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Abstract

Background: The efficiency of artificial intelligence as computer‐aided detection

(CADe) systems for colorectal polyps has been demonstrated in several randomized

trials. However, CADe systems generate many distracting detections, especially

during interventions such as polypectomies. Those distracting CADe detections are

often induced by the introduction of snares or biopsy forceps as the systems have

not been trained for such situations. In addition, there are a significant number of

non‐false but not relevant detections, since the polyp has already been previously

detected. All these detections have the potential to disturb the examiner's work.

Objectives: Development and evaluation of a convolutional neuronal network that

recognizes instruments in the endoscopic image, suppresses distracting CADe de-

tections, and reliably detects endoscopic interventions.

Methods: A total of 580 different examination videos from 9 different centers using

4 different processor types were screened for instruments and represented the

training dataset (519,856 images in total, 144,217 contained a visible instrument).

The test dataset included 10 full‐colonoscopy videos that were analyzed for the

recognition of visible instruments and detections by a commercially available CADe

system (GI Genius, Medtronic).

Results: The test dataset contained 153,623 images, 8.84% of those presented

visible instruments (12 interventions, 19 instruments used). The convolutional

neuronal network reached an overall accuracy in the detection of visible in-

struments of 98.59%. Sensitivity and specificity were 98.55% and 98.92%, respec-

tively. A mean of 462.8 frames containing distracting CADe detections per

colonoscopy were avoided using the convolutional neuronal network. This

accounted for 95.6% of all distracting CADe detections.

Conclusions: Detection of endoscopic instruments in colonoscopy using artificial

intelligence technology is reliable and achieves high sensitivity and specificity.
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Accordingly, the new convolutional neuronal network could be used to reduce

distracting CADe detections during endoscopic procedures. Thus, our study dem-

onstrates the great potential of artificial intelligence technology beyond mucosal

assessment.
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INTRODUCTION

Artificial intelligence (AI) for colonic polyp detection is the most

important application of this new technology in gastrointestinal

endoscopy to date. Efficiency and functionality of these computer‐
aided detection (CADe) systems have been demonstrated in several

randomized trials.1–6 However, CADe systems also show many false

positive (FP) detections.7,8 These false markings can affect the ex-

aminer's concentration. If a false detection occurs in addition to a

relevant finding, the examiner's attention may be distracted, leading

to missed findings in the worst case.9

Daily use of CADe systems shows that endoscopic interventions

(especially biopsies and polypectomies) lead to many false activations

of CADe systems. In this case, false positive activations occur due to

the inserted instruments (forceps, needle, snare), but also due to

intervention on the mucosa itself (injection, resection, clipping). In

addition, there are a significant number of non‐false but not relevant
detections, since the polyp has already been previously detected. To

enable the investigators to put their full concentration on the

intervention, no distracting AI signals regarding polyp detection

should be visible during the procedure.

Therefore, the aim of the current study was to develop and

evaluate an AI system that reliably detects introduced instruments in

order to disable the CADe system during an intervention and avoid

distracting detections.

METHODS

Training dataset

Data from nine different center in Germany, two university hospitals,

one community‐based hospital and six gastroenterology practices,

were collected retrospectively from March 2019 to August 2021. A

total of 519,856 images were selected from 580 randomly selected

different colonoscopy videos for building the training dataset. Of all

images in the training dataset, 144,217 (27.7%) contained a visible

instrument (Figure 1). The types of instruments used for training the

model included graspers, hot and cold snares, injection needles and

clips. No minimum or maximum number of images per instrument in a

colonoscopy was predefined for training the model. Images of good

and poor quality (e.g., blurry images) were chosen for model training

in order to represent a real‐life scenario. The colonoscopies were

performed using different processors including CV‐190 and CV‐170

(Olympus Europa SE & Co. KG, Hamburg, Germany), Image1 S (Karl

Storz SE & Co. KG, Tuttlingen, Germany) and EPK‐i7000 (Pentax

Europe GmbH, Hamburg, Germany) and were recorded using a

standard computer with a video grabber (DeckLink Mini Recorder,

Blackmagic Design Pty Ltd., Melbourne, Australia) and a custom

recording software. Representative images of the four different

processor types are displayed in Supplementary Figure 1.

To reduce almost identical images in the dataset, images from

the same colonoscopy were filtered to exclude neighboring images.

For training the convolutional neuronal network (CNN), the dataset

was split into a train (90%) and a validation (10%) dataset. To prevent

bias, all images of one colonoscopy were either included in the train

or the validation dataset.

Preprocessing and CNN training

Initially, a region of interest for each used processor type was defined

and images were cropped accordingly. Afterward, images were zero

padded and resized to a dimension of 512� 512 pixels to yield uniform

images. For train data, the image augmentation pipeline (Supplemen-

tary Code Section 1) was applied. All images underwent the standard

procedure of image normalization (Supplementary Code Section 2), so

that each color and brightness value are standardized. Resulting

Key summary

Summarize the established knowledge on this subject

� Multiple computer‐aided diagnosis (CADe) systems for

polyp detection are currently introduced into clinical

practice.

� CADe results in multiple distracting detections, espe-

cially during therapeutic interventions when instruments

are visible.

What are the significant and/or new findings of this study?

� Development and evaluation of a deep learning model to

recognize visible instruments that are used for thera-

peutic intervention in gastrointestinal endoscopy.

� Our model automatically prevents distracting CADe de-

tections during therapeutic interventions.
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constant values for this were calculated on all train data images and

were always used to normalize each input image. CNN training is

described in detail in SupplementaryMaterial. The current instrument

detection software is freely available to download for research pur-

poses (https://github.com/Maddonix/instrument_detection).

Model testing

The CNN for detecting visible instruments was tested in the with-

drawal phase of a set of 10 full‐length colonoscopy videos by

analyzing its performance in each single image of the videos. To

stabilize the prediction results, a running mean function was applied.

This was performed to avoid erroneous suppressions of AI detections

caused by our CNN. Here, we assigned the current video image the

majority label of itself as well as the previous 14 video images, rep-

resenting a threshold of 467 ms. This same dataset was used to test

the change in performance of a CADe system (GI Genius, Medtronic

Inc., Ireland, Version March 2020) in the reduction of distracting

activations with the developed instrument detection system.

Ethics approval

Patients provided written informed consent prior to video recording.

The ethics committee of the University hospital Würzburg approved

retrospective analysis of the data used in this study.

Statistical analysis

Two evaluations were statistically analyzed: the capabilities of the

instrument detection system and the reduction of CADe distracting

activations. Per‐frame sensitivity and specificity, accuracy, and

Receiver Operating Characteristic (ROC) were calculated for both

evaluations. Sensitivity has been defined as the ratio between the

number of frames with a visible instrument that were correctly

detected (TP) and the total number of frames with a visible in-

strument (TP+FN). Specificity was defined as the ratio between the

number of frames without a visible instrument that were correctly

assessed (TN) and the sum of the total number of frames with a

false detection and the TN frames (FP+TN). Accuracy was defined

as the ratio between the number of correct system assessments (TP

+TN) and the total number of frames. Metrics where weighted

average to compensate for the imbalance of images with/out a

visible instrument. For the calculation of the weighted average

metrics the parameter “average” in every used function of the

sklearn.metrics module from scikit‐learn 1.0.2 package was set to

“weighted”. All calculations were performed using Python Software

(version 3.6).

RESULTS

Characteristics of the patient cohort

The test dataset comprised 10 full‐length colonoscopy videos from

10 different patients. Men and women were equally represented,

the mean age was 57.1 (interquartile range; 46–65) and the mean

Boston Bowel Preparation Scale was 6.9 (range; 6–9) (Supplemen-

tary Table 1). The total duration of the withdrawal phase, with the

duration of interventions included, was 1 h and 25 min, corre-

sponding to 153,623 single video frames. During this time, in-

struments were visible for a total of 7 min and 12 s on the screen

These 10 videos included a total of 12 different interventions,

where 19 different endoscopic through the scope instruments were

used: 4 cold snares, 11 graspers, 1 hot snare, 2 needles and 1 clip

(Table 1).

Performance of the instrument detection system

The CNN overall accuracy achieved in the detection of visible in-

struments in the test dataset was 98.59%. Sensitivity and specificity

were 98.55% and 98.92%, respectively. The grasper was the instru-

ment that was best detected by the system, with a sensitivity of

99.08% and a specificity of 99.36%, whereas the snare, with a

sensitivity of 98.21% and a specificity of 98.51%, was the most

difficult instrument to detect, probably because often only the wire

was visible. Representative images of a grasper, a snare and a false

positive detection of the CNN with the corresponding heat map that

depicts the image areas that are recognized as an instrument are
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F I GUR E 1 Characteristics of the training dataset containing
images with and without visible instruments captured using the
four different endoscopy processor types
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presented in Figure 2. The ROC curve illustrating the diagnostic

ability of our instrument detection system is depicted in Figure 3. No

marked differences in performance were observed relating to BBPS

value, that ranged from 6 to 9 (Supplementary Table 1).

Reduction of CADe distracting activations

A total of 25,441 activations were triggered by the CADe system in

the test dataset. These activations included detected polyps and

false positive detections. 4839 activations (19.02%) occurred when

an instrument was visible and were regarded as distracting CADe

activations. Especially significant was the amount of distracting

activation caused by snares or needles. Our system was able to

avoid 4628 of these activations, representing a sensitivity value of

95.64%. Regarding the number of CADe activations that were

falsely avoided, the value in frames amounts to 357. Out of those,

292 contained polyps that were previously detected. This implies

that the system has a specificity of 98.62% in terms of performance

in preventing distracting CADe activations. The overall accuracy

was of 99.17%.

The metrics of the developed instrument detection system per

intervention and its performance in preventing distracting CADe

activations are presented in Table 1 and exemplarily illustrated in

Figure 4. In addition, Figure 5 and Video S1 present a graphical

example of how the AI system works.

DISCUSSION

Since the introduction of commercially available AI‐systems for

colorectal polyp detection, the use of these promising systems in

daily practice is increasing. The great potential of AI‐systems is

currently in the field of diagnostics, as CADe systems support the

examiner in real time and with high sensitivity.6,10,11 Since CADe

systems have been trained with diagnostic polyp images, they ach-

ieve high sensitivity for native polyps in the colon.12 However,

changes to the mucosa in the course of an intervention (e.g., injec-

tion) lead to false positive detections, as the systems have not been

trained for such situations. The instruments used during the inter-

vention also lead to many false positive detections that may disturb

the investigator's concentration. In addition, there are many non‐
false but irrelevant detections because the polyp causing the inter-

vention has been previously detected. To enable the investigators to

put their full concentration on the intervention, no distracting AI

signals should be visible during the intervention. This could be ach-

ieved by suppressing the CADe signal during the intervention, since

polyp detection is not necessary during the intervention.

Currently, the endoscopist can only manually turn off the CADe

system and turn it back on after the procedure. Some systems

require a button to be pressed on the processor, as not all systems

can be controlled via a button on the endoscope. However, it is

possible that the endoscopist forgets to turn the system back on after

the procedures. Therefore, automatically stopping and starting the

TAB L E 1 Characteristics and performance of the instrument detection system in the test dataset

Intervention

Type of

instrument

Number of

visible
instrument

frames

Sensitivity

(%)

Specificity

(%)

Disturbing

CADe
activations

(frames)

Disturbing CADe
activations

avoided (frames)

False‐avoided
CADe
activations

(frames)

Total

number of
CADe

activations

Video 1 Polypectomy Snare 728 98.60 99.51 377 330 13 3352

Polypectomy Snare 1262

Video 2 Polypectomy Grasper 142 99.77 99.76 6 6 0 396

Video 3 Polypectomy Grasper 269 99.21 99.68 137 102 5 1252

Video 4 Polypectomy Grasper 174 98.87 98.43 8 8 2 302

Video 5 Polypectomy Needle 407 99.22 99.64 1232 1184 54 7834

Snare 931

Video 6 Polypectomy Grasper 1136 99.31 99.67 161 150 6 531

Video 7 Polypectomy Snare 2760 98.01 98.35 741 736 50 1577

Video 8 Polypectomy Needle 2493 96.90 96.58 1923 1906 204 7737

Hot snare 1048

Clip 292

Video 9 Polypectomy Snare 255 99.33 99.62 101 84 21 1361

Video 10 Random

biopsies

5x Grasper 751 98.14 98.98 153 122 2 1099

Polypectomy Grasper 871

Abbreviation: CADe, Computer‐aided detection system.
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CADe system would increase the comfort for the endoscopist and

prevent the CADe system from being accidentally switched off

permanently.

Our novel AI system detects inserted instruments with high

sensitivity and specificity. Therefore, the system can capture the time

frame of an endoscopic intervention with high accuracy. This would

enable the suppression of the CADe signal for the duration of the

intervention to focus the investigator's concentration on the inter-

vention. The suppression relates not only to false positive detections

but instead to all CADe detections during an intervention that do not

add value to the endoscopic image.

The requirements for such a tool detection system are very high,

as suppression of the CADe signal outside of an intervention (false

positive instrument detection) may increase the risk of missing other

visible polyps. Our study shows that our new AI system achieves a

very high specificity, which is sufficient for this purpose. To obtain

this high specificity, our system was trained with a large number of

images from multiple centers using different endoscopy processors.

The number of training images we used is comparable to the number

used in development of other CADe systems.13,14 In addition, the

optimized algorithm presents only a short delay of 467 ms, that al-

lows for the real‐time use in combination with a CADe system.

Since the sensitivity of our AI system is in a high range, the in-

struments introduced were missed in only a few frames during an

intervention. This applies in particular to the insertion and removal of

an instrument where only a small portion of it is visible at the edge of

the endoscopic view. Once the instrument is in the normal working

position, it is quickly and reliably detected by the AI system. Thus, the

crucial part of the intervention is captured by our instrument

detection system. However, a problem with instrument detection

arises when an instrument is pressed so firmly into the mucosa that it

is barely visible. In this situation, the instrument recognition works

accordingly worse. Nevertheless, our video analysis showed that the

new AI system significantly reduced the number of false‐positive
CADe detections during an endoscopic intervention. While many

publications on AI systems only use short, specially selected video

sequences in the evaluation phase, our system was tested on full‐
length colonoscopy, which brings the results much closer to the

real examination situation.15

Interestingly, the commercially available CADe system seems to

generate more detections when a snare is used in comparison to a

grasper. There might be different explanations for this phenomenon.
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F I GUR E 3 Receiver Operating Characteristic Curve of the instrument detection CNN visualizes specificity. While adjusting classification

thresholds, the TP rate reaches 96.58% while maintaining a FP rate of 1% resulting in an area under the curve of 0.9971. CNN, convolutional
neuronal network; FP, false positive; TP, true positive
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F I GUR E 2 Grasper (upper row), snare (middle row), and a false

positive detection (lower row) of the instrument detecting CNN
with the corresponding gradient‐weighted class activation mapping
(Grad‐CAM). Grad‐CAM images on the right side visualize areas

responsible for the CNN prediction as an instrument
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The first one is that the snare produces folds around the polyp by

pressing the wire against the mucosa. Those folds are then falsely

interpreted as polyps by the commercially available CADe system.

Another explanation is that the total time that snares are visible in

our dataset is longer than that of graspers. The longer visibility re-

sults in more CADe detections. Lastly, the not openly available

training dataset of the commercially available CADe system might

contain images of graspers and snares in an unbalanced manner.

The implementation of our freely available instrument detection

AI system in an existing CADe system could be done by controlling

the input signal of the examination monitor. Here, the instrument

detection AI would analyze the raw endoscopy processor output
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F I GUR E 4 Schematic overview of the images with (red) and without (blue) visible instruments in a coloscopy video. The first row
represents the manual annotations of whether the corresponding image contains a visible instrument. The second row represents the

predictions output by our CNN. The third row represents the distracting CADe activations successfully prevented (green) or unsuccessfully
prevented (yellow) by using the developed instrument detection CNN. The inset shows 160 frames (one dot per frame) which correlate to
5.33 s in the video. CADe, Computer‐aided detection system; CNN, convolutional neuronal network

F I GUR E 5 Single images of a polypectomy involving a needle for submucosal injection (upper row) and a snare (lower row) using the
computer‐aided polyp detection system (CADe) (left) and the additional CADe preventing instrument detection system (right). Video S1:

Head‐to‐head comparison of a colonoscopy video sequence with (right) and without (left) the use of the instrument detection convolutional
neuronal network
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signal in parallel with the CADe system. During withdrawal with no

visible instrument, the CADe signal would be displayed to the

examiner. Thus, allowing the examiner to fully benefit from the high

polyp detection rate of a commercially available CADe system. When

an instrument is detected by the new AI, an automatic switch would

display the raw processor signal instead. Alternatively, the AI system

for instrument recognition can also be integrated as a filter directly

into an existing or newly developed CADe system. By integrating our

system in a single CADe system, the process would be more

comfortable.

To the best of our knowledge, an AI system for instrument

detection using deep learning methods has not been developed in

gastrointestinal endoscopy. Therefore, we present the first AI system

in the field that enables recognition of endoscopic interventions by

instrument detection. In addition to the mentioned application, the

system could also be useful for automated recording of intervention

times or withdrawal time. This could potentially help in obtaining

objective data to assess the quality of colonoscopies.16

However, our study has several limitations. The new AI system

was evaluated using previously recorded videos. Therefore, the

mentioned implementation of the AI system in daily practice must be

tested in future prospective studies to evaluate clinical benefit.

Another possibility would be to investigate (e.g. by eye‐tracking)
whether the examiner's attention could be better focused on the

intervention by reducing distracting CADe signals.17 Other limita-

tions include that, to facilitate the generation of a large‐annotated
training dataset in a short period of time, no predefined protocol

was used for video selection. A quantitative identification of the

causes of false positive detections of our CNN need to be evaluated

in future studies.

CADe systems already achieved a remarkable benefit in ran-

domized controlled trials. Future developments of those systems

include improving usability by adding customizable features. The

commercially available system that was used in our study for

example, presents a well‐studied CADe function.5 Other systems

incorporate computer‐aided diagnosis (CADx) that is only turned on

when virtual chromoendoscopy is activated by the examiner.18 In the

case of the ENDO‐AID CADe system by Olympus the examiner has

the possibility to choose how many CADe detection boxes should be

maximally displayed on the screen. The examiner can even choose

from two different CADe modes that presumably present different

sensitivities.19 In other words, in general, these devices are incor-

porating customizable modules that increase the usability and,

therefore, the value of the device. Our work aligns in this direction by

contributing to the prevention of distracting CADe activations during

interventions.

In conclusion, our study shows that instrument detection using

AI technology is reliable and achieves high sensitivity and specificity.

Therefore, the new AI system could be helpful to reduce distracting

CADe detections during endoscopic procedures. Although the clinical

benefit of the new AI system needs further evaluation, our study

demonstrates the great potential of AI technology beyond mucosal

assessment.
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