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Modified vaccinia virus Ankara as antigen delivery system:
how can we best use its potential?
Ingo Drexler1, Caroline Staib2 and Gerd Sutter3,�
Safety-tested modified vaccinia virus Ankara (MVA) has been

established as a potent vector system for the development of

candidate recombinant vaccines. The versatility of the vector

system was recently demonstrated by the rapid production of

experimental MVA vaccines for immunization against severe

acute respiratory syndrome associated coronavirus. Promising

results were also obtained in the delivery of Epstein-Barr virus

or human cytomegalovirus antigens and from the clinical

testing of MVA vectors for vaccination against

immunodeficiency virus, papilloma virus, Plasmodium

falciparum or melanoma. Moreover, MVA is considered to be a

prime candidate vaccine for safer protection against

orthopoxvirus infections. Thus, vector development to

challenge dilemmas in vaccinology or immunization against

poxvirus biothreat seems possible, yet the right choice should

be made for a most beneficial use.
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Abbreviations
CEF c
Current
hicken embryo fibroblast
CMV c
ytomegalovirus
HIV h
uman immunodeficiency virus
HPV h
uman papillomavirus
MVA m
odified vaccinia virus Ankara
SARS s
evere acute respiratory syndrome
SIV s
imian immunodeficiency virus
VV v
accinia virus
Introduction
Poxviruses engineered to express foreign genes are estab-

lished tools for target protein synthesis and vaccine

development in biomedical research. A large packaging

capacity for recombinant DNA, precise virus-specific

control of target gene expression, lack of persistence or

genomic integration in the host, high immunogenicity as

vaccine, and ease of vector and vaccine production were
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important features enabling this success story. Concerns

about the safety of poxviruses, including vaccinia virus

(VV) as the former smallpox vaccine, have been addressed

by the use of viruses that are replication-defective in

human cells. Among these, modified vaccinia virus

Ankara (MVA) can be considered as one of the virus

strains of choice for preclinical and clinical research [1].

Historically, MVA was developed through attenuation by

serial passage in primary chicken embryo cells to serve as

a safer vaccine against smallpox (for a review see [2]).

After more than 570 passages in tissue culture MVA had

lost the broad cellular host range of VV, being unable to

productively grow in many cells of mammalian origin.

The concurrent avirulence of MVA for laboratory animals

and its entirely unproblematic use for primary smallpox

vaccination in more than 100 000 humans founded a high

safety profile for recombinant MVA that, depending on

the nature of the inserted target gene, can be used under

conditions of biosafety level 1. The capacity to produce

similar levels of viral and recombinant antigen when

compared with replication-competent viruses is a relevant

feature of MVA vaccines. In recent years, significant

progress has been made in the development of MVA

vaccine technologies.

This review informs about the newest developments in

the generation of recombinant MVA and illustrates the

principal features that have an impact on MVA immu-

nogenicity. We also describe advances made in the pre-

clinical and clinical evaluation of MVA as a second-

generation poxvirus vaccine or for the delivery of hetero-

logous antigens targeting infectious diseases and cancer.

Finally, we consider the compatibility of different MVA

exploitations and raise the question as to what future use

priority should be given.

Genetic engineering of recombinant MVA
Recombinant MVA are among the most promising live

viral vector systems, because of their well-established

safety and their versatility for the production of hetero-

logous proteins. The recent engineering of recombinant

MVA to synthesize all components necessary for the

assembly and delivery of alphavirus replicon particles

serves as an elegant example of their application [3].

For most purposes, however, the generation of MVA

vectors is straightforward requiring a single genomic

insertion mediated by homologous recombination

between the virus genome and DNA from a plasmid that

carries one or two recombinant genes being placed under
www.sciencedirect.com
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control of a VV-specific promoter (Figure 1). The sites of

naturally occurring deletions within the MVA genome or

the classical gene loci encoding for the VV proteins

thymidine kinase or hemagglutinin serve as sites for

the insertion of recombinant gene sequences. There

are several well-established techniques for clonal isola-

tion of recombinant MVA involving the coexpression of

chromogenic agents (e.g. Escherichia coli b-galactosidase

and b-glucuronidase) or providing resistance against anti-

microbials (e.g. E. coli xanthine-guanine-phosphoribosyl-

transferase) (for an overview see [2,4]). Recently, meth-

ods relying on growth selection of recombinant MVA

have been developed. These protocols take advantage
Figure 1
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of selective propagation in cell cultures that are non-

permissive for non-recombinant MVA. In one protocol,

the VV host range gene K1L is transiently introduced into

the MVA genome and recombinant MVA can subse-

quently be isolated in rabbit kidney RK-13 cells [4,5].

After clonal isolation of the vector virus, the K1L marker

gene is again removed from the viral genome bearing the

advantage that the same marker can be re-used subse-

quently to generate MVA recombinant viruses harboring

multiple gene insertions. Another recently developed

host range selection technique relies on growth rescue

of mutant MVA in chicken embryo fibroblast (CEF) cells

[6]. MVA-DE3L lacks the interferon resistance gene E3L
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Figure 2
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Comparative monitoring of epitope-specific CD8+ T-cell responses

directed against vaccinia virus and recombinant antigens. Quantitation

of epitope-specific T cells was performed following one immunization

of humanized HLA-A*0201-transgenic mice with 108 IU of either

wild-type MVA (MVA-wt), recombinant MVA-TYR or MVA-H2N

expressing the human tumor antigens tyrosinase and Her-2/neu,

respectively. Ten days post vaccination, peptide-specific intracellular

cytokine release of splenocytes was determined after stimulation with

vaccinia epitope VP35#1 (VV), tyrosinase (TYR) or Her-2/neu peptides

(H2N). Cells were analyzed by flow cytometry for the presence of

peptide-specific, activated (CD62Llow) CD8+ T cells. The magnitude

of the specifically induced T-cell response is depicted as the cells

shifted to the lower right and indicated as a percentage (numbers in

blue) of interferon-g-secreting CD8+ T cells within the CD8+ cell

population.
and is unable to grow in CEF. Stable re-insertion of the

E3L gene together with a target gene sequence allows for

quick isolation of MVA recombinant viruses on CEF.

Basics of MVA immunogenicity and
smallpox vaccination
In the 1970s, highly attenuated MVA was primarily

considered to provide a means for safer vaccination

against smallpox. Although there was knowledge about

its avirulence and immunostimulating capacity from

infection experiments in multiple animal models, more

systematic efforts to characterize the molecular basis of

MVA vaccine immunogenicity date from the more recent

past. Important achievements include the characteriza-

tion of the MVA molecular life cycle upon infection of

non-permissive mammalian cells, the elucidation of the

MVA genome, and our understanding that MVA has lost

relevant poxvirus immune evasion genes that target

innate host responses based on cytokine and chemokine

functions. Consequently, defects in inhibitory virus genes

are likely to be responsible for the MVA-specific induc-

tion of host cytokine synthesis proposed decades ago (for

a review see [2]). Interestingly, inactivation of the VV

interferon resistance gene E3L in the MVA genome

resulted in enhanced production of type I interferon in

CEFs, suggesting that the capacity of MVA to stimulate

innate responses may be further enhanced by rational

mutagenesis [6]. It can be assumed that such immuno-

stimulation contributes to the particular immunogenicity

of MVA and might compensate for the advantage of live

replication-competent VV in sustained antigen produc-

tion. In contrast to other viruses (e.g. members of the

herpesvirus family), MVA or replication-competent VV

do not appear to specifically interfere with host cell

antigen processing or presentation, allowing for an appar-

ently unimpaired induction of adaptive immune

responses. This assumption is in agreement with the

finding that VV-specific humoral and cellular immunity

can be detected decades after primary vaccination [7].

When recently compared with conventional VV vaccines,

MVA vaccines were found to elicit similar patterns of

VV-specific immune responses that provided protection

against experimental orthopoxvirus infections but

required inoculation of higher dosage [8�,9,10�,11��].
Remarkably, Earl and coworkers [11��] demonstrated

substantial protective capacity of MVA vaccines in

non-human primates against challenge with monkeypox

virus, thus making MVA a valuable candidate as second-

generation smallpox vaccine.

Antivector immunity and impact on MVA
vaccination
With more recombinant MVA used for antigen delivery in

clinical research [12,13�,14�,15], there is an increasing

need to evaluate MVA-specific immune responses follow-

ing immunization. Although there are established means

to monitor vaccine-induced antibodies, cell-mediated
Current Opinion in Biotechnology 2004, 15:506–512
immunity has scarcely been assessed [11��,16–18]. Sev-

eral approaches allow VV-induced T-cell immunity to be

quantified without knowledge of defined VV-specific

target antigens [19–21]. In addition, the use of recently

identified human leukocyte antigen HLA-A*0201-

restricted VV-specific CD8+ T-cell epitopes [8�,22�]
now makes it possible to compare epitope-specific

responses elicited against vector or recombinant antigens

(Figure 2; I Drexler and G Sutter, unpublished). Further

knowledge as to how these responses might influence

each other is highly relevant for developing optimal

modes of MVA vector immunization. Although replica-

tion-competent VV vaccines and other viral vectors are

more likely to be hampered by antivector immunity than

MVA-based vectors [23,24], vaccinia-specific immune

responses can be assumed to affect immunogenicity of

the target antigen delivered by the MVA vector vaccine.

Yet, pre-existing MVA or VV immunity did not interfere

with subsequent immunizations of recombinant MVA

expressing a cytomegalovirus (CMV) glycoprotein gB

antigen [25]. In addition, a variety of methods has been
www.sciencedirect.com
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derived to possibly circumvent the influence of vector-

specific responses, including the application of DNA

prime MVA boost immunization [26]. One particularly

promising approach to enhance target antigen specific

immune responses is based on combining different viral

vector vaccines (e.g. influenza [24], avipox [27,28], Sem-

liki Forest [29] or vesicular stomatitis virus [30]), non-viral

vector vaccines (e.g. DNA- [31,32] or Salmonella-based

vaccines [33]) or protein vaccines [34] with MVA vaccines

producing a common antigen. These so-called prime-

boost regimens can vary in dosage, or in numbers and

intervals of application [13�], and can combine different

application routes with various vector systems [35].

Depending on the kind of disease, the type of immune

response that needs to be induced by the test vaccine can

also influence the formulation. In the case of cancer,

human immunodeficiency virus (HIV) or malaria, an

immune response biased towards T helper 1 (Th1) cell

immunity will be promoted using a combined DNA and

MVA vaccination [36].

Recombinant MVA as a candidate vaccine
against viral diseases
Much previous research has been dedicated to the devel-

opment of MVA candidate recombinant vaccines against

multiple virus infections of humans, including those

causing AIDS, influenza, early childhood respiratory dis-

eases, measles, Japanese encephalitis or dengue fever (for

a review see [2]). As an effective vaccine against AIDS is

urgently needed, recombinant MVA producing immuno-

deficiency virus antigens are among the first vector viruses

to be evaluated as candidate vaccines in humans [14�,37].

Substantial data from studies in different simian immu-

nodeficiency virus (SIV) or simian human immunodefi-

ciency virus (SHIV, a chimera of SIV and HIV) infection

models strongly support thorough clinical evaluation of

MVA-based vaccines. The use of heterologous prime-

boost strategies including MVA vaccines and delivering

multiple SIV or HIV antigens proved successful to elicit

antibody and high-level cytotoxic T-cell responses in

macaques. The immune response effectively controlled

a mucosal challenge with SHIV 89.6P and SIVmac251-

derived viruses or significantly reduced viral loads after

challenge infection with neutralization-resistant and

highly replication-competent SIVmac239 [30,38–42].

Importantly, recent data suggest that SIV/HIV-specific

mucosal immunity can be boosted by peripheral MVA

immunization after oral priming with a Salmonella vector

vaccine [33] and intranasal inoculation of recombinant

MVA can stimulate immunodeficiency virus-specific

immunity in the genital or rectal tract [35,43]. Elicitation

of potent mucosal immunity and induction of broadly

virus-neutralizing antibody responses are important mile-

stones still to be reached for the derivation of a successful

HIV vaccine. The principal capacity of MVA to elicit

highly effective virus-neutralizing antibody responses has

been highlighted by the characterization of vector vac-
www.sciencedirect.com
cines against severe acute respiratory syndrome (SARS)

coronavirus and human CMV [25,44�]. The successful

engineering of MVA expressing SARS coronavirus spike

protein also demonstrated the suitability of the vector

system to readily respond to the potential threat of rapidly

emerging infectious diseases. A recently developed

recombinant MVA delivering multiple CMV antigens

represents a promising candidate for the clinical testing

of MVA-based T-cell vaccines [25,45�,46]. This study

also mirrors a general interest in the development of MVA

vector vaccines against human herpesvirus infections

[47,48].

Recombinant MVA as candidate vaccines
against cancer, parasitic and bacterial
diseases
The potential to activate robust cellular major histocom-

patibility complex (MHC) class I- and II-restricted CD8+

and CD4+ T-cell responses against recombinant antigens

has made MVA vaccines attractive for immunotherapeu-

tic approaches against cancer and selected intracellular

parasitic or bacterial infectious diseases. For experimental

cancer therapy, virus-associated malignancies seem to be

predestined targets for MVA vaccines. Taylor and co-

workers [48] demonstrated the immunogenicity of an

Epstein-Barr virus-associated nasopharyngeal carcinoma

vaccine by reactivating Epstein-Barr virus-specific CD8+

and CD4+ memory T cells in vitro. Recently, Corona

Gutierrez and colleagues [49��] showed evidence for the

therapeutic efficacy of an MVA vaccine delivering human

papillomavirus (HPV) E2 antigen against cervical cancer

associated with HPV infection in a phase I/II clinical trial.

Vaccines based on recombinant MVA expressing differ-

ent tumor-associated antigens specific for a variety of

cancers are currently being tested in mice [27,50,51]

and humans [52]. Often these are combined with cyto-

kines such as interleukin-2 [52], costimulatory molecules

such as B7-1 [27], measures to circumvent immune inhi-

bitory signalling (by CTLA-4 blockade) [51] or cellular

adjuvants like dendritic cells [15] to enhance immune

responses against antigens that are likely to be tolerogenic

self-proteins.

Major efforts are underway to develop vaccines against

malaria caused by Plasmodium spp. parasites. Preclini-

cally, heterologous prime-boost immunization regimens

have elicited strong CD8+ T-cell immunity and have

shown substantial protection in mouse malaria challenge

models against Plasmodium berghei [28] or Plasmodium
yoelii [53]. In addition, safety and immunogenicity have

been established in clinical trials with human volunteers,

experimentally [13�] or naturally exposed to Plasmodium
falciparum [54]. Recently, the first prime-boost vaccina-

tions against tuberculosis — combining DNA [55] or the

classical bacille Calmette-Guérin vaccine [56] with

recombinant MVA expressing Mycobacterium tuberculosis
antigen 85A — proved to be protective in mice.
Current Opinion in Biotechnology 2004, 15:506–512
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Table 1

First clinical evaluation of recombinant MVA vaccines.

Target disease Antigen Clinical trial Reference

AIDS HIV-1 Nef Phase I/II, immunotherapy [14�]

AIDS HIVA multiantigen Phase I, prophylaxis [37]

Cervical cancer HPV E2 Phase I/II, immunotherapy [49��]

Breast cancer MUC1 Phase I, immunotherapy [52]

Melanoma Tyrosinase Phase I/II [15,57�]

Malaria P. falciparum ME-Trap Phase I, prophylaxis [54]

Malaria P. falciparum ME-Trap Phase I, prophylaxis [13�]
Conclusions
Recombinant MVA is a prime candidate poxvirus vector

for a generation of new vaccines against infections and

tumors. The portrait of the virus combines desirable

elements such as high-level biological safety, the ability

to activate appropriate innate immune mediators upon

vaccination, and the capacity to deliver substantial

amounts of heterologous antigens. The adoption of up-

to-date methodology for convenient vector generation,

vector quality control, and vector vaccine immune mon-

itoring has increased the pace of development, bringing

recombinant MVA vaccines into clinical trials. Initial

studies testing MVA vaccines for prophylaxis or immu-

notherapy of AIDS, malaria, human papilloma virus-asso-

ciated cancer or melanoma have already been completed

(Table 1). First results are, overall, very encouraging and

confirm clinical safety. Importantly, however, they also

demonstrate clinical efficacy, despite the intrinsic diffi-

culties associated with these target diseases. Renewed

interest in the development of MVA as candidate vaccine

against an orthopoxvirus-related biothreat is likely to

provide the basis for feasible large-scale manufacturing

of MVA vaccines. Indeed, first studies suggest that MVA

would provide a suitable orthopox vaccine, if necessary.

The use of recombinant MVA to simultaneously provide

immunity against smallpox has been proposed. Never-

theless, one should keep in mind that hasty population-

wide smallpox vaccinations might not be desirable, as

high level antivector immunity could limit the future

potential of poxvirus-based vector vaccines more urgently

needed for prophylaxis or therapy of uncontrolled infec-

tious diseases, cancer or emerging infections.

Update
Recent data from a phase I clinical trial for treatment of

metastatic melanoma indicated that vaccination with

MVA-transduced dendritic cells can in vivo activate

T-cell responses directed against the recombinant anti-

gen tyrosinase and against the recently identified epitope

within vaccinia virus envelope antigen H3 [57�,8�].
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