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and cornea specialists in detecting
corneal diseases from low-quality images

Zhongwen Li,1,2,5 Jiewei Jiang,3,5 Wei Qiang,1 Liufei Guo,3 Xiaotian Liu,1 Hongfei Weng,1 Shanjun Wu,1

Qinxiang Zheng,1,2,* and Wei Chen1,2,4,*

SUMMARY

The performance of deep learning in disease detection from high-quality clinical
images is identical to and even greater than that of human doctors. However, in
low-quality images, deep learning performs poorly. Whether human doctors
also havepoorperformance in low-quality images is unknown.Here,we compared
theperformanceofdeep learning systemswith that of cornea specialists indetect-
ing corneal diseases from low-quality slit lamp images. The results showed that the
cornea specialistsperformedbetter thanourpreviously establisheddeep learning
system (PEDLS) trained on only high-quality images. The performance of the sys-
tem trained on both high- and low-quality images was superior to that of the
PEDLS while inferior to that of a senior corneal specialist. This study highlights
that cornea specialists perform better in low-quality images than the system
trained on high-quality images. Adding low-quality images with sufficient diag-
nostic certainty to the training set can reduce this performance gap.

INTRODUCTION

Recently deep learning has attained remarkable performance in disease screening and diagnosis (Cheung

et al., 2021; Hosny and Aerts, 2019; Li et al., 2020a, 2020b, 2020c, 2020d; Matheny et al., 2019; Zhou et al.,

2021). The performance of deep learning is comparable with and even superior to that of human doctors in

many clinical image analyses (Li et al., 2021a, 2021b, 2021c, 2021d; Li et al., 2020a, 2020b, 2020c, 2020d; Li

et al., 2019; Ting et al., 2017; Xie et al., 2020; Zhang et al., 2020). For example, the accuracy of a deep

learning system in distinguishing coronavirus pneumonia from computed tomography images reached

the level of senior radiologists (87.5% versus 84.5%; p＞ 0.05) and exceeded the level of junior radiologists

(87.5% versus 65.6%; p < .05) (Zhang et al., 2020). In discerning corneas with contraindications for refractive

surgery based on corneal tomographic images, comparable accuracy was observed between a deep

learning system and refractive surgeons (95% versus 92.8; p = 0.72) (Xie et al., 2020). Our previous study

also demonstrated that a senior cornea specialist and a deep learning system had similar performance (ac-

curacy: 96.7% versus 97.3%; p = 0.50) in screening for keratitis from slit lamp images (Li et al., 2021a, 2021b,

2021c, 2021d).

For facilitating feature extraction, most studies only utilize high-quality images to establish deep learning

systems (Cheung et al., 2021; Esteva et al., 2017; Li et al., 2020a, 2020b, 2020c, 2020d; Li et al., 2021a, 2021b,

2021c, 2021d; Luo et al., 2019; Xie et al., 2020; Zhang et al., 2020). Although deep learning acquires good

performance in high-quality images, its performance was poor in low-quality images, which were inevitable

in real clinical scenarios due to many factors such as patient noncompliance, hardware imperfections, and

operator errors (Li et al., 2020a, 2020b, 2020c, 2020d; Li et al., 2021a, 2021b, 2021c, 2021d; Trucco et al.,

2013). For instance, in screening for lattice degeneration/retinal breaks, glaucomatous optic neuropathy,

and retinal exudation/drusen, deep learning systems achieved area under the receiver operating charac-

teristic curves (AUCs) of 0.990, 0.995, and 0.982 in high-quality fundus images, respectively, whereas

achieved AUCs of 0.635, 0.853, and 0.779 in low-quality fundus images, respectively (Li et al., 2020a,

2020b, 2020c, 2020d).

To date, whether human doctors also perform poorly in low-quality images is not well investigated. If the

performance of human doctors in low-quality images is better than deep learning, this result exposes a
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vulnerability of deep learning systems, and further studies are needed to build more robust deep learning

systems. If the performance of the human doctors was similar to that of deep learning systems in low-quality

images, it indicates that the detection of diseases from low-quality images may be inherently difficult.

To explore this issue, our study aimed to compare the performance of a previously established deep

learning system (PEDLS) (Li et al., 2021a, 2021b, 2021c, 2021d) with that of cornea specialists in low-quality

slit lamp images for classifying keratitis, other corneal abnormalities, and normal cornea. In addition, this

study investigated whether the performance of the deep learning system in low-quality images would be

improved by training a deep learning network with both high- and low-quality images.

RESULTS

Data characteristics

In total, 12,411 high-quality images (keratitis = 5,586; other corneal abnormalities = 2,293; and normal

cornea = 4,532) and 1,705 low-quality images (keratitis = 628; other corneal abnormalities = 516; and

normal cornea = 561) were used in this study. Representative examples of low- and high-quality images

are shown in Figure 1. The detailed information on the development dataset and external test dataset is

described in Table 1.

Comparison of the PEDLS against corneal specialists in low-quality images

For the classification of keratitis, other corneal abnormalities, and normal cornea, the cornea specialist with

3 years of experience achieved accuracies of 82.8% (78.5–87.0), 69.9% (64.7–75.0), and 81.8% (77.4–86.1),

respectively, and the senior cornea specialist with 7 years of experience achieved accuracies of 93.7%

(91.0–96.4), 93.0% (90.2–95.9), and 94.7% (92.2–97.2), respectively, whereas the PEDLS achieved accuracies

of 69.9% (64.7–75.0), 60.6% (55.1–66.1), and 70.9% (65.7–76.0), respectively, in low-quality images from

the external test dataset. The overall performance of the PEDLS is lower than that of the cornea specialists

(p < .05) (Table 2).

Performance of the NDLS in the internal and external test datasets

In the internal text dataset, the NDLS achieved AUCs of 0.854 (95% confidence interval [CI], 0.801 to 0.904),

0.872 (95% CI, 0.822 to 0.913), and 0.941 (95% CI, 0.908 to 0.967), respectively, for classifying keratitis, other

corneal abnormalities, and normal cornea from low-quality images and achieved AUCs of 0.997 (95% CI,

Figure 1. Representative examples of low- and high-quality slit lamp images

(A) Low-quality images: (A1) keratitis; (A2) other corneal abnormalities; (A3) normal cornea.

(B) High-quality images: (B1) keratitis; (B2) other corneal abnormalities; (B3) normal cornea.
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0.996 to 0.999), 0.993 (95% CI, 0.990 to 0.997), and 1.000 (95% CI, 1.000 to 1.000), respectively, for classifying

keratitis, other corneal abnormalities, and normal cornea from high-quality images (Figure 2).

In the external text dataset, the AUCs of NDLS were 0.860 (95% CI, 0.809 to 0.908), 0.886 (95% CI, 0.838 to

0.927), and 0.894 (95% CI, 0.856 to 0.926), respectively, for classifying keratitis, other corneal abnormalities,

and normal cornea from low-quality images (Figure 3) and were 0.988 (95% CI, 0.986 to 0.991), 0.976 (95%

CI, 0.972 to 0.979), and 0.990 (95% CI, 0.988 to 0.992), respectively, for classifying keratitis, other corneal

abnormalities, and normal cornea from high-quality images (Figure S1).

Further information including accuracies, sensitivities, and specificities of the NDLS in the internal and

external test datasets is displayed in Table 3.

Table 1. Summary of datasets

Item

Development dataset

External test datasetTraining dataset Validation dataset Internal test dataset

Keratitis

No. of high-quality imagesa 2,185/5,505 (39.7) 511/1,257 (40.7) 483/1,208 (40.0) 2,407/6,146 (39.2)

No. of low-quality imagesa 367/5,505 (6.7) 75/1,257 (6.0) 81/1,208 (6.7) 105/6,146 (1.7)

Other corneal abnormalities

No. of high-quality imagesa 585/5,505 (10.6) 136/1,257 (10.8) 130/1,208 (10.8) 1,442/6,146 (23.5)

No. of low-quality imagesa 299/5,505 (5.4) 61/1,257 (4.9) 69/1,208 (5.7) 87/6,146 (1.4)

Normal cornea

No. of high-quality imagesa 1756/5,505 (31.9) 408/1,257 (32.5) 373/1,208 (30.9) 1995/6,146 (32.5)

No. of low-quality imagesa 313/5,505 (5.9) 66/1,257 (5.3) 72/1,208 (6.0) 110/6,146 (1.8)

aData are no. of images/total no. (%) unless otherwise indicated.

Table 2. Comparison of deep learning systems with cornea specialists in low-quality images

One-versus-rest

classification PEDLS NDLS

Cornea

specialist A Cornea specialist B P1 P2 P3 P4 P5

Keratitis versus others + normal

Sensitivity (95% CI) 70.5% (61.8–79.2) 77.1% (69.1–85.2) 72.4% (63.8–80.9) 92.4% (87.3–97.5) 0.815 <0.001 0.383 0.001 0.016

Specificity (95% CI) 69.5% (63.1–76.0) 90.9% (86.8–94.9) 88.3% (83.8–92.8) 94.4% (91.2–97.6) <0.001 <0.001 0.487 0.248 <0.001

Accuracy (95% CI) 69.9% (64.7–75.0) 86.1% (82.2–90.0) 82.8% (78.5–87.0) 93.7% (91.0–96.4) <0.001 <0.001 0.220 0.001 <0.001

Others versus keratitis + normal

Sensitivity (95% CI) 46.0% (35.5–56.4) 80.5% (72.1–88.8) 59.8% (49.5–70.1) 90.8% (84.7–96.9) 0.065 <0.001 0.011 0.093 <0.001

Specificity (95% CI) 66.5% (60.2–72.8) 87.4% (83.0–91.9) 74.0% (68.1–79.8) 94.0% (90.8–97.1) 0.073 <0.001 <0.001 0.034 <0.001

Accuracy (95% CI) 60.6% (55.1–66.1) 85.4% (81.5–89.4) 69.9% (64.7–75.0) 93.0% (90.2–95.9) 0.009 <0.001 <0.001 0.004 <0.001

Normal versus keratitis + others

Sensitivity (95% CI) 35.5% (36.5–44.4) 74.5% (66.4–82.7) 68.2% (59.5–76.9) 89.1% (83.3–94.9) <0.001 <0.001 0.360 0.009 <0.001

Specificity (95% CI) 91.1% (87.1–95.2) 87.5% (82.8–92.2) 89.6% (85.3–93.9) 97.9% (95.9–99.9) 0.728 0.001 0.636 <0.001 0.092

Accuracy (95% CI) 70.9% (65.7–76.0) 82.8% (78.5–87.0) 81.8% (77.4–86.1) 94.7% (92.2–97.2) 0.001 <0.001 0.826 <0.001 <0.001

PEDLS, previously established deep learning system; NDLS, new deep learning system; CI, confidence interval. ‘‘Others’’ denotes other corneal abnormalities.

‘‘Normal’’ denotes normal cornea. P1 indicates the p value calculated between the PEDLS and cornea specialist A using the McNemar test. P2 indicates the

p value calculated between the PEDLS and cornea specialist B using the McNemar test. P3 indicates the p value calculated between the NDLS and cornea

specialist A using the McNemar test. P4 indicates the p value calculated between the NDLS and cornea specialist B using the McNemar test. P5 indicates

the p value calculated between the PEDLS and NDLS using the McNemar test. Cornea specialist A has 3 years of clinical experience. Cornea specialist B has

7 years of clinical experience.
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Comparison of NDLS with PEDLS and cornea specialists in low-quality images

In low-quality images from the external test dataset, the overall performance of the NDLS was greater than

that of the PEDLS for detecting keratitis, other corneal abnormalities, and normal cornea (p < .05) (Table 2).

The corresponding ROCs and confusion matrices of the NDLS and PEDLS are described in Figures 3A and

3B. The t-SNE technique showed that the features of each category learned by the NDLS were more sepa-

rable than those of the PEDLS (Figure S2A).

Representative examples of the heatmaps of the NDLS and PEDLS in low-quality images are shown in Fig-

ure 4. For abnormal cornea findings (keratitis and other corneal abnormalities), the heatmaps of the NDLS

effectively displayed the highlighted visualization on the lesion regions, whereas the heatmaps of the

PEDLS highlighted the other regions. For normal cornea, the heatmaps of the NDLS highlighted the region

of the cornea, whereas the heatmaps of the PEDLS showed the highlighted visualization on the region of

the conjunctiva.

Figure 2. Performance of the NDLS in the internal test dataset

(A) Receiver operating characteristic curves (ROCs) of the NDLS for discerning keratitis, other corneal abnormalities, and

normal cornea in low-quality images.

(B) ROCs of the NDLS for discerning keratitis, other corneal abnormalities, and normal cornea in high-quality images.

(C) Confusion matrixes of the NDLS in low- and high-quality images. NDLS, new deep learning system. ‘‘Others’’ denotes

other corneal abnormalities. ‘‘Normal’’ denotes normal cornea.
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The accuracies of the NDLS in detecting keratitis and normal cornea were comparable to that of the cornea

specialist with 3 years of experience (p ＞ 0.05), whereas the accuracy of the NDLS in detecting other

corneal abnormalities is greater than that of the cornea specialist with 3 years of experience (p < .05) in

low-quality images from the external test dataset (Table 2). The overall performance of the NDLS was lower

than that of the cornea specialist with 7 years of experience (p < .05) for classifying keratitis, other corneal

abnormalities, and normal cornea in low-quality images from the external test dataset (Table 2).

Comparison between NDLS and PEDLS in high-quality images

In high-quality images from the external test dataset, the overall performance of the NDLS was lower than

that of the PEDLS for detecting keratitis, other corneal abnormalities, and normal cornea (p < .05)

(Table S1). The corresponding ROCs and confusion matrices of the NDLS and PEDLS are presented in

Figure 3. Performance of the NDLS, PEDLS, and cornea specialists in low-quality images from the external test

dataset

(A) Receiver operating characteristic curves of the NDLS and PEDLS for discerning keratitis, other corneal abnormalities,

and normal cornea in low-quality images.

(B) Confusion matrixes of the NDLS and PEDLS in low-quality images.

(C) Confusion matrixes of the cornea specialists in low-quality images. NDLS, new deep learning system. PEDLS,

previously established deep learning system.
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Figure S1. The t-SNE technique showed that the features of each category learned by the NDLS in high-

quality images were less separable than those of the PEDLS (Figure S2B).

DISCUSSION

In this study, we conducted performance comparisons between a deep learning system and cornea spe-

cialists for classifying keratitis, other corneal abnormalities, and normal cornea in low-quality images.

We found that the performance of cornea specialists in low-quality images greatly exceeded that of the

PEDLS trained on high-quality images. This result indicates that the PEDLS is not so robust as the cornea

specialists in detecting abnormal cornea findings from low-quality slit lamp images. The reason is that the

deep learning system might perceive the noise in low-quality images as part of the object and its texture

while human experts often treat the noise as a layer in front of the image (Geirhos et al., 2017). Besides,

human experts, through experience and evolution, were exposed to some low-quality images and thus

have an advantage over the PEDLS (Geirhos et al., 2017).

To improve the resiliency of a deep learning system in real-world settings, we trained the NDLS using both

high- and low-quality images. The NDLS achieved higher accuracies than those of the PEDLS in identifying

keratitis (86.1% versus 69.9%), other corneal abnormalities (85.4% versus 60.6%), and normal cornea (82.8%

versus 70.9%) from low-quality images. It demonstrates that the performance of the deep learning network

on low-quality images could be improved if low-quality images with sufficient diagnostic certainty are

added to the training set. In addition, heatmaps were generated to interpret the decision-making ratio-

nales of the PEDLS and NDLS in low-quality images. As shown in Figure 4, the heatmaps of the NDLS

are more interpretable than those of the PEDLS, and this further substantiates the effectiveness of the

NDLS.

Performance comparison between the NDLS and cornea specialists in identifying keratitis, other corneal

abnormalities, and normal cornea from low-quality images was conducted in the present study. The results

showed that the performance of the NDLS in low-quality images was comparable with that of the cornea

specialist with 3-year clinical experience. However, the performance of the cornea specialist with 7-year

clinical experience still exceeded that of the NDLS in low-quality images. A possible explanation is that

the senior cornea specialist may have more prior experience in analyzing low-quality images and therefore

has better performance. Increasing the sample size of low-quality images in a training set could potentially

reduce a performance gap between the deep learning system and the senior cornea specialist in low-qual-

ity images.

Table 3. Performance of the NDLS in the internal and external test datasets

One-versus-rest

classification

Internal test dataset External test dataset

High-quality

images

Low-quality

images

High-quality

images

Low-quality

images

Keratitis versus others + normal

Sensitivity (95% CI) 95.4% (93.6–97.3) 74.1% (64.5–83.6) 90.7% (89.6–91.9) 77.1% (69.1–85.2)

Specificity (95% CI) 98.0% (96.8–99.2) 92.9% (88.7–97.1) 97.8% (97.3–98.3) 90.9% (86.8–94.9)

Accuracy (95% CI) 96.8% (95.6–97.9) 86.0% (81.5–90.6) 94.9% (94.3–95.4) 86.1% (82.2–90.0)

Others versus keratitis + normal

Sensitivity (95% CI) 94.6% (90.7–98.5) 84.1% (75.4–92.7) 90.7% (89.2–92.2) 80.5% (72.1–88.8)

Specificity (95% CI) 97.4% (96.4–98.5) 83.0% (77.1–89.0) 93.6% (92.9–94.4) 87.4% (83.0–91.9)

Accuracy (95% CI) 97.1% (96.0–98.1) 83.3% (78.4–88.2) 92.9% (92.3–93.6) 85.4% (81.5–89.4)

Normal versus keratitis + others

Sensitivity (95% CI) 99.2% (98.3–100) 77.8% (68.2–87.4) 94.0% (92.9–95.0) 74.5% (66.4–82.7)

Specificity (95% CI) 100% (100-100) 92.0% (87.7–96.3) 96.9% (96.3–97.4) 87.5% (82.8–92.2)

Accuracy (95% CI) 99.7% (99.4–100) 87.4% (83.0–91.8) 95.9% (95.4–96.4) 82.8% (78.5–87.0)

‘‘Others’’ denotes other corneal abnormalities. ‘‘Normal’’ denotes normal cornea. NDLS, new deep learning system; CI, con-

fidence interval.
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Although the NDLS has higher performance than the PEDLS in low-quality images, the NDLS performance

in high-quality images was slightly lower than that of the PEDLS. This illustrates that adding low-quality im-

ages to the training set brings the deep learning system some noise, which has negative influence on the

system in screening for abnormal cornea findings from high-quality images. Further research is required to

find an approach that would not decrease the performance of a deep learning system in high-quality im-

ages while increasing its performance in low-quality images.

In summary, this study shows that cornea specialists achieve higher accuracies than those of the PEDLS in

detecting keratitis, other corneal abnormalities, and normal cornea from low-quality slit lamp images. The

performance of the system (NDLS) in low-quality images is improved when adding low-quality images with

sufficient diagnostic certainty to the training set. However, its performance is still below that of the senior

cornea specialist. Further studies are needed to further reduce and close this performance gap and

develop a robust deep learning system that can perform well in both high- and low-quality images.

Limitations of the study

A potential limitation of this study is that we only confirmed the cornea specialists had greater performance

in low-quality slit lamp images than that of the deep learning system. Whether this phenomenon also ap-

pears in other types of clinical images is not investigated and left for future work.

Figure 4. Representative examples of the heatmaps of the NDLS and PEDLS in low-quality images

(A) Keratitis.

(B) Other corneal abnormalities.

(C) Normal cornea. The images are shown in the order of original images (left), corresponding heatmaps of the NDLS

(middle), and corresponding heatmaps of the PEDLS (right) for each category. NDLS, new deep learning system. PEDLS,

previously established deep learning system.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to the lead contact, Dr. Wei Chen (chenwei@eye.ac.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Restrictions apply to the availability of the development and external test datasets, which were used with

the permission of the participants for the present study. Anonymized data may be available for research

purposes from the corresponding authors on reasonable request. The data are not publicly available

due to hospital regulation restrictions and patient privacy concerns. The code used in this study can be ac-

cessed at GitHub (https://github.com/jiangjiewei/CD-system-Source).

Any additional information required to reanalyze the data reported in this paper is available from the Lead

Contact upon request.

METHOD DETAILS

Study approval

This study was approved by Ningbo Eye Hospital (NEH) Ethics Review Committee (protocol number 2020-

qtky-017) and conducted following the Declaration of Helsinki. Because deidentified images were used, the

review committee denoted that patient consent was not required in this study.

Information of the PEDLS

The information including the technical, clinical details, and performance of the PEDLS for classifying kera-

titis, other corneal abnormalities, and normal cornea has been described previously (Li et al., 2021a, 2021b,

2021c, 2021d). Notably, this PEDLS was developed and evaluated only based on high-quality slit lamp im-

ages and a total of 302 low-quality slit lamp images from external test datasets were excluded (Li et al.,

2021a, 2021b, 2021c, 2021d). The image quality was considered ‘‘poor’’ if the cornea was blurred and/or

distorted.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

DenseNet Huang et al. (2017) https://github.com/liuzhuang13/DenseNet

Previously established deep learning

system (PEDLS)

Li et al. (2021a, 2021b, 2021c, 2021d) https://github.com/jiangjiewei/Keratitis-

Source

New deep learning system (NDLS) This study https://github.com/jiangjiewei/CD-system-

Source

Gradient-weighted Class Activation

Mapping (Grad-CAM)

Selvaraju et al. (2017) https://github.com/ramprs/grad-cam/

PyTorch Version 1.6.0 https://pytorch.org/docs/stable/

Matplotlib Version 3.3.1 https://matplotlib.org/3.3.1/

Scikit-learn Version 0.23.2 https://scikit-learn.org/stable/whats_new/

v0.23

Python Version 3.7.8 https://www.python.org/downloads/release/

python-378/
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PEDLS vs. corneal specialists in low-quality slit lamp images

Two cornea specialists who had 4 and 7 years of clinical experience were recruited to investigate their per-

formance in low-quality slit lamp images for classifying keratitis, other corneal abnormalities, and normal

cornea. The cornea specialists were not informed of any clinical information related to these images.

The low-quality images from external test datasets were used to compare the performance of PEDLS to

that of the corneal specialists.

Developing a deep learning system with images of both high and low quality

Both high- and low-quality images with clear diagnoses from NEH were used to develop a new deep

learning system (NDLS) for the classification of keratitis, other corneal abnormalities, and normal cornea.

The images were randomly divided into training (70%), validation (15%), and internal test (15%) datasets

at the subject level. No overlap between these datasets was allowed.

In the image preprocessing phase, pixel values of slit lamp images were normalized to a range of 0–1, and

the size of the slit lamp images was resampled to a resolution of 224 3 224 pixels. Data augmentation was

applied to increase the heterogeneity of the training dataset, avoiding overfitting and bias during the

training process (Bloice et al., 2019). The training dataset was increased to 6-fold of the original size

(from 5,505 to 33,030) using horizontal and vertical flips, random cropping, and random rotations around

the image center.

The NDLS was trained using the DenseNet121 algorithm which exhibited the optimal performance in de-

tecting keratitis, other corneal abnormalities, and normal cornea in our previous study (Li et al., 2021a,

2021b, 2021c, 2021d). The DenseNet121 has 8.13 106 trainable parameters and contains 121 layers densely

connected through jointing all preceding layers into subsequent layers to achieve strengthened feature

propagation and alleviate the vanishing-gradient problem (Huang et al., 2017). Weights pre-trained on

the ImageNet database of 1.4 million images were used to initialize the DenseNet121 architecture (Russa-

kovsky et al., 2015). Transfer learning was performed because it could improve the accuracy of image-based

deep learning (Kermany et al., 2018). In this study, we set the learning rate of the parameters of the Softmax

classification layer to 10 times that of other layers’ parameters. This transfer learning technology guaran-

teed that the parameters of the Softmax classification layer were fully trained while the parameters of other

layers were only fine-tuned using slit lamp images.

The NDLS was built in Python programming language leveraging PyTorch (version 1.6.0, https://pytorch.

org/docs/stable/) as a backend. The adaptive moment estimation (ADAM) optimizer was utilized for

training and the hyper-parameters were set as follows: learning rate = 0.001, b1 = 0.9, b2 = 0.999, weight

decay = 1 3 10�4. During the training process, the cross-entropy loss and accuracy were calculated on the

validation dataset after each epoch for monitoring the performance. After 80 epochs, the training was

stopped due to the absence of further improvement in both cross-entropy loss and accuracy. The model

with the lowest loss on the validation dataset was saved as the optimal model. The images of the external

test dataset used to evaluate the performance of the deep learning model in this study were assembled

from Zhejiang Eye Hospital (ZEH), Jiangdong Eye Hospital (JEH), and Ningbo Ophthalmic Center

(NOC). The running time of the DenseNet121 in the whole training process is 2.30 hours and the average

time that themodel needs in testing every image is 0.18 seconds with NVIDIA RTX 2080Ti GPU. The process

of the development and assessment of the NDLS is displayed in Figure S3.

Visualization heatmap

Gradient-weighted Class Activation Mapping (Grad-CAM) was utilized to create "visual explanations" for

the decisions from the deep learning system by superimposing a visualization layer at the end of the CNN

model (Selvaraju et al., 2017). This technique leverages the gradients of any target concept, flowing into the

last convolutional layer to create a localization map highlighting crucial regions in the image for predicting

the concept. Redder regions denote more significant features on the system’s classification.

NDLS vs. PEDLS and NDLS vs. cornea specialists in low-quality images

The low-quality images from the external test dataset were used to compare the performance of the NDLS

to that of PEDLS to investigate whether training a deep learning network with both high- and low-quality

images could improve its performance in low-quality images for classifying keratitis, other corneal
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abnormalities, and normal cornea. The t-distributed stochastic neighbor embedding (t-SNE) technique

was employed to show the embedding features of each category learned by the deep learning system

in a two-dimensional space (van der Maaten and Hinton, 2008). Also, a performance comparison was con-

ducted between the NDLS and corneal specialists in low-quality images.

NDLS vs. PEDLS in high-quality images

The high-quality images from the external test dataset were used to compare the performance of the NDLS

to that of PEDLS to investigate whether training a deep learning network with both high- and low-quality

images could improve/decline its performance in high-quality images for the classification of keratitis,

other corneal abnormalities, and normal cornea.

Statistical analysis

The one-versus-rest strategy was employed to evaluate the performance of the deep learning systems and

cornea specialists. The receiver operator characteristic (ROC) curves were plotted using the packages of

matplotlib (version 3.3.1, https://matplotlib.org/3.3.1/) and Scikit-learn (version 0.23.2, https://scikit-

learn.org/stable/whats_new/v0.23). The 2-sided 95% confidence intervals (CIs) were Wilson score intervals

for sensitivity, specificity, and accuracy, and were Delong intervals for AUC. The proportion comparisons

were conducted using the McNemar test. Statistical analyses were performed using Python 3.7.8

(https://www.python.org/downloads/release/python-378/, Wilmington, Delaware, USA). All statistical

tests were 2-sided, and findings were considered statistically significant at p < .05.

ADDITIONAL RESOURCES

This study did not generate additional data.
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