an algorithm for accurate
positioning and sorting of calibration points on the calibration
plate. The camera is then calibrated, as is the binocular stereo
vision system. This method has a low mistake rate, but it takes
along time. Literature [10] demonstrated online calibration of
dynamic binocular stereo vision’s external parameters for
rectangular images of undetermined size. The elliptical pose
and heading reference system is used in real time to provide an
approximate value of the rotation angle, and the rotation angle
of each camera is solved iteratively using only a single
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rectangular centroid according to the homology map between
images. To complete the camera calibration, the yaw angle is
corrected according to the matching rectangle prime angle.
However, the algorithm’s accuracy is low. Literature [11]
examined the methods for calibrating the ultra-wide field of
view long wave infrared camera’s internal and external pa-
rameters. In order to address the issues of camera imaging
distortion and low resolution, an external parameter cali-
bration method based on the least square method is proposed,
and the calibration results of a long wave infrared camera are
evaluated in conjunction with the relevant data of internal
parameters. Experiments validate the approach’s objective
correctness. However, its stability is low. Literature [12] in-
vestigated the parallel binocular stereo vision system and zoom
calibration method. The image information is gathered using
the triangulation concept, the baseline accuracy is ensured by
moving the camera, the calibration results are produced, and
the BP neural network is used to process the calibration data
further to increase the visual measurement accuracy. However,
due to the characteristics and mutual restrictions of left and
right images in binocular stereo vision, this strategy is prone to
local optimization, and overall stability is not satisfied. To
address the disadvantages of traditional methods, this work
investigates the high precision calibration for a binocular
stereo vision camera using deep reinforcement learning, with
an emphasis on addressing the camera’s internal and external
parameters. Experiments validate the algorithm’s perfor-
mance, and camera calibration may be accomplished quickly.

3. Methodology

3.1. Binocular Stereo Vision Camera Model. Through the
imaging lens, the camera translates the projection from three-
dimensional coordinates to two-dimensional coordinates.
This process is known as imaging transformation, and it is
referred to as camera model. The camera model can be used to
determine the location relationship between each point on the
measured image and the space object [13]. Binocular stereo
vision cameras use the parallax principle to obtain image
information from left and right cameras. Figure 1 depicts the
positioning and coordinates of the two cameras in binocular
stereo vision assessment. Figure 1 shows the location and
coordinates of the two cameras in binocular stereo vision
measurement.O-XYZ represents the coordinate system of the
left camera. The origin is located at the start of the global
coordinate system. The coordinate system of the left camera
image is 0-x,y,2;, the coordinate system of the right camera is
0-xyz, and the coordinate system of the right camera image is
0-%2)»2,. The camera transformation model is then developed
using the imaging lens principle [14].
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F1GURE 1: Binocular stereo vision measurement.

where A; and A, represent the image scale coeflicients of
the left and right cameras, and ¢y and ¢, represent the scale
coefficients of the left and right cameras. Using axis d and
axis f as measurement scales, d;, f;, d, and f; are the
optical center of left and right cameras, while b; and b, are
the error coeflicients in vertical direction of left and right
cameras.

There will be some translation and rotation during the
pixel location conversion of the left and right cameras. The
original position coordinate of the target object is designated
as K (x, 1> 2;), and a corner of the target object is chosen
for translation.

Comparing the corresponding coordinates of the corner
point before and after the pose transformation of the target
object, the translation matrix T can be obtained, and the
calculation Equation is as follows:

xli—xk
T=|y=yk | (2)
Zli—zk

where K (x;, y;,z;) is the corner position of the target object
after translation.

Assuming that the target object’s rotation angles along
the global coordinate system O-X,Y,Z, are y, A and g, re-
spectively, the rotation matrix for different angles of rotation
around the X,, Y, and Z, axes can be expressed as

[1 0 0 7
RX:

0

0 cosy sinvy |, (3)

L0 —sin y cos y ]

[cos A 0 —sin A7
Ry, =| 0 1 0 | (4)

| sinA 0 cos A

[ cosy sinp 07
RZ =

0

—sin y cosy 0 | (5)
0 0 1

If a rotation of an angular value is made around a fixed
axis, the rotation matrix can be regarded as a superposition
of the rotations of X, Y, and Z, as rotation axes.

Equation (3) can be used to calculate the relationship
between the initial pose coordinate k of the target object’s
corner and the transformed pose coordinate k' [15]:

Xy
yi|= [RXokaxo)’kaozk] +T. (6)

!
2k

3.2. High Precision Calibration Algorithm for Binocular Stereo
Vision Camera. Camera calibration is the process of com-
paring the camera system to the measurement standard and
determining the camera parameters through coordinate and
related factor calculations [16, 17]. From two-dimensional
data, camera calibration can determine the true location
state of the measured object. It is not only a significant step
in computer vision research, but it is also a necessary
connection in binocular vision noncontact measurement.
The accuracy of the stereo vision measurement method is
directly affected by whether the computation is accurate or
not [18, 19].

Internal parameter calibration and external parameter
calibration are the two primary types of camera calibration.
Table 1 describes the parameters.

External parameters are used to determine the position
relationship of camera coordinate system, including rotation
matrix and translation matrix. The degrees of freedom of
translation matrix and rotation matrix are three, respec-
tively, and a total of six camera external parameters are
obtained by adding. These external parameters usually need
to be obtained by experimental calculation [20]. The pa-
rameter calculation process can be regarded as camera
calibration. Internal camera parameters, such as focal length,
optical center, nonvertical factor, and distortion parameters
involved in perspective translation, are included in Table 1.
External parameters such as the rotation matrix and
translation matrix are used to determine the position
connection of the camera coordinate system. The degrees of
freedom of the translation matrix and rotation matrix are
three, respectively, and adding them yields a total of six
camera external parameters. These external parameters are
normally derived through experimental calculation [20]. The
process of calculating parameters might be thought of as
camera calibration.

3.2.1. Internal Parameter Calibration. There will be an in-
tersection point between the parallel line and the infinite
plane, which is known as the blanking point, according to
projective geometry theory. The existence of the blanking
point is determined by the line’s direction. According to this
theory, a blanking point must exist between the camera’s
optical center and the camera plane. The blanking points can
be used to calibrate the camera’s internal parameters. It is
assumed that there are two blanking points on the camera
plane, g and h, in the vertical and parallel directions, re-
spectively, which are connected to the camera’s optical
center O to produce OG and OH. If the coordinate of the
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TaBLE 1: Camera parameter description.
Parameter Expression Freedom
Effective focal length f,, f,.Optical center u,, v, 5
Nonvertical factor &
Internal parameters . . .
Radial distortion parameter y,, x, 4
Tangential distortion parameter p;, p,
External parameters Rotation matrix 3
P Translation matrix T 3

camera’s principal point is (d, f) and the coordinates of the
blanking points G and H are (g, h), then

OG = ((g; - d)ex> (h; = f)es fo)T» (7)

OH =((gj —d)cX,(h]- —f)cx,fO)T, (8)

where f is the focal length of the camera, and T is the
transpose symbol.

G and H are orthogonal fading point pairs, as the fol-
lowing Equation:

OG-OH = 0. 9

Calculation Equation of hidden points cancelled is
shown in equation (8).

(9= d)(g; = d) (ex) + (B = )(h; = ) (e + (fo) = 0.
(10)

The internal parameter calibration of the camera can be
accomplished preliminary using equation (8). The camera
model is typically split into linear and nonlinear models
based on the imaging geometric connection. However, the
premise of the linear model is based on an ideal assumption,
which can only simply express the relationship between
image coordinates and spatial coordinates [21]. There will be
distortion and camera deformity throughout the actual
filming process owing to the influence of numerous cir-
cumstances. The real imaging position is (U, V) if the
imaging position in the linear model is (U, V).

{U1=U+ﬁ,
Vi=V+a,

(11)

where § and « are distortion value in transverse and lon-
gitudinal imaging direction.

Radial and tangential distortion are the most common
types of camera distortion. The tangential distortion is
usually minor and unnoticeable. As a result, the radial
distortion polynomial is used to express the camera dis-
tortion value.

2

{ﬁ:XPr U, -4d), (12)
2
a=xpr(Vi-f)

where y represents the radial distortion parameter of the
camera. p represents the tangential distortion parameter,
and r represents the radial distortion distance dominated by
the image center.

3.2.2. External Parameter Calibration using Deep Rein-
forcement Learning. Internal parameters are used to cali-
brate the camera’s external parameters. In general, the
precision calibration board is chosen to compute the cor-
responding relationship between camera coordinates and
spatial coordinates, as well as to define the structural pa-
rameters of the binocular vision system. For external pa-
rameter calibration, the deep reinforcement learning
algorithm is applied in this study.

The deep reinforcement learning algorithm is a new
algorithm that was created by combining deep learning and
reinforcement learning. It not only has deep learning’s
feature extraction ability, but also has reinforcement
learning’s decision-making power. The traditional rein-
forcement learning algorithm’s applicability space is narrow
and discrete. Reinforcement learning effectively overcomes
the limitation that it cannot be applied to high-dimensional
data analysis by optimizing deep learning, allowing it to be
well applied to vast spaces practical scenes [22]. Figure 2
shows the deep reinforcement learning framework.

The goal of reinforcement learning, as shown in Figure 2, is
to learn the best approach through environmental interaction
and reward accumulation. It is a constant process in which
agents interact with their surroundings in order to attain their
objectives. The camera external parameter calibration process
can be seen as a reinforcement learning problem, and the
optimal parameters can be determined as much as feasible
through the camera target and coordinate analysis, according
to the description of reinforcement learning.

At the moment, classical reinforcement learning can be
classified into three types: value-based reinforcement
learning, policy-based reinforcement learning, and actor
critical learning, which combines value and policy. The actor
critical method is a hybrid of the two ways, having the
benefits of the policy method for generating actions and
dealing with continuous actions, but it requires the calcu-
lation of the value function. As a result, in this study, the
actor critical method is chosen to calibrate the camera’s
external settings. The value function must be calculated, and
deep learning is a powerful function calculation tool. When
applying deep learning to reinforcement learning, however,
it is necessary to use a neural network to fit the mapping
relationship, which will form a very complex mapping re-
lationship network, and the parameters must be adjusted
continuously, implying that the adjustment and convergence
of the value function have become a critical problem. As a
result, in order to tackle this challenge, this work examines
the structure fitting of deep reinforcement learning.
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FIGURE 2: Deep reinforcement learning framework.

(1) Deep Reinforcement Learning Structure Fitting. Deep
learning fitting value function, namely, deep reinforcement
learning structure fitting, is used in the process of merging
deep learning and reinforcement learning in order to fully
use the function of reinforcement learning. The study of the
deep reinforcement learning structure fitting problem is
mostly accomplished by enhancing value function calcula-
tion, which is embodied in the adjustment of value function
parameters and convergence of value function by building
target network.

The estimating procedure of the state action value
function is frequently done in practice using function ap-
proximation, which is stated as

Q(g.a,@) =Q' (g a), (13)

where Q(q,a) is the state action value function, where g
denotes the state, a denotes the action value, and @ denotes
the value function’s parameter, which is the reinforcement
learning parameter. Equation (13) shows the update method
for the value function parameter ®.

® =d, + ¢VQ(q,a), (14)

where @, is the initial value of the function parameter, and ¢
is the update coeflicient of the value function.

To finish the neural network training, it is required to
constantly update the parameters while using a neural
network to calculate the value function. This parameter is the
value function’s parameter. To adjust to the optimal pa-
rameters [23, 24], the target network is built, and the pa-
rameters are updated in hard and soft modes. When the
network unit size must be rigorously controlled, it is con-
sidered hard mode. The operating steps are fixed in hard
mode. Following the completion of this step, the network
parameters are updated by copying. When the network unit
size is affected by the overall division unit size, it is con-
sidered soft mode, and the update value is minimal in soft
mode. The target network parameters (neural network pa-
rameters) can then be updated and stated as equation (14).

, 0, if hard,
0 = { (15)
(1-m0+no, if soft,

where 0 denotes the neural network’s initial parameters The
updated neural network parameters are denoted by €', and
the value function is denoted by equation (15).

, { , if hard, (16)
® =
(1-1n®+yo, if soft,

where @' is the updated value function parameters, and 7 is a
small value in soft mode, which can help update the pa-
rameters properly.

According to the equation (15), after # iterations, the
value function has the following equation (16).

Dy — @ — - — @, (17)
The parameter convergence of the value function can

finally be accomplished after equation (16), that is,
lim @, =®. (18)

n—~o

(2) Camera External Parameter Calibration. The binocular
stereo vision camera data is input, and the external pa-
rameters of the camera are calibrated using deep rein-
forcement learning calculations based on the fitting
structure.

Input: sample data is collected by a binocular camera;

Output: camera external parameter calibration results.

Reinforcement learning parameters are expressed as
value function parameters, and the initial reinforcement
learning parameter is @, the initial value of neural network
parameters is 0, the deep reinforcement learning structure
and related parameters are initialized, and the deep rein-
forcement learning binocular stereo camera parameters are
calibrated. Deep reinforcement learning is used to calibrate
the parameters of a binocular stereo vision camera.

(1) Half of the binocular stereo vision cameras in the
experimental data set were chosen to collect target
data as training samples

(2) The numbers of hidden layers and nodes of the
neural network are determined based on the size of
the training samples

(3) The fitting structure of deep reinforcement learning
is constructed, as shown in Figure 3

(4) The neural network is utilized to fit the camera data
in order to obtain the value function, and the target
network’s value function and parameters are
established

(5) Repeat the iterative value function and neural net-
work, using equations (15) and (16) to adjust the
reinforcement learning parameter @ and neural
network parameter 6’ until the parameters converge

(6) Recollect the binocular stereo vision camera data as
test data, enter it into the deep reinforcement
learning structure, and calculate the camera’s ex-
ternal parameters, including the rotation matrix and
translation matrix
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FIGURE 3: Deep reinforcement learning fitting structure.

(7) The calibration of the camera’s external parameters is
complete

(8) End

4. Experimental Analysis and Results

To evaluate the performance of the binocular stereo vision
camera’s high-precision calibration algorithm based on deep
reinforcement learning, an experimental binocular stereo
vision system is constructed.

4.1. Experimental Environment. The vs2019 development
platform has been completed. The simulation data is run on
Windows 10, and the algorithm is developed in opencv2.49.
Table 2 shows the experimental apparatus, which consists of
two cameras, two chess and card grid calibration boards, and
a computer.

AutoCAD software is utilized in the experiment to
construct chess and card images, develop and print them,
and create a calibration board, as illustrated in Figure 4.

4.2. Data Set. The experimental data are drawn from two
common data sets as well as a visual system measurement
data set: the KITTI data set, the cityscapes data set, and the
visual system measurement data set. The KITTI data set is
the world’s largest automatic driving scenario visual mea-
surement dataset, and it is utilized for visual ranging, target
detection, and tracking. The data gathering platform is
outfitted with four cameras, one sensor, and one GPS
navigation system to collect image data in a variety of
scenarios such as cities, towns, and roads, including 389
pairs of stereo images and optical flow diagrams. The
cityscapes data set is of a vast order of magnitude, containing
street stereoscopic images of 50 distinct cities as well as
numerous pixel level annotations, including 5,000 high-
quality pixel level annotations and 20,000 poor annotations.
The data set is ideal for training deep neural networks. A
vision system measurement data set: the vision system
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TaBLE 2: Camera performance index.

Performance index Numerical value

Pixel 1280 x 960
Sampling frequency 60 Hz
Baseline length 60 mm
Focal length 6 mm
Optical dimension 1/3

FIGURE 4: Chess and card grid calibration board.

collects stereoscopic images of six streets using binocular
cameras, yielding a total of 20,000 images with a pixel
resolution of 1280 x 960. During the experimental test, 1000
images are chosen from each of the three data sets men-
tioned above, for a total of 3,000 images evaluated. The first
half of the data is utilized to train deep reinforcement
learning algorithms, while the other half is used for ex-
perimental testing.

The studies were performed in the same noise and light
environment to ensure the image acquisition impact. Two
groups of studies were conducted, each with a 10 mm and
20 mm chess and card grid calibration board. The binocular
stereo vision system captured a total of 1,000 images. At the
same time, the collected image is filtered and preprocessed to
strengthen the image edge information in order to increase
image quality and prevent interference from external vari-
ables such as noise and illumination. To improve calibration
board accuracy, the dimensions of the two chess and card
grid calibration boards are 10 mm and 20 mm, respectively,
and the measurement field of view is 7m x 6 m, chess and
card grid calibration plates are randomly placed in the
camera system’s measurement field, and the spacing be-
tween the two calibration plates is 4 m.

4.3. Evaluation Criteria

(1) Calibration precision: This study proposes a cali-
bration algorithm with great precision. To validate
the algorithm’s completion impact, a special com-
parative examination of calibration accuracy is re-
quired. The error is a method of expressing the
precision of the calibration results. The calculation
Equation is shown in equation (18).
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e= \/(xw - xuﬁ)2 + (Y — y’w)z, (19)

where e is calibration error. (x,,y,) and (x,, y,.)
represent the real coordinates and measurement
coordinates of the target pixel, respectively.

(2) Convergence of value function: Convergence of the
value function: the convergence of the value function
is one of the keys to realizing the fit between deep
learning and reinforcement learning in the use of
deep reinforcement learning algorithms. As a result,
this experiment draws the value function network
loss function curves of several algorithms to ensure
that this method is convergent.

(3) Parameter calculation accuracy: Parameter adjust-
ment is also one of the keys to realize the fitting of
deep learning and reinforcement learning. Therefore,
parameter calculation accuracy is also an effective
index to show the performance of the proposed
algorithm. The accuracy calculation Equation is as
follows:

L
Accu = —- x 100%, (20)

tot

where L, represents the actual number of parameter
calculations. L, is the number of correct parameters
in the calculation result.

(4) Camera calibration time consumption: Camera
calibration is an important prerequisite in the ap-
plication of binocular stereo vision system. It is very
important for the vision system to complete camera
calibration quickly.

(5) Stability of calibration results: The stability of the
calibration results of the proposed algorithm is
compared with those of Literature [7], Literature [8],
Literature [9], Literature [11], and Literature
[12].The measurement of stability is based on the
change of camera calibration result data sequence. It
is assumed that the calibration data series has the
same keywords. If the relative order of these terms
does not change after sorting, the algorithm is stable.

4.4. Results and Discussion

4.4.1. Comparison of Calibration Precision. This paper’s
main goal is to achieve high precision calibration of a
binocular stereo vision camera. As a result, the proposed
algorithm is compared to the algorithms in Literature [7],
Literature [8], Literature [9], Literature [11], and Literature
[12] algorithms in order to reflect the efficiency of the al-
gorithm established in this work as shown in Table 3.

It can be seen from Table 3 that the test findings are quite
important. The calibration errors of the algorithm are 0.36%
and 0.35% for 10 mm and 20 mm chess and card grid cal-
ibration plates, respectively. In comparison to other litera-
ture, the minimum calibration error of Literature [7] under
two chess and card grid calibration boards is 0.90%, the

minimum calibration error of Literature [8] under two chess
and card grid calibration boards is 1.66%, the minimum
calibration error of Literature [9] is 1.94%, the minimum
calibration error of Literature [11] is 5.20%, and the mini-
mum calibration error of Literature [12] is 1.74%. When we
compare the proposed algorithm with five traditional lit-
erature algorithms, we can clearly see the advantages of
proposed algorithm, demonstrating that the deep rein-
forcement learning algorithm used in this paper for camera
calibration has very high precision and a better calibration
effect than the traditional literature algorithm.

4.4.2. Comparison of Convergence of Value Function. The
loss function curve of the value function network is drawn by
using the number of iterations as the abscissa and the mean
square loss as the ordinate as shown in Figure 5.

According to Figure 5, each algorithm eventually con-
verges, and the loss of mean square error reduces as the
number of iterations grows. When comparing the proposed
algorithm’s convergence speed to that of the five traditional
literature algorithms, it is clear that when the number of
iterations is close to 30, the trend of the proposed algorithm’s
loss function curve begins to gradually tend to be stable, the
mean square deviation loss is close to 0, and the value
function’s convergence is completed. After 70 iterations, the
algorithms in Literature [8, 11] and Literature [12] rapidly
converge. The convergence of the Literature [7] and Liter-
ature [9] algorithms is relatively poor, with a minimum root
mean square error of more than 0.2 after convergence. It can
be seen that the proposed algorithm’s convergence speed is
quick, and the convergence effect is good, demonstrating the
effectiveness of the value function convergence of the design
target network.

4.4.3. Comparison of Parameter Calculation Accuracy.
This study modifies the value function parameters in re-
inforcement learning and uses neural network to contin-
ually update the parameters to complete the fitting between
deep learning and reinforcement learning. The precision of
parameter calculation is then critical for camera calibra-
tion. It is impossible to acquire accurate calibration results
if the accuracy of parameter calculation is low. Figure 6
depicts the comparison result of parameter calculation
accuracy.

The neural network is utilized to update the parameters
of the value function, as shown in Figure 6. The modification
of the median function of reinforcement learning may be
performed with high accuracy through numerous iterations,
and the maximum computation high accuracy is about 95%.
The algorithm in Literature [9] has a relatively good cal-
culating effect on parameters, with the highest accuracy of
around 80%. However, it is still very different from the
proposed algorithm. The results of the data comparison can
be used to demonstrate the benefits of the proposed algo-
rithm, validate its performance for parameter computation,
and ensure the high accuracy calibration of binocular vision
camera parameters in this study.
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TaBLE 3: Calibration errors of different algorithms.
. Chess and card grid calibration board (mm)
Algorithms
10 20

The proposed algorithm 0.36 0.35
Literature [7] algorithm 0.90 1.32
Literature [8] algorithm 1.66 3.27
Literature [9] algorithm 1.94 2.58
Literature [11] algorithm 5.65 5.20
Literature [12] algorithm 1.74 4.22

2.5+

2.0

—
w
T

Mean square loss
=
(=}
T

0.5 |-

Iterations (time)

—e— The proposed algorithm —@— Literature [9]algorithm
¥ Literature [7]algorithm —@— Literature [11]algorithm
—y— Literature [8]algorithm —Jill- Literature [12]algorithm

FiGure 5: Comparison of loss function curve of value function network.

4.44. Comparison of Camera Calibration Time
Consumption. Table 4 shows the camera calibration time
consumption results.

Table 4 shows that when different data sets are used as
data sources to assess the calibration time consuming of
algorithm, the test results are quite significant. The cali-
bration time consuming of the algorithm in the KITTI data
set, cityscapes data set, and vision system measurement data
setis 5.2s, 6.2's, and 5.3 s, respectively, with an average time
consuming of 5.6 s. The proposed algorithm is faster than the
average time of algorithms in Literature [7], Literature [8],
Literature [9], Literature [11], and Literature [12]. The deep
reinforcement learning technique has a very efficient op-
eration rate, which can effectively improve the camera
calibration in this work.

4.4.5. Comparison of Stability of Calibration Results. The
stability comparison results of camera calibration results are
shown in Figure 7.

According to the data in Figure 7, the proposed algo-
rithm’s stability is substantially higher than that of the other
five literature algorithms, and the overall stability is con-
trolled at approximately 92%. Among other algorithms, the
highest stability of Literature [7], Literature [8], and
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FiGure 6: Comparison of parameter calculation accuracy.

Literature [9] algorithms is close to 80%, while the stability of
Literature [11] and Literature [12] algorithms is almost 60%.
This clearly demonstrates the benefits of the proposed
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TaBLE 4: Comparison of camera calibration time consumption of different algorithms.

Calibration time consuming (s)

Algorithms . .
KITTI data set Cityscapes data set Measurement data set of a vision system
The proposed algorithm 5.2 6.2 5.3
Literature [7] algorithm 9.2 16.5 20.2
Literature [8] algorithm 7.1 14.7 21.1
Literature [9] algorithm 8.1 13.0 18.5
Literature [11] algorithm 10.4 11.1 15.4
Literature [12] algorithm 9.1 12.5 49.5
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FIGURE 7: Stability comparison of calibration results.

binocular vision camera calibration algorithm, which can
eliminate external interference and improve algorithm
stability.

5. Conclusions and Future Works

This paper proposes deep learning to improve reinforcement
learning, creates a deep reinforcement learning fitting
structure, and investigates the calibration process of a
binocular stereo vision camera. The camera’s internal and
external parameter calibrations are explained in depth, and
the proposed algorithm is validated through experimenta-
tion. The results show that the proposed algorithm is capable
of completing the camera’s high precision calibration and
has some theoretical utility. This study still has several flaws,
and the numerous properties of the camera target are not
thoroughly explored. Future works are required to account
for target distance, image color, and other parameters, in
order to improve the application efficiency and scope of the
camera and unlock more possibilities.

Data Availability

Readers can access the data supporting the conclusions of
the study from KITT data set and cityscapes data set and
measurement data set of a vision system.
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