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Abstract
While the applied psychology community relies on statistics to assist drawing conclusions from quantitative data, the
methods being used mostly today do not reflect several of the advances in statistics that have been realized over the past
decades. We show in this paper how a number of issues with how statistical analyses are presently executed and reported
in the literature can be addressed by applying more modern methods. Unfortunately, such new methods are not always
supported by widely available statistical packages, such as SPSS, which is why we also introduce a new software platform,
called ILLMO (for Interactive Log-Likelihood MOdeling), which offers an intuitive interface to such modern statistical
methods. In order to limit the complexity of the material being covered in this paper, we focus the discussion on a fairly
simple, but nevertheless very frequent and important statistical task, i.e., comparing two experimental conditions.

Keywords Interactive statistics · Exploratory statistics · Hypothesis testing · Effect size · t test · Likert scales · Confidence
intervals · Wilks’ theorem · Empirical likelihood

Introduction

The applied psychology community, including my own field
of research in human–computer interaction (HCI), relies
heavily on empirical research to validate the claims that
they make. This empirical research often involves a mix of
qualitative and quantitative methods, and statistics is used
to analyse the data generated by the quantitative methods.
One of the most frequently occurring tasks is to compare
two experimental conditions, where the two conditions
for instance correspond to a proposed intervention being
absent or present. The quantitative measure being used
to compare such conditions can either be objective, such
as measuring performance time or number of mistakes
made, or subjective, such as letting participants express their
assessment on one or more attributes on a (7-point) Likert
scale. Such measurements can either be performed by the
same participants, who get to experience both conditions
(i.e., a within-subject experiment), or by two separate
groups of participants, each group experiencing one of the
conditions (i.e., an across-subject experiment). We will use
this relatively simple experimental setup to identify some
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important issues with how statistical analyses are currently
performed and reported, and to propose concrete ways
of making improvements by incorporating more modern
statistical methods.

In this paper, we will use example data from the
popular book by Andy Field (Field, 2013), as this source
also provides example formulations for how to report the
statistical analyses that are traditionally performed. We will
see that these traditional methods focus on establishing
statistical significance, instead of on the more relevant
aspect of estimating effect size (Lakens, 2013). One major
shortcoming of many traditional methods is that, even in
cases where they do report measures of effect size, they
do not provide confidence intervals for such measures,
so that the accuracy with which such estimates are made
is unknown. This accuracy has a direct influence on the
strength of the claim that is supported by the data (i.e.,
there is an obvious difference between claiming a medium-
size effect and concluding that the effect is somewhere
in between non-existing and huge). In this paper, we will
present an alternative approach that is based on the recent
theory of multi-model comparisons (Burnham & Anderson,
2002), and more specifically Wilks’ theorem (Wilks, 1938),
which provides a solution to such problems. As several
of the analyses that we promote in this paper are likely
to be unfamiliar for many psychologists, we also propose
formulations for how to report such new types of analyses
in scientific publications.
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A second aspect that can be improved in current
statistical practice is the use of non-parametric methods.
Such methods are used when the assumption of normality,
which is implicit in popular statistical methods such as the t
test, is violated. Non-parametric methods, such as Wilcoxon
tests (Field, 2013), rely on the assumption that a rank-order
transformation on the data results in transformed data that
are approximately normally distributed. There is however
no guarantee that this will indeed be the case (as can
easily be established through a counter example). We will
therefore introduce as an alternative the method of empirical
likelihood (EL) (Owen, 2001) which does not rely on such
a questionable assumption. An important advantage is that
Wilks’ theorem can be extended to empirical likelihood,
so that EL cannot only be used to test significance, as
the existing non-parametric methods do, but also allows to
estimate confidence intervals in a way that is very similar
to how it is done in the case of parametric methods. Such
a uniform treatment of both parametric and non-parametric
statistics is an obvious advantage, as users need to acquaint
themselves with fewer distinct principles.

A third issue that has been discussed earlier in the
literature is how to analyse discrete ordinal data (Kaptein,
Nass, & Markopoulos, 2010; Robertson & Kaptein, 2016),
such as gathered through questionnaires with Likert scales,
in a theoretically sound way. We will show how a 100-year-
old method, called Thurstone modelling (Thurstone, 1927),
can be used to model such discrete ordinal data by means
of continuous distributions. By doing so, the data analysis
for ordinal data can be closely aligned with the (parametric)
data analysis for continuous data, as the theory of multi-
model comparisons and Wilks’ theorem apply equally to
both kinds of data.

Introducing new statistical methods would be of limited
practical interest if such methods would not be accessible
to the empirical researchers that need them, preferably in
a user-friendly way, i.e., without the need for extensive
programming from the side of these researchers. We will
show how ILLMO, a program that allows to perform
statistics in an interactive way, supported by ample
graphical user interfaces and visualisations, can be used to
perform all statistical analyses that are discussed in this
paper. An earlier version of this program, which included
only some of the features discussed in the current paper, has
already been introduced in earlier publications (Martens,
2012; 2014; 2017). It is worthwhile to note that all
graphs that are included in this paper to clarify the statistical
methods under discussion have actually been generated
by the ILLMO program, illustrating that the program not
only focuses on conducting statistical analyses, but also on
documenting them.

This paper is structured in the following way. In
Section “Within-subject analysis (with parametric statis-
tics)”, the focus is on how to analyse data from a within-
subject experiment, using example data taken from the
book of Andy Field. We use the dependent t test as the
starting point to argue the need for more advanced statis-
tical parametric methods that focus not only on establish-
ing effect size, but also on estimating the accuracy with
which this effect size can be determined from the data.
The ability to compare alternative models for the same
data, using multi-model comparisons, and the use of con-
fidence intervals for key statistical parameters, such as
effect sizes, are introduced and illustrated on the example
data. In Section “Across-subject analysis (with paramet-
ric statistics)”, a similar discussion is conducted using data
from an across-subject experiment, again taken from the
book of Andy Field. Next, in Section “Interactive statistics
with ILLMO”, we demonstrate how the theoretical meth-
ods for parametric statistics, introduced in the two previous
sections, have been implemented into a new interactive pro-
gram for statistical analysis, called ILLMO. Some aspects
of the interface that relate to the statistical comparison of
two experimental conditions are explained in detail, while
a reference is made to the ILLMO project website for an
explanation of additional statistical methods, such as simple
and multiple regression.

In Section “Non-parametric statistics”, we move back
to theoretical concepts, more specifically to the issue of
non-parametric statistical analyses.

Specifically, we show how the method of empirical
likelihood provides an approach to estimating effect sizes
and their confidence intervals that is very similar to
the approach taken in Sections “Within-subject analysis
(with parametric statistics)” and “Across-subject analysis
(with parametric statistics)” for parametric models. Existing
methods for performing empirical likelihood estimation of
confidence intervals for averages, moments and quantiles
(including medians), which are included in the statistical
programming language R, have been made available
through the graphical user interface of ILLMO. While
ILLMO has been offering some empirical likelihood
methods, such as the non-parametric estimation of receiver
operating characteristics, that were previously not included
in R, recent extensions to empirical likelihood estimations
in R (Chaussé, 2010) now also offer methods in R that are
not covered in ILLMO.

In Section “Analysing discrete (ordinal) data”, we
conclude the theoretical treatment by discussing how an
age-old method, introduced by Thurstone in the 1920s, has
been used in ILLMO to analyse discrete ordinal data, as
for instance collected through questionnaires on subjective
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impressions. While some classes of Thurstone modelling
can also be executed in R, the ILLMO program offers such
methods though a user-friendly graphical user interface. In
the concluding Section “Conclusions”, we discuss how the
methods discussed in this paper and their implementation in
ILLMO help to address several of the statistical challenges
raised by Kaptein and Robertson (for the computer–human
interaction community) (Kaptein & Robertson, 2012).

Within-subject analysis (with parametric
statistics)

In chapter 9 of the book “Discovering Statistics using SPS”
(Field, 2013), entitled “Comparing two Means”, Andy Field
introduces a simple data set that is reproduced in Table 1.
The participants in the experiment were asked to fill in an
anxiety questionnaire which was used to generate a single
dependent variable, i.e., the anxiety scores shown in the
table. The two central columns in the table correspond to the
two experimental conditions, which result from changing
the independent variable, either confronting the participants
with the picture of a spider or with a real tarantula. The
research question is whether or not there is an effect of
the independent variable on the dependent variable, and to
estimate the effect size.

Traditional statistics

Field describes how to perform a dependent t test on
the data, which corresponds to assuming that the data
resulted from a within-subject experiment. This test uses
the difference scores for all participants, shown in the last
column of Table 1, and determines whether or not the
average across participants of these differences in anxiety

Table 1 Anxiety scores in response to the picture of a spider or a real
spider (from Field, 2013)

Subject Picture Real Real-Picture

1 30 40 10

2 35 35 0

3 45 50 5

4 40 55 15

5 50 65 15

6 35 55 20

7 55 50 -5

8 25 35 10

9 30 30 0

10 45 50 5

11 40 60 20

12 50 39 -11

scores deviates from zero. The outcome of the dependent
t test was summarised as follows by Field: On average,
participants experienced significantly greater anxiety to
real spiders (mean = 47, se = 3.18) than to pictures of
spiders (mean = 40, se = 2.68), t (11) = 2.47, p =
0.031(< 0.05), with effect size R = 0.60. The t test hence
establishes that an observed average difference of dif =
7 or higher between both conditions is unlikely to occur,
more specifically, with probability equal to p = 0.031, in
case the population average for this difference is equal to
zero, which is the assumption made by the so-called null
hypothesis H0 that is being tested by the t test.

It is by now well established within the applied
psychology community that only reporting significance
is insufficient, as significance is not only a property
of the phenomenon being studied, but also depends on
the size of the sample being used in the experiment
(N = 12 participants in the experiment under study).
Otherwise stated, as the number of participants increases,
the average difference is likely to stay approximately the
same, but the T-statistic will increase, so that it can be
expected to supersede the threshold for significance once
the number of participants is large enough. This has led
the American Psychological Association (APA) (Cumming,
Fidler, Kalinowski, & Lai, 2012) to recommend that at
least one measure of effect size should be included when
reporting experimental findings. In the previous quote from
the book of Andy Field, the chosen measure of effect size
is the (Pearson) correlation coefficient of R = 0.60. This
correlation coefficient is not explicitly provided by SPSS
but can be derived by means of the simple formula

R2 = t2

t2 + df
, (1)

where df denotes the number of degrees of freedom in
the t test, which is df = N − 1 = 11 in case of the
reported experiment. Note that, as t2 is expected to increase
approximately linearly with df , this correlation coefficient
R does not have the dependence on the sample size N

that the T-statistic t itself has. The squared correlation R2

is the fraction of variation in the difference scores that
can be attributed to the average difference, the remaining
part being the fraction of variation around this average
difference. The correlation coefficient is a number between
0 and 1, where zero corresponds to no effect at all, and
one corresponds to a very large effect. It is, however, not
very intuitive how to interpret intermediate values, nor is it
clear if we should prefer R over R2 as a measure of effect
size? This may explain why the correlation coefficient is
not widely used as a measure of effect size when comparing
experimental conditions, which is why we will provide
some more popular (and intuitive) alternatives below.
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The interactive statistical program ILLMO that we
will introduce in more detail later on in the paper
also allows to perform a dependent t test and provides
additional information that can be used to make some more
observations on the t test, i.e.,

Gaussian model - dif = 7

Planned test (variance is estimated):

sd (standard deviation) = 6.93476

se_dif (standard error of dif)= 2.8311

Effect sizes:

Cohen’s d = |dif|/sd = 1.009408

JND = 0.713759 (medium effect)

probability of superiority P(dif>0) =

0.762312

Hedgens’ g = 0.850577 (g/d = 0.842650)

JND = 0.601449 (medium effect)

probability of superiority P(dif>0) =

0.726230

squared correlation: R2 = 0.35723

correlation: R = 0.597687

confidence CI(R) = [0.069638,0.864106]

t test (two-sided) for equal

average:

T(11) = dif/se_dif = 2.4725 (p=0.0309818)

|T| >= 2.2010 (p=0.05) : significant

confidence CI(dif) = [0.768763,13.2312]

Estimated power is 0.607013

(need 1.98 times more trials for power 0.8)

We can observe in this output that the t test is equivalent
to estimating a 95% confidence interval (CI) for the
average difference, equal to CI(dif)=[0.77,13.23] for the
current experiment. The interpretation of this CI is that the
probability that the true population value for the average
difference lies within this interval is 95%. The t test is
significant because the zero value, which corresponds to
the null hypothesis H0, is outside of this CI, so that the
probability that the actual population value for the average
difference is indeed equal to zero, as proposed by the null
hypothesis, is very low (p = 0.03 < 0.05). Note that the
t test makes clear that this population value can only be
estimated with a limited accuracy from an experiment with
few participants, hence the relatively large size of the CI.
The estimate can be improved, in the sense that the size of
the CI can be reduced, by including more participants in the
experiment.

This recognition of an inherently limited accuracy when
estimating statistical parameters from experimental data
was obviously not reflected when we reported the effect
size of R = 0.60 above. There is, however, a historical
reason for this discrepancy, i.e., the fact that there exists
an analytical expression, which is used by statistical
programs such as SPSS and ILLMO, for the CI of the
average difference, but that no such expression exists for

most effect sizes. Nevertheless, the ILLMO output also
includes a CI for the effect size R, more precisely equal
to CI(R)=[0.070,0.864] for the current experiment. This
CI(R) clarifies that the correlation coefficient R can only
be established with very limited accuracy based on an
experiment with few participants. The CI (R) is determined
using an approximation technique that can be shown to
produce a CI that is asymptotically correct,1 i.e., the
accuracy of this CI estimate will improve as the number
of participants increases. With modern computers it is
possible to perform numerical approximations in cases
where no analytical expressions are available. They provide
information that would otherwise not be available, and
which is essential when drawing inferences from effect
sizes.

Note that the ILLMO program also offers an alternative
indicator for effect size, called Cohen’s d (of d = 1.009).
It is known that Cohen’s d is upwardly biased when using
small sample sizes, which is why we also report Hedgens’
g (of g = 0.85), which is corrected for this bias (Lakens,
2013). Provided that the differences in anxiety scores can
be assumed to be normally distributed, as is the implicit
assumption made by the t test, these effect sizes can in
turn be mapped to another effect size with a more intuitive
meaning, i.e., the probability of superiority

Ps = P(dif > 0) = Pn(JND), (2)

where Pn denotes the normalised cumulative Gaussian
distribution. We have introduced the Just Noticeable
Difference (JND), which is either equal to JND = d/

√
2 ,

in case Cohen’s d is used, or equal to JND = g/
√
2, when

Hedgens’ g is preferred. This relationship is illustrated in
Table 2, together with the subjective associations that are
often used in the psychological literature to denote effect
sizes. For example, in case of the reported experiment, the
JND = 0.714 according to Cohen’s d can be characterised
as a “medium effect” with a probability of superiority
equal to Ps = 0.7623. Note however that such subjective
characterisations are area-specific, as a large-sized effect in
areas such a psychology may be considered as small in other
fields, such as engineering. Therefore, many statisticians do
not advertise their use.

The probability of superiority is a measure for effect
size that has an intuitive interpretation, i.e., that there is
an estimated probability of Ps = 0.762 for participants
to report a higher anxiety score when confronted with a
real spider instead of with the picture of a spider. This is

1The estimate for CI (R) is obtained by assuming that the variable z,
obtained by means of the Fisher mapping z = 0.5 log((1+R)/(1−R))

is (approximately) normally distributed with standard error se =
1/

√
N − 3, where N denotes the number of observations. The 95%

confidence interval CI (z) can hence be easily determined and mapped
to CI (R) by applying the inverse Fisher mapping R = tanh(z).
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Table 2 Effect size (in JND) related to the probability of superiority
in case of a Gaussian distribution

Subjective Effect Probability

Description Size (in JND) of Superiority (percentage)

tiny [0.0, 0.2[ [50.00, 57.93[

small [0.2, 0.5[ [57.93, 69.15[

medium [0.5, 0.8[ [69.15, 78.81[

large [0.8, 1.0[ [78.81, 84.13[

1 JND 1.0 84.13

1.5 JND 1.5 93.32

2 JND 1.0 97.72

2.5 JND 2.5 99.38

3 JND 3.0 99.87

higher than the chance level Ps = 0.5 that is expected
when the independent condition would not have any effect
(i.e., the null hypothesis H0). What is currently missing are
confidence intervals for the newly introduced measures for
effect size, i.e., Cohen’s d (or it’s scaled version Hedgens g)
and the probability of superiority Ps . This will be remedied
in the next section through the use of modern statistics, more
specifically by applying Wilks’ theorem, and will allow us
to add the required nuance to the above conclusion.

Note that the t test focuses on identifying instances where
there is evidence to reject the null hypothesis, i.e., to reject
cases where a change in the experimental condition does
not have an effect on the dependent variable. The t test
does so with a confidence of 1 − α, where α = 0.05 is
the most frequently adopted choice for the Type I error
(the probability of wrongfully rejecting the null hypothesis,
i.e., deciding that there is an effect when there is actually
none). The t test in ILLMO also determines estimates for
the effect size, such as Cohen’s d. In order to avoid that
we unjustly conclude that observed significance implies that
the experimental condition does have an effect of the size
estimated by the t test, which is usually referred to as the
alternative hypothesis H1, we also need to take into account
the Type II error β (the probability of unjustly rejecting
such an effect size). A minimum value of 1 − β = 0.8
for the so-called power is usually advised in psychological
literature. The t statistic derived by the t test can be used to
estimate this power.2 More practically, it can also be used
to make an educated guess for how many more participants
are expected to be needed to reach the prescribed minimum
value for the power of β = 0.8. This information is
also reported in the output from the ILLMO program and

2The power can be shown to be equal to Pn(t − tα) (in case t > 0),
where t is the observed value in the t test and tα is the threshold value
adopted in the t test. By assuming that t will grow proportionally to√

N , we can estimate the value of N required for a desired power level
of e.g. 0.8.

constitutes a very practical piece of information for the
experimenter. Indeed, as an expert in statistics, one of the
most frequently asked questions is how many participants
need to be included in an experiment. While this question
can usually not be answered in advance, a reasonably
accurate guess can be made once the experiment has
been executed by a limited number of participants and a
(preliminary) estimate can be made of the effect size.

Modern statistics

Statistical terms such as significance and statistical power
are known to be confusing for many non-statisticians
interested in empirical research. We therefore offer an
alternative interpretation of the t test that is based on
the recent theory of multi-model comparisons (Lindberg,
Schmidt, & Walker, 2015; Burnham & Anderson, 2002;
Burnham & Anderson, 2004; Burnham, Anderson, &
Huyvaert, 2011). Multi-model comparisons use the Akaike
Information Criterion (AIC) to compute the likelihood ratio
between alternative models for the same observed data.
In case of the t test and the experiment under discussion,
the first model corresponds to the null hypothesis H0 and
assumes a known value of zero for the average difference
in anxiety scores, while the second model corresponds to
the alternative hypothesis H1 and assumes that the average
difference is a parameter that is not known a priori and
hence needs to be estimated from the data. Both models
agree in that the standard error is not known a priori and
therefore also needs to be estimated from the data. This
results in the first model with zero average difference having
one parameter (P1 = 1) and the second model having two
parameters (P2 = 2).

We will denote the probability distribution that is adopted
by model i by pi(x, θi), where θi is a vector with Pi

parameters, for i = 1, 2. The AIC can be expressed as

AICi = LLCi + 2 Pi · N

N − Pi − 1
, (3)

for i = 1, 2, where the Log-Likelihood Criterion (LLC)

LLCi = −2
N∑

j=1

log(pi(xj , θi)), (4)

with {xj , j = 1, . . . , N} denoting the observed difference
values, is a measure for the lack-of-fit of the i-th model to
the data (LLC1 for model i = 1 and LLC2 for model
i = 2). The simplest model, i.e., model 1, will typically
have an LLC1 that is larger than the LLC2 for the more
complex model 2. The interesting question is whether or not
this improved fit warrants the use of a model with one extra
parameter?

The key result from the theory of multi-model compari-
son (Burnham & Anderson, 2002; Burnham et al., 2011) is
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that the likelihood ratio between two models for which the
AIC can be computed is equal to

�21 = exp

(
−AIC2 − AIC1

2

)
, (5)

where a likelihood ratio of �21 > 1 implies that the model
where the average difference is a parameter (model 2) is
more likely than the model where the average difference is
a priori assumed to be equal to zero (a value of �21 < 1
obviously leads to the opposite conclusion).3 The program
ILLMO can convert many traditional statistical tests,
including the t test, into AIC values, following a procedure
that is discussed in detail in (Burnham & Anderson, 2002),
and can subsequently perform the corresponding multi-
model comparison. The output from the ILLMO program
for our example data is the following:
Multi-model comparison:

Model 1: equal averages (P=1,LLC=33.4711)

Model 2: unequal averages (P=2,LLC=28.1675)

Model 1: AIC = 35.8711

Model 2: AIC = 33.5008

Model 2 has lowest AIC

Model likelihoods (L) and weights (W)

Model 1: L = 0.305703, W = 0.234129

Model 2: L = 1, W = 0.765871

This implies that the more complex model is �21 =
1/0.305703 = 3.27 times more likely than the simpler
model. In order to help with interpreting this likelihood
ratio, the subjective scale proposed by Jeffreys (Jeffreys,
1961; Robert, Chopin, & Rousseau, 2009), which is
summarised in Table 3, can be used. This for instance
leads to the following way of reporting the multi-model
comparison: A model that assumes that participants on
average experience a different anxiety to real spiders than
to pictures of spiders is �21 = 3.27 times more likely than
a model in which participants are assumed to experience
the same level of anxiety; such a likelihood ratio can be
characterised as “substantial” evidence in favour of the
most likely model.

Traditional hypothesis testing can be considered as a
special case of multi-model comparison. For instance, the
dependent t test fits a Gaussian model to the observed
histogram of differences in anxiety scores, as shown on the
left in Fig. 1. Such a model has two parameters, the average
and the standard deviation of the Gaussian distribution.
The optimal values for these parameters are obtained by
minimising a criterion such as the LLC that expresses
the lack-of-fit between the distribution and the observed

3Multi-model comparison and Bayes estimation share this ability to
assign likelihoods to alternative models for the same data. Despite the
fact that the methods used to establish these likelihoods using both
approaches are quite distinct, the resulting likelihood ratios are often
very similar.

Table 3 Subjective scale for classifying the likelihood ratio, proposed
by Jeffreys

AIC increase Likelihood Likelihood Strength of

Ratio Evidence

0 to 2.3 > 1.0000 > 1 barely worth
mentioning

2.3 to 4.6 < 0.3165 > 3.16 substantial

4.6 to 6.9 < 0.1000 > 10 strong

6.9 to 9.2 < 0.0317 > 31.6 very strong

> 9.2 < 0.0100 > 100 decisive

histogram. For the experiment under discussion, the optimal
estimate for the average difference of dif = 7 is the same
as in case of the t test. The optimal value for the standard
deviation σ = 6.639 is however slightly different from the
value of the standard deviation sd = 6.935 reported in
the t test, as the LLC used in the multi-model comparison
is slightly different from the optimisation criterion used
in the t test. This translates into values for Cohen’s d =
1.054, JND = 0.745 and the probability of superiority
of Ps=0.772 that also deviate slightly from those reported
earlier.

A hypothesis corresponds to an assumption about one
of the distribution parameters; for example, in case of
the dependent t test the assumption in the null hypothesis
under test is that the average of the Gaussian distribution is
equal to zero. The ILLMO program can focus on one such
distribution parameter and can calculate the so-called log-
likelihood profile (LLP), which is a function that expresses
how the lack-of-fit criterion (in our case, the LLC) increases
for values of the parameter that are different from the
optimal value (Uusipaikka, 2009). On the right in Fig. 1, we
show the LLP for values of the average difference in anxiety
scores that are close to the optimal value of dif = 7.

There is an important result in statistics, called Wilks’
theorem (Wilks, 1938), that establishes a relationship
between such an LLP and a classic hypothesis test.
More precisely, this theorem states that an (asymptotically
correct) estimate for the confidence interval for the
parameter in the LLP can be obtained by intersecting the
LLP at a level that is determined by the required level of
confidence (Meeker & Escobar, 1995). More specifically,
intersecting at the chi-squared value with one degree of
freedom, i.e., χ2

1 (1 − α = 0.95) = 3.84, is most frequently
used to construct the 95% confidence interval. This results
in a 95% confidence interval equal to CI(dif)=[1.24,12.77]
for the average difference in anxiety scores, which is slightly
smaller than the estimate of CI(dif)=[0.77,13.23] found
earlier using the t test (which serves as a reference as it
is based on an exact analytical expression). An alternative
proposal, which is assumed to be more accurate in case the
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Fig. 1 The stepwise curve in the left figure shows the observed cumulative histogram for the differences in anxiety scores, while the continuous
curve is the best fitting Gaussian distribution that is used to model it. The figure on the right shows the log-likelihood profile (LLP) for the average
difference, intersected at two levels (corresponding to a χ2

1 and an F1,11 criterion) to establish two distinct but similar estimates for the confidence
interval (CI) of the average difference (spider data: parametric within-subject analysis)

number of observations N is small, is to intersect the LLP
at the value of the F-distribution with (1, N − 1) degrees
of freedom, i.e., F1,11(1 − α = 0.95) = 4.84, which
results in confidence interval equal to CI(dif)=[0.38,13.62]
for the average difference in anxiety scores, which is slightly
larger than the CI found using the t test. The two levels
will converge if the number of participants N increases, as
F1,N−1(1 − α) → χ2

1 (1 − α) if N → ∞.
There is obviously little need to use an approximate

method if we can assume that a Gaussian distribution is a
good model for the observed histogram and we are pursuing
a CI for the mean value, as an exact (analytical) expression
is known for this case. However, if a different distribution is
more appropriate to model the observed histogram or if the
CI for another parameter than the mean is required, using
the above approximation may be the only option available.
More specifically, we will rely on such approximate
methods in case we need the CI for measures of effect size,
such as Cohen’s d or the probability of superiority Ps . In
Fig. 2, we show the LLP for the probability of superiority,
resulting in a CI(Ps)=[0.544,0.917] in case the intersection
is performed at a level of 3.84, and CI(Ps)=[0.513,0.929] in
case the intersection is performed at a level of 4.84. These
estimates allow us to complete the report on the statistical
analysis that we proposed earlier, i.e., that there is an
estimated probability of Ps=0.772, with a 95% confidence
interval equal to CI(Ps)=[0.544,0.917], according to a χ2

1
criterion, or CI(Ps)=[0.513,0.929], according to an F1,11

criterion, for participants to report a higher anxiety score
when confronted with a real spider instead of with the
picture of a spider. Note that significance corresponds to
the fact that the chance level (Ps = 0.5) is outside of these

estimated CIs. According to Table 2 the effect size is hence
in between tiny and 1.5 JND, which is quite a large range
because the number of observations is rather limited.

One remaining issue that hasn’t been addressed yet is
whether or not the assumption of a Gaussian distribution,
which is implicit in both the dependent t test and the
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Fig. 2 The log-likelihood profile (LLP) for the probability of
superiority, intersected at two levels (corresponding to a χ2

1 criterion
and an F1,11 criterion) to establish two distinct but similar estimates for
the confidence interval (CI) of this probability (spider data: parametric
within-subject analysis)
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construction of the LLP, is indeed valid. There are tests for
normality (such as the K-squared test of d’Agostino which
is used within the ILLMO program, or the Kolmogorov–
Smirnov and Shapiro–Wilk tests offered by SPSS (Field,
2013)) that can test whether or not an observed histogram
deviates significantly from a Gaussian distribution. They
however offer little or no advice on how to proceed
in case the test fails, except maybe to adopt a non-
parametric procedure, as described in a later section. In
cases where there is a lack-of-fit between an observed
histogram and the optimal Gaussian distribution, or in
cases where we a priori expect that other distributions
may be better suited, multi-model comparison can come
to the rescue, as it can be used to establish the likelihood
for each of the alternative (parametric) distributions being
considered. For instance, for our example data, a Gaussian
distribution is estimated to be � = 3.93 times as likely
as a Laplacian distribution, which constitutes substantial
evidence in favour of the Gaussian distribution over the
Laplacian distribution. However, a Student-T distribution
(with 4 degrees of freedom) is estimated to be � =
15.19 times as likely as a Gaussian distribution, which
constitutes strong evidence in favour of the Student’s t
distribution over the Gaussian distribution. This could for
instance lead to the following alternative summary of the
analysis: the histogram of observed differences in anxiety
scores can be modelled by Student’s t distribution with
4 degrees of freedom; this model predicts a probability
of Ps=0.790 , with a 95% confidence interval equal to
CI(Ps)=[0.549,0.914], according to a χ2

1 criterion, or
CI(Ps)=[0.515,0.923], according to an F1,11 criterion,
for participants to report a higher anxiety score when
confronted with a real spider instead of with the picture of a
spider.

Note that, despite the fact that there is strong evidence
that the Student’s t distribution is a better model than the
Gaussian distribution, the LLP and hence also the CIs
derived from it, turn out to be fairly robust against such
changes in the model. This is probably due to the fact
that both proposed distributions provide reasonably good
approximations to the observed histogram. This observation
reassures us that reasonable goodness-of-fit seems to be
enough to obtain reliable estimates for CIs.

Across-subject analysis (with parametric
statistics)

Traditional statistics

Andy Field also used the data in Table 1 to illustrate the
independent t test, which corresponds to assuming that
the data resulted from an across-subject experiment. This

assumes that the anxiety scores in the same row in Table
1 were not generated by the same participant experiencing
both conditions, but by separate participants in distinct
conditions, which in turn implies that the analysis can no
longer focus on the average of the differences in anxiety
scores, but instead needs to compare the averages of the
anxiety scores themselves. The result of the independent t
test analysis was reported as follows by Field: On average,
participants experienced greater anxiety to real spiders
(mean=47, se=3.18) than to pictures of spiders (mean=40,
se=2.68); this difference was not significant t (22) = 1.68,
p > 0.05, however, it did represent a medium-sized effect of
R = 0.34.

The statistical program ILLMO can also perform the
independent t test and provides additional information that
can be used to make some more observations on the t test,
i.e.,

Gaussian model : dif = 7

Planned test (assume equal variance):

sd (pooled standard deviation) = 10.198

se_dif (standard error of dif) = 4.16333

Effect sizes:

Cohen’s d = |dif|/se = 0.686406

JND = 0.485363 (small effect)

probability of superiority P(dif>0) =

0.686290

Hedgens’ g = 0.634523 (g/d = 0.924412)

JND = 0.448675 (small effect)

probability of superiority P(dif>0) =

0.673167

squared correlation: R2 = 0.113865

correlation: R = 0.337439

confidence CI(R) = [-0.076347,0.652072]

F-test for equal variance:

sd(stimulus 2) [12 trials] = 11.0289

sd(stimulus 1) [12 trials] = 9.2932

F(11,11) = (sd_2/sd_1)**2 = 1.4084

(p=0.289837)

F < 2.8178 (p=0.05) : equal variance

t test (two-sided) for equal

average:

T(22) = dif/se_dif = 1.6813 (p=0.106839)

|T| < 2.0739 (p=0.05) : not significant

confidence CI(dif) = [-1.63432,15.6343]

Estimated power is 0.347326

(need 3.98 times more trials for beta=0.8)

We can observe in this output that the t test is equivalent
to estimating a 95% confidence interval for the difference
in averages, equal to CI(dif)=[-1.63,15.63] for the current
experiment. The t test is not significant because the zero
value, which corresponds to the null hypothesisH0, is inside
of this CI. The output also reports on the result of the
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F-test for equal variance which supports the choice for
an independent t test that assumes equal variance in both
conditions.

The estimated CI for the effect size of R = 0.34 is
CI(R)=[-0.076,0.652], which means that we can not exclude
with 95% confidence that there is no effect at all (which
corresponds to zero correlation). Alternative indicators for
the effect size are Cohen’s d = 0.686, with JND = 0.485
and probability of superiority Ps=0.686, and Hedgens’ g =
0.635, with JND = 0.449 and probability of superiority
Ps=0.671. According to Table 2, this effect is close to the
boundary between a small and a medium effect. Note that
the reported probability of superiority is lower than in case
of the dependent t test, which agrees with our intuition
that personal differences in how anxiety is scored affect
the reliability of the anxiety scores in an across-subject
experiment, while a within-subject experiment can account
for some of these personal differences by only relying on
differences in anxiety scores. This reduced effect size is also
reflected in how many more participants are expected to
be required to be able to conclude, with a minimal power
of β = 0.8, that there indeed exists an effect of the size
that has been estimated. This factor of 3.98 for the across-
subject experiment is about two times as large as the factor
of 1.98 found earlier for the within-subject experiment.
This means that the latter experiment is more powerful, as
fewer measurements are needed to reach the same level of
accuracy (i.e., type II errors).

The above results allow us to conclude (using Cohen’s
d) that there is an estimated probability of Ps = 0.686
for participants to report a higher anxiety score when
confronted with a real spider instead of with the picture
of a spider. Of course, as we do not know the CI for this
probability of superiority, it is unclear (at this time) what we
can actually conclude from this statement. The next section
will address this issue.

Modern statistics

Similarly as in the case of the within-subject analysis, we
can perform a multi-model comparison in case of an across-
subject analysis. The main difference is that both conditions
are now modelled by a separate distribution (pi(x, θi) for
condition i = 1, 2) and that there is a separate log-
likelihood criterion (LLC) to express the lack-of-fit in each
of the two conditions, i.e.,

LLCi = −2
Ni∑

j=1

log(pi(xij , θi)), (6)

where {xij , for j = 1, . . . , Ni} are the observed values in
condition i, for i = 1, 2. The total number of observations
is N = N1 + N2. The LLC for the complete experiment

including both conditions is obtained by adding the LLC
values for each of these conditions. This total LLC =
LLC1 + LLC2 can be combined with the total number of
parameters P (across all conditions) to define the AIC in
exactly the same way as before.

We assume a first model, corresponding to the null
hypothesis H0, where the averages of the distributions in
both conditions are the same, which leads to one parameter
for this shared average. We assume a second model ,
corresponding to the alternative hypothesis H1, where the
averages of the distributions in both conditions are distinct,
resulting in two parameters, one for each of the average
values. Both models assume the same standard deviation for
both conditions, which adds one parameter to both models.
The output from the ILLMO program for the multi-model
comparison is:

Multi-model comparison:

Model 1: equal averages (P=2,LLC=61.1119)

Model 2: unequal averages (P=3,LLC=58.2106)

Model 1: AIC = 65.6833

Model 2: AIC = 65.4106

Model 2 has lowest AIC

Model likelihoods (L) and weights (W)

Model 1: L = 0.872538, W = 0.465965

Model 2: L = 1, W = 0.534035

This result implies that the more complex model is �21 =
1/0.872538 = 1.15 times more likely than the simpler
mode, which can be reported as follows: a model that
assumes that participants experience different anxiety on
average to real spiders than to pictures of spiders is �21 =
1.15 times more likely than a model in which participants
on average experience the same level of anxiety; such a
likelihood ratio can be characterised as “barely worth
mentioning”, so that both models can be considered to be
approximately equivalent.

We can adopt the model with three parameters, two
averages and one (shared) standard deviation, to create two
distributions that closely fit to the observed histograms
in both conditions, as shown in the left graph of Fig. 3.
Optimising the lack-of-fit criterion LLC results in the
expected estimates for the averages in both conditions (40
and 47 in the conditions where a picture or a real spider
is used, respectively), and an estimate for the standard
deviation σ = 9.764 that deviates slightly from the value
of the standard deviation sd = 10.198 reported in the
independent t test. This translates into values for Cohen’s
d = 0.717, JND = 0.507 and a probability of superiority
of Ps=0.694 that also deviate slightly from those reported
by the t test.

This model with three parameters can be used to calculate
the LLP for the difference between the two averages, and
to derive a CI from this LLP based on Wilks’ theorem,
as shown in the right graph of Fig. 3. More specifically,
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Fig. 3 The stepwise curves in the left figure show the observed his-
tograms for the anxiety scores, while the continuous curves are the
best fitting Gaussian distributions (with equal variance) that are used
to model them. The figure on the right shows the log-likelihood
profile (LLP) for the difference in average scores, intersected at two

levels (corresponding to a χ2
1 criterion and an F1,23 criterion) to estab-

lish two distinct but similar estimates for the confidence interval (CI)
of the difference in averages (spider data: parametric across-subject
analysis)

intersecting the LLP for the difference between the two
averages at the chi-squared value with one degree of
freedom, i.e., χ2

1 (1 − α = 0.95) = 3.84, results in a
95% confidence interval equal to CI(dif)=[-1.13,15.13] for
the difference in average anxiety scores, which is slightly
smaller than the CI(dif)=[-1.63,15.63] found earlier using
the independent t test (which serves as a reference as it is
based on an exact analytical expression). An alternative is
to intersect the LLP at the value of the F-distribution with
(1, N − 1) degrees of freedom, i.e., F1,23(1 − α = 0.95) =
4.28, which results in an estimate for the confidence interval
CI(dif)=[-1.62,15.62] of the difference in average anxiety
scores that is almost identical to the CI found using the t test.

An important advantage of Wilks’ theorem is that it also
allows for estimating CIs for measures of effect size, such as
Cohen’s d or the probability of superiority Ps . In Fig. 4, we
show the LLP for the probability of superiority, resulting in
a CI(Ps)=[0.470,0.861] in case the intersection is performed
at a level of 3.84, and CI(Ps)=[0.457,0.868] in case the
intersection is performed at a level of 4.28. These estimates
can be used to complete the report on the statistical analysis
that we proposed earlier, i.e., that there is an estimated
probability of Ps=0.694, with a 95% confidence interval
equal to CI(Ps)=[0.470,0.861], according to a χ2

1 criterion,
or CI(Ps)=[0.457,0.868], according to an F1,23 criterion,
for participants to report a higher anxiety score when
confronted with a real spider instead of with the picture of
a spider; a probability at chance level Ps = 0.5 can hence
not be excluded with 95% confidence. According to Table
2, the effect size is hence in between non-existing and 1
JND, which is quite a large range because the number of
observations is rather limited.

Receiver operating characteristic (ROC)

An alternative way to characterise the difference between
two experimental conditions, borrowed from communi-
cation theory, is by means of the Receiver Operating
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Fig. 4 This figure shows the log-likelihood profile (LLP) for the
probability of superiority, intersected at two levels (corresponding to a
χ2
1 criterion and an F1,23 criterion) to establish two distinct but similar

estimates for the confidence interval (CI) of this probability (spider
data: parametric across-subject analysis)
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Characteristic (ROC). In empirical research we create two
conditions and estimate the distribution of the dependent
variable in both of them. Communication theory addresses
the reverse problem, given an observed value of the depen-
dent value, can we derive which condition it was generated
in. This is accomplished by selecting a threshold value and
choosing one condition if the observed value is lower than
this threshold, and the other condition if the observed value
is higher than this threshold. It results in two types of errors
(called types I and II in statistics), i.e., choosing condition 2
when the value was generated in condition 1, and choosing
condition 1 when the value was generated in condition 2.
Once the cost of each type of error is known, the threshold
value can be chosen to minimise the overall cost.

However, as such costs are often not provided, an
alternative is to create the ROC, where each point on the
curve shows the values for the two types of errors and
corresponds to a different threshold value for deciding
between both conditions. In case the two experimental
conditions are modelled by parametric distributions, such a
curve can be easily generated. The result for our (across-
subject) experiment, assuming Gaussian distributions with
equal variance in both conditions, is shown in Fig. 5.

The link to our earlier discussion is that it has been
proven that the probability of superiority is equal to Ps =
1 − AUC, where AUC is the area under the ROC curve.
While generating the ROC corresponding to two estimated
distributions in distinct conditions is fairly trivial, modern
statistics also allows to derive an (asymptotically) correct
confidence area for this ROC. In the right graph of Fig. 5, we
show the two ROC curves that bound the 95% confidence
area. The areas under these two extreme ROC curves

correspond to the lower and upper bounds for the 95% CI
for the probability of superiority.

Interactive statistics with ILLMO

In this section, we introduce the interface of the interactive
statistical program ILLMO (Martens, 2012; 2014; 2017),
and we show how the different analyses discussed in the
previous section can be activated from within this interface.
We only present a brief introduction with an explanation of
the major features that are relevant for the current paper,
and we refer to earlier publications (Martens, 2012; 2014)
and the website for the ILLMO project (http://illmoproject.
wordpress.com) for more extensive information, including
detailed descriptions and instruction videos on a diverse
range of statistical analyses that can be performed with the
program.

In Fig. 6, we show the interface after the “spider” data
has been loaded. The interface provides access to both the
within-subject analysis, under “pairwise comparisons”, and
the across-subject analysis, under “scaled attributes”, but
only the latter part is visible in the figure. The number
of conditions has been set to two in the upper left corner.
The observed histogram and Gaussian model distribution
for the reference condition (1) are shown in black and
blue, respectively, while the histogram and distribution
for the selected condition (2) are shown in red and
green, respectively. The minimised value for the lack-of-fit
criterion LLC is displayed in the orange box. The upper
diagram illustrates the main process that occurs within the
ILLMO program: the observed histograms that constitute

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
yp

e 
II 

er
ro

r:
 P

(<
th

r|
2)

Type I error: P(>thr|1)

Receiver Operating Characteristic (ROC)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
yp

e 
II 

er
ro

r:
 P

(<
th

r|
2)

Type I error: P(>thr|1)

Receiver Operating Characteristic (ROC)

Fig. 5 The receiver operating characteristic (ROC) in the left figure shows the relationship between the probabilities of both types of errors when
an observed value is used to decide the condition that it was generated in. Each dot on the curve corresponds to a different value for the decision
threshold. The figure on the right shows two additional curves that are the upper and lower boundaries for the 95% confidence area for this ROC
(spider data: parametric across-subject analysis)
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Fig. 6 The interface of the ILLMO program after entering the data from the “spider” experiment

the inputs being provided are represented by the red arrow
at the bottom of the diagram, and are approximated by
(parametric) distributions that are represented by the green
arrow at the top of the diagram. The lack-of-fit criterion
LLC is minimised to establish the optimal values for the
distribution parameters. The two plot windows in the lower
part of the figure offer a large number of options (over 50 in
total) to visualise different aspects of the statistical analysis,
while the window in between is used for textual output.
The small textual window below it allows the user to insert
textual comments on the reported results of the analyses.
The textual output can be cleared or saved to a file at any
time.

There are two buttons, labelled “prob” and “stats” that
provide access to the analyses that we have discussed
in the previous section. More specifically, the “stats”
button opens a dialog box that provides, amongst others,
access to traditional statistical methods. In Fig. 7 we
have selected the option “all pairs: TEST & MMC
(equal variance, Gaussian)” and have pressed the button
“traditional statistics/analyses:” to execute two analyses
in succession: the independent t test (TEST) and the

corresponding multi-model comparison (MMC). The results
are reported textually in the window in the upper-right
corner, and graphically in the window in the upper-left
corner, and correspond to the discussion on the across-
subject analysis in the previous section.

The “prob” button opens a dialog window with two
pages, as shown in Fig. 8. The first page is shown on
the left and allows, amongst others, to choose the family
of parametric distributions that is to be used to model
the observed histograms. There are approximately ten
different two-sided distributions to choose from, including
the logistic and Student’s t distribution, and 20 different
one-sided distributions, including the Chi-squared, log-
normal and Poisson distribution. The default choice is the
Gaussian (or normal) distribution, as this is the choice
adopted by many traditional statistical methods (such as t
tests, ANOVA, linear regression, etc.). Another option that
can be specified on this page is whether of not the scale
factor, which is equal to the standard deviation in case of
Gaussian distributions, should be the same for all conditions
or vary across conditions. The second page, shown on the
right in Fig. 8, is used to trigger the calculation of a LLP, and
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Fig. 7 The “stats” dialog window of the ILLMO program that, amongst others, provides access to a wide range of traditional statistical methods.
In the example being shown, an across-subject t test, followed by a multi-model comparison, has just been executed and the result is reported in
both textual and graphical form

Fig. 8 The “prob” dialog window of the ILLMO program contains two
pages. The first page, on the left, is used to specify the class of para-
metric distributions that is used to model the observed histograms. The

second page, on the right, is used to trigger the creation of the LLP and
the derivation of the CI for a selected model parameter
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the subsequent derivation of the CI using Wilks’ theorem,
for a selected model parameter. In the figure, the selection is
set to “superiority: probability P [x(n2) > x(n1)]”, which
corresponds to the probability of superiority discussed in
the previous section, and the analysis is started by pressing
the button “LLP/CI for” in front of it. The ROC of Fig. 5
that is created in case this selection is made appears in
a separate window once the calculation of the CI has
finished. Other model parameters such as the average for a
single condition, the difference between the averages in two
distinct conditions, the shared scale factor, the effect size
(such as Cohen’s d) between two distinct conditions, etc.
can be selected as alternatives.

A dialog box that allows to set the required level of
confidence, which is equal to 95% by default, will appear
upon pressing the button labelled “%” in the main interface
of Fig. 6. For instance, when constructing a 95% CI for a
one-sided test instead of a two-sided test, this confidence
level should be lowered to 90%. The “Options” menu allows
to switch between the default option of using the χ2

1 (1− α)

level to intersect the LLP when deriving a CI and the
alternative option of using the F1,N−1(1−α) level, which is
likely to produce a better approximation when the number
of observations N is small.

Non-parametric statistics

As indicated before, in cases where the observed histograms
cannot be approximated by Gaussian distributions, methods
such as t tests are not advised. Typical examples are
for instance: 1) when histograms are not uni-modal, for
instance indicating the presence of two or more subgroups
of subjects with distinct behaviours, or 2) when histograms
are heavily skewed to one side, for instance when the
dependent variable is strictly positive and there are large
differences between subjects (e.g., in performance time)
(Huff, 1954). The traditional advice in such cases is to use
non-parametric tests. These tests come in the same two
flavours as the parametric tests. When analysing within-
subject data, the advice is to use the Wilcoxon signed-rank
test. When analysing across-subject data, the advice is to use
the Wilcoxon rank-sum test (or the closely related Mann–
Whitney test). As before, we will start from the reports
typically generated by these methods before proposing
alternatives.

In chapter 15 of the book “Discovering Statistics
using SPS”, entitled “Non-parametric Tests”, Andy Field
introduces a simple data set that is reproduced in Table 4.
The participants in the experiment either took ecstasy or
alcohol on Saturday evening, and were asked to fill in
the Beck Depression Inventory (BDI) questionnaire two
times in the days to follow: once on Sunday and once on

Table 4 BDI scores on two different days (Sunday and Wednesday) in
response to different drug use (ecstasy or alcohol) on Saturday evening
(from Field, 2013)

Participant Drug Sunday Wednesday Difference

1 Ecstasy 15 28 13

2 Ecstasy 35 35 0

3 Ecstasy 16 35 19

4 Ecstasy 18 24 6

5 Ecstasy 19 39 20

6 Ecstasy 17 32 15

7 Ecstasy 27 27 0

8 Ecstasy 16 29 13

9 Ecstasy 13 36 23

10 Ecstasy 20 35 15

11 Alcohol 16 5 -11

12 Alcohol 15 6 -9

13 Alcohol 20 30 10

14 Alcohol 15 8 -7

15 Alcohol 16 9 -7

16 Alcohol 13 7 -6

17 Alcohol 14 6 -8

18 Alcohol 19 17 -2

19 Alcohol 18 3 -15

20 Alcohol 18 10 -8

Wednesday. The responses from one questionnaire were
used to generate a single dependent variable, i.e., the BDI
scores shown in the table.

Within-subject analysis

For a within-subject analysis, we use the differences in the
BDI scores for the same subject on two different days,
shown in the last column of Table 4, so that the day of
the week is considered to be the independent variable. We
will use the data from the N = 10 subjects who took
alcohol, as the deviation from a normal distribution of these
difference scores was substantially larger for the subjects
who had taken alcohol (low probability p = 0.0046 of being
normally distributed, according to the K-squared test for
normality) than for the subjects who had taken ecstasy (high
probability p = 0.629 of being normally distributed). The
following way of reporting the outcome of the Wilcoxon
signed-rank test was proposed by Field: For alcohol users,
the depression levels were significantly lower on Wednesday
(median=7.50) than on Sunday (median=16), with test
statistic T = 8 and z-score z = −1.99, p < 0.05,
corresponding to an effect size of R = −0.44 .

The Wilcoxon test is based on the assumption that the
test statistic T , which is derived from the rank orders
of the observed differences, is (approximately) normally
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distributed with a known average and standard error, so that
the Z-test can be applied on these rank-ordered scores. This
is an untested assumption that we would like to avoid, if
possible. The major issue with the Wilcoxon test is however
the same as with the dependent t test, i.e., that an effect size
(of R = −0.44) is reported without any indication of the
accuracy with which this effect size is determined.

It turns out that there is a recent statistical theory called
empirical likelihood (EL) (Owen, 2001) that provides an
elegant solution for how to handle data that cannot be
readily approximated by a known parametric distribution.
The approach taken in EL is to optimise over all possible
distributions on the observed (difference) scores xi , while
imposing some boundary conditions. This is accomplished
by assigning a separate model parameter to each observed
difference. This parameter pi is the model probability that
the value xi occurs. Not all possible combinations of model
probabilities are however allowed. The first condition is
obvious, i.e., that the probabilities have to be positive and
sum to one, i.e.,

∑N
i=1 pi = 1 (otherwise, they could simply

not be interpreted as probabilities).
Suppose that we now want to determine what the

likelihood is that the average (difference) is equal to μ, then
we add an extra condition that guarantees this, i.e.,

N∑

i=1

pi ·xi = μ, or
N∑

i=1

pi ·w(xi, μ) = 0, with w(xi, μ) = xi −μ. (7)

The theory of EL has established that the optimal model
probabilities in case the average (difference) is enforced to
be equal to μ are equal to

pi(μ) = 1

N · (1 + λm(μ) · w(xi, μ))
, (8)

for i = 1 . . . , N , where λm(μ) denotes the value that
minimises the empirical likelihood criterion (ELC), i.e.,

ELP(μ) = min
λ

ELC(λ) = min
λ

2
N∑

i=1

log(1+λ·w(xi, μ)).

(9)

Note that the optimisation only needs to be performed over
the single parameter λ, which is obviously a lot easier than
optimising over all individual probabilities pi , for i =
1, . . . , N . It is worthwhile to remark that, by definition,
ELP(μ) = 0, and λm(μ) = 0, in case μ is equal to
the observed average (difference) (of μ = −6.3 in the
experiment). For values μ unequal to the observed average
(difference), ELP(μ) ≥ 0.

Don’t worry if the above (mathematical) explanation of
EL is not completely clear, the important thing to remember
is the following. While the construction of the ELP may

seem complicated, partly because it involves numerical
optimisation (to find the optimal value for λ), the outcome
is a measure ELP(μ) that expresses the lack-of-fit between
the observed histogram of differences in BDI scores and the
best fitting distribution on the observed (difference) values
that satisfies the condition that the average (difference)
is equal to μ. This is similar to the LLP in parametric
statistics that expresses the increase in lack-of-fit between
the observed histogram and the best fitting distribution
from a parametric class of distributions (such as Gaussian
distributions) where one of the distribution parameters (such
as the average) is fixed to a non-optimal value. Note
that we also didn’t explain in much (mathematical) detail
how and why the LLC and LLP work; understanding the
interpretation is sufficient for most applications.

The ELP can be used in a similar way as the LLP to
create confidence intervals. The construction of an ELP can
be triggered in ILLMO using the button labelled “empirical
likelihood (EL) statistics:” in the “stats” window, as shown
in Fig. 7. The resulting ELP has been shown to also
satisfy Wilks’ theorem (Owen, 2001), which means that
an (asymptotically correct) approximation to the CI for the
average can be found by intersecting the ELP at a level
that is dictated by the required level of confidence. As in
the case of parametric statistics, we will report two CIs for
our example experiment, i.e. CI (dif ) = [−9.57,−1.22]
is obtained when intersecting the ELP at the level χ2

1 (1 −
α = 0.95) = 3.84, while CI(dif)=[-10.03,-0.30] when
intersecting the ELP at the level F1,9(1−α = 0.95) = 5.12.
As zero is outside the estimated CIs we can conclude that:
for alcohol users, the depression levels were on average
dif = −6.3 lower on the BDI scale on Wednesday than
on Sunday, which is, according to an empirical likelihood
analysis, (marginally) significant at 95% confidence as
both the CI according to the χ2

1 criterion CI (dif ) =
[−9.57,−1.22] and the CI according to the F1,9 criterion
CI(dif)=[-10.03,-0.30] exclude zero.

It is well known that the average is not a robust statistic,
in the sense that its value can be heavily influenced by
outliers, which is why such outlier values are often removed
before applying parametric statistics, especially if such
statistics are based on the use of Gaussian distributions. A
more robust statistic in this sense is the median (difference)
value, which is equal to m = −7.5 in our example case. One
advantage of theWilcoxon signed-rank test is that it is based
on the rank-order of the observed values, and hence has this
robustness built into it. The EL method can however also be
applied to median values rather than to average values by
making only a small modification to the above derivation,
i.e., by adopting an alternative expression for the weight
function

w(xi, m) = K(m − xi) − 0.5, (10)
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for i = 1, . . . , N , where m is the median value that
the model distribution should satisfy, 0.5 is the probability
that corresponds to a median value, and K(x) is a so-
called (integrated) kernel function that is centred on zero
and that changes continuously from 0 to 1. The effect
of introducing this kernel function (Chen & Hall, 1993)
is that we approximate the observed histogram, which is
a stepwise-function, by a continuous function, as shown
in the left graph in Fig. 9. Such a continuous function
guarantees that we the median is a uniquely defined value.
This method of visualising histograms is well-known as it
is also used to create so-called kernel density functions, i.e.,
a kernel function is used to smooth an observed histogram
that is only defined for discrete values so that it resembles
a continuous function. In case of Fig. 9, we have used a
uniform kernel of width equal to 4 (units of BDI), so that the
stepwise transitions in the observed histogram are replaced
by linear transitions (of width 4).

The ELP for the median is shown in the right graph
of Fig. 9. More specifically, intersecting the ELP for the
median difference at the Chi-squared value with one degree
of freedom, i.e., χ2

1 (0.95) = 3.84, results in a 95%
confidence interval of CI(dif)=[-9.64,-4.05] for the median
difference in BDI scores, while intersecting the LLP at
the value of the F-distribution with (1, N − 1) degrees of
freedom, i.e., F1,9(0.95) = 5.12, results in a confidence
interval of CI(dif)=[-10.22,-3.10]. Both confidence intervals
do not include zero, so that the earlier conclusion, based
on using the average (difference), that there is a significant
decrease in BDI scores from Sunday to Wednesday is not
affected by this switch to median (difference). Note that the
effect on the median is more pronounced than the effect on

the average, as the zero value is further removed from the
(upper) boundary of the CI.

While the exact choice of the kernel function K(x)

being used might seem to be very important, practice
shows that the estimated CIs are very robust to moderate
changes in this kernel function. The interface of the ILLMO
program allows the user to experiment with kernel functions
of different shapes and widths and to visually inspect
the relationship between the observed histogram and the
interpolated distribution, as well as the impact on the
estimated CI.

A major advantage of the theory of EL is that it can
be extended to other model parameters then the average
and median, such as the probability of superiority (i.e., the
model probability that a value larger than zero is observed),
i.e., by simply changing the weight function to

w(xi, Ps) = K(−xi) − (1 − Ps), (11)

for i = 1, . . . , N , where Ps is the probability of superiority
that the model distribution should satisfy. Similarly as in the
case of the median, a smoothing kernel K(x) is required.
The probability of superiority is Ps = 0.1 and agrees with
the probability of 1 − Ps = 0.9 for the smoothed histogram
in Fig. 9 when the difference in BDI score is equal to zero. In
Fig. 10, we show the ELP for the probability of superiority,
resulting in a CI(Ps)=[0.006,0.372] in case the intersection
is performed at a level of 3.84, and CI(Ps)=[0.003,0.423] in
case the intersection is performed at a level of 5.12. These
estimates can be used to formulate the following report
on the statistical analysis, i.e., that there is an estimated
probability of Ps=0.1, with a 95% confidence interval equal
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Fig. 9 The stepwise curve in the left figure shows the observed his-
togram for the differences in BDI scores, while the continuous curve
is obtained after smoothing with a uniform kernel function of width
equal to 4 (units of BDI). The figure on the right shows the empirical-
likelihood profile (ELP) for the median difference, intersected at two

levels (corresponding to a χ2
1 criterion and an F1,9 criterion) to estab-

lish two distinct but similar estimates for the confidence interval (CI)
of the median difference (alcohol data on Sunday and Wednesday:
non-parametric within-subject analysis)
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Fig. 10 This figure shows the empirical-likelihood profile (ELP) for
the probability of superiority, intersected at two levels (corresponding
to a χ2

1 criterion and an F1,9 criterion) to establish two distinct but
similar estimates for the confidence interval (CI) of this probability
(alcohol data on Sunday and Wednesday: non-parametric within-
subject analysis)

to CI(Ps)=[0.006,0.372], according to a χ2
1 criterion, or

CI(Ps)=[0.003,0.423], according to an F1,9 criterion, for
participants to report a higher BDI score on Wednesday
than on Sunday, according to an analysis using empirical
likelihood with a uniform smoothing kernel of width 4 (units
of BDI). Note that significance corresponds to the fact that
the chance level (Ps = 0.5) is outside of these estimated
CIs. According to Table 2 the effect size is hence in between
small and 2.5 JND, which is quite a large range because the
number of observations is rather limited.

Across-subject analysis

For an across-subject analysis, we will use the responses on
one of the two days that BDI scores were collected, so that
the drug taken is considered to be the independent variable.
We will, somewhat arbitrarily, use the data from the N =
20 subjects on Sunday (on Sunday, the BDI scores for
ecstasy had a low probability p = 0.015 of being normally
distributed, according to the K-squared test for normality,
while there was no such evidence for the BDI scores for
alcohol, who had a high probability p = 0.706 of being
normally distributed; on Wednesday, the BDI scores for
alcohol had a low probability p = 0.0014 of being normally

distributed, while there was no such evidence for the BDI
scores for ecstasy with a high probability p = 0.672 of
being normally distributed). The following way of reporting
the outcome of theWilcoxon rank-sum test was proposed by
Field: Depression levels in ecstasy users (median=17.5) did
not significantly differ from alcohol users (median=16) the
day after the drugs were taken, with test statistic Ws = 90.5
and z-score z = −1.11, p > 0.05, and an effect size of
R = −0.25.

Similarly as in the case of non-parametric within-subject
analysis, we can use the ELP to estimate the CI for the
difference in the median values. In order to do so, we again
need to use a smoothing kernel. In the left graph of Fig. 11
we show both the original histograms as stepwise curves
and the smoothed histograms as piecewise linear curves.
The ELP for the difference in medians is shown in the
right graph of Fig. 11. More specifically, intersecting the
ELP for the difference in medians at the chi-squared value
with one degree of freedom, i.e., χ2

1 (0.95) = 3.84, results
in a 95% confidence interval equal to CI(dif)=[-1.34,5.88]
for the difference in median BDI scores, while intersecting
the LLP at the value of the F-distribution with (1, N − 1)
degrees of freedom, i.e., F1,19(0.95) = 4.38, results in
a confidence interval equal to CI(dif)=[-1.53,9.28]. Both
confidence intervals include zero, which is in agreement
with the conclusion from the Wilcoxon rank-sum test of
a non-significant difference in the medians between both
conditions.

As explained before, we are more interested in estimating
effect size than in establishing significance. We follow a
method proposed in (Claeskens, Jing, Peng, & Zhou, 2003),
which consists of first constructing the 95% confidence
area for the ROC, the result of which is shown in Fig. 12.
It is worthwhile to note that we are not aware of any
other readily available program that currently implements
this method. The area AUC under the ROC can be used
to estimate the probability of superiority Ps = 1 −
AUC = 0.634, as well as CI(Ps)=[0.375,0.846], in case
the intersection is performed at a level of χ2

1 = 3.84 (green
curves), and CI(Ps)=[0.357,0.857] in case the intersection
is performed at a level of F1,19 = 4.38 (red curves).
These estimates allow us to formulate the following report
on the statistical analysis, i.e., that there is an estimated
probability of Ps=0.634, with a 95% confidence interval
equal to CI(Ps)=[0.375,0.846], according to a χ2

1 criterion,
or CI(Ps)=[0.357,0.857], according to an F1,19 criterion,
for participants to report a higher BDI score on Sunday
for ecstasy than for alcohol, according to an analysis using
empirical likelihood with a uniform smoothing kernel of
width 4 (units of BDI). Note that this is not significant as the
chance level (Ps = 0.5) is inside of these estimated CIs.

1256 Behav Res  (2021) 53:1240–1261



 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40  45

fr
ac

tio
ns

/p
ro

ba
bi

lit
ie

s

BDI scores

Observed Histogram and Model Distribution

 0

 2

 4

 6

 8

 10

 12

-5  0  5  10  15  20

E
m

pi
ric

al
-L

ik
el

ih
oo

d 
P

ro
fil

e 
(E

LP
)

difference in median BDI score

ELP with derived Confidence Intervals

Fig. 11 The stepwise curves in the left figure shows the observed his-
tograms (black: ecstasy, red: alcohol) for the BDI scores on Sunday,
while the continuous curves (blue: ecstasy, green: alcohol) are obtained
by smoothing with a uniform kernel function of width equal to 4 (units
of BDI). The figure on the right shows the empirical-likelihood profile

(ELP) for the difference in medians, intersected at two levels (cor-
responding to a χ2

1 criterion and an F1,19 criterion) to establish two
distinct estimates for the confidence interval (CI) of the difference in
medians

Analysing discrete (ordinal) data

In a CHI paper from 2010 (Kaptein & Robertson,
2012), Kaptein et al. argue that evaluations of subjective
experiences within the CHI community make extensive use
of Likert scales, but that the statistical methods used for
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Fig. 12 The graph shows the ROC (in black) together with its 95%
confidence region as determined using empirical likelihood; the green
boundaries correspond to a χ2

1 criterion, while the red boundaries
correspond to an F1,19 criterion (drug data on Sunday: non-parametric
across-subject analysis)

processing such data, such as t tests or ANOVA, are not
intended for analysing discrete ordinal data, but instead,
for analysing continuous interval data. One of the reasons
mentioned for this sub-optimal practice is the absence of
software that supports alternative types of analyses and
that is readily available for HCI scientists. In a follow-
up book (Robertson & Kaptein, 2016) entitled “Modern
Statistical Methods for HCI” the authors promote the use
of the R language as a way for HCI scientists to gain
access to modern statistical methods. R is a platform that
is supported by a large community and probably the most
likely venue for new statistical methods to be made available
by their developers. While R is extremely powerful and
useful for statisticians and data scientists who use it on
a regular basis, it is still a programming language with
a non-trivial syntax that requires time and effort to learn
and master. The fact that it is a programming language
also means that programming mistakes will inevitably be
made, and that substantial time may be lost to debug
and correct such mistakes, or that such mistakes may
simply remain unnoticed. It therefore seems unlikely that
many HCI scientists, or psychologists, who probably view
statistics more as something that they use rather than as a
core competency that they need to develop in more depth,
will be tempted to make such an investment. The current
paper promotes the ILLMO program as an alternative,
more user-friendly, platform for gaining access to modern
statistical methods. Content-wise, this paper supports the
view of the authors of the above book that there is an urgent
need to adopt more modern statistical methods in the HCI
practice. This paper also contributes additional methods to
the ones already discussed in the aforementioned book, such
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as constructing confidence intervals for effect sizes, using
empirical likelihood as an alternative for non-parametric
tests, etc.

In the CHI paper from 2010, the focus was still on
analysing significance, but in a follow-up paper (Robertson
& Kaptein, 2016) from CHI 2012, Kaptein and Robertson
set out to “promote consideration of the magnitude and
actual importance of effects, as opposed to statistical
significance, as the new criteria for evaluating CHI
research”, a position that is in line with APA guidelines
(Cumming et al., 2012) and that we wholeheartedly
subscribe to in this paper. They, however, only concentrate
on reporting effect sizes, not on the need to also establish the
accuracy (or confidence intervals) for them. They also didn’t
make a concrete proposal for how to address the discrete
nature of the ordinal data produced by Likert scales, as they
continued to rely on statistical outcomes, such as Cohen’s d,
produced by traditional methods such as t tests.

We will use the same dataset that was used in the
CHI 2012 paper to illustrate our concrete proposal for
how to take the discrete nature of the data into account
in a statistical analyses. This data is available as a file
entitled “data40.csv” on the ILLMO website. It contains
(simulated) data on comparing the ease of use of a Windows
VISTA (1) and a Mac OS-X (2) operating system by both
novice and experienced users. In the data file, the column
named “Between” specifies the system being tested (1 or
2), which we designate as the independent variable. The
column named “Score” contains the (simulated) outcomes
on a Likert scale in a usability questionnaire and is hence
equal to the dependent variable. The higher the number,
the more the participant appreciated the ease-of-use of
the operating system. The column named “Time” specifies
whether the measurement was performed with novices (1)
or experienced users (2), but in the current example we will
only use the data from the novice users. There are N1 = 22
measurements in condition 1, N2 = 18 measurements in
condition 2, or N = 40 measurements in total.

The (discrete data) from the experiment is summarised
in Table 5. The columns with the integer labels contain
the number of times that a response in one of the integer
categories 1 to 7 was produced in each of the two conditions.
These counts for each of the two conditions can be
converted into fractions by dividing by the total number of
responses in a condition. A statistical model will generate
probabilities for the same categories, and the best model is

obviously the one where there is a close fit, according to a
suitable lack-of-fit criterion such as log-likelihood, between
the observed fractions and the model probabilities.

ILLMO uses Thurstone modeling to model the probabilities
in the ordinal categories 1--7. This approach is named
after a notorious researcher in the 1920s who wondered
how continuous distribution functions such as the Gaussian
distribution function could be used to generate probabilities for
discrete data, and who came up with the following elegant
proposition (Thurstone, 1927; Torgerson, 1958; Boschman,
2000). He observed that the integer categories lie in between
boundaries at half-integer values, and he proposed to use the
area under a continuous distribution function between two such
boundaries as the model prediction for the probability for the
corresponding interval. An exception is made for the first and
last category where the lower or upper boundary are equal
to minus and plus infinity, respectively. In this way, the
parameters of the continuous distribution function, such as
the average and standard deviation of a Gaussian function,
indirectly determine the probabilities for all categories.

An advantage of Thurstone modelling is that the intuitive
interpretation of continuous distributions remains intact and
only the log-likelihood criterion (LLC) needs to be adjusted
to reflect the discrete nature of the data, i.e.,

LLCi =
7∑

j=1

nij · 2 log

(
nij

Ni · pij

)
, (12)

where {nij , for j = 1, . . . , 7} are the observed counts in
condition i, for i = 1, 2 (see Table 5), and {pij , for j =
1, . . . , 7} are the corresponding probabilities predicted by
the Thurstone models. Note that each condition is modelled
by a different underlying continuous distribution function.
This LLC has been shown to satisfy all the properties that
we relied on when discussing modern statistical methods
for continuous data. For one, the LLC for a complete
experiment including two conditions is obtained by adding
the LLC values for each of these conditions. This total
LLC = LLC1 + LLC2 can be combined with the total
number of parameters P (across all conditions) to define the
AIC in exactly the same way as before.

For instance, a first model that corresponds to a
null hypothesis H0 would contain P = 2 parameters,
corresponding to using the same Gaussian distribution for
both conditions, while a second model that corresponds
to the alternative hypothesis H1 would contain P =

Table 5 Counts per (discrete) category for each of the two conditions in the simulated usability experiment (from Kaptein & Robertson, 2012).

Condition 1 2 3 4 5 6 7 Total

VISTA 2 1 2 11 5 1 0 22

OS-X 2 1 1 2 5 5 2 18
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3 parameters, corresponding to each condition using a
Gaussian distribution with a different average value, but
adopting the same standard deviation for both distributions.
We can determine the LLC and AIC for both models being
applied to our example data, i.e., LLC = 20.63 and
AIC = 25.97 for the first model that corresponds to the null
hypothesis H0, and LLC = 18.01 and AIC = 27.01 for the
second model that corresponds to the alternative hypothesis
H1. The result can be reported as follows: a multi-model
comparison between two models, one assuming an equal
average value for the usability score in both conditions and
one assuming unequal averages, results in a likelihood ratio
of �12 = 1.63 in favour of the first (simplest) model; this
ratio is “hardly worth mentioning”, according to Table 3,
and can be interpreted as support for the null hypothesis
that the condition has no effect on the observed scores.
Interestingly enough, this likelihood ratio is very close to
the likelihood ratio of 1.53 that was reported in (Kaptein &
Robertson, 2012) based on a completely different statistical
approach, i.e., a Bayesian t test.

We can also use the above LLC for discrete data to
derive LLPs for a number of model parameters, such as
individual averages per condition, the (shared) standard
deviation, the difference between averages and effect sizes
such as Cohen’s d or the probability of superiority. These
LLPs have been shown to satisfy Wilks’ theorem, so that
intersecting such an LLP at a level dictated by the required
significance produces (asymptotically correct) estimates for
the confidence intervals for such parameters. We will not
illustrate the outcomes for all possible model parameters,
but will restrict us here to the effect size parameter that we

have been promoting in this paper, i.e., the probability of
superiority.

In the left graph of Fig. 13, we show the LLP for
the probability of superiority Ps = 0.646, resulting in a
CI(Ps)=[0.469,0.799] in case the intersection is performed
at a level of χ2

1 (0.95) = 3.84, and CI(Ps)=[0.463,0.803] in
case the intersection is performed at a level of F1,39(0.95) =
4.09. These estimates allow us to formulate the following
report on the statistical analysis, i.e., that there is an
estimated probability of Ps=0.646, with a 95% confidence
interval equal to CI(Ps)=[0.469,0.799], according to a χ2

1
criterion, or CI(Ps)=[0.463,0.803], according to an F1,39

criterion, for participants to report a higher usability score
for the OS-X system than for the VISTA system, according to
a parametric Thurstone model where the two conditions are
modelled by Gaussian distributions with distinct averages
and a shared standard deviation. Note that this is a non-
significant difference as the chance level (Ps = 0.5) is
inside of these estimated CIs. A more precise conclusion
is that the effect is in between non-existing and large-sized
(according to Table 2).

As an alternative to the parametric Thurstone model
we can also use the non-parametric method of empirical
likelihood to estimate the effect size and its CI. In the right
graph of Fig. 13, we show the ROC (in black) with its
confidence area according to an EL estimate. The areas
under these curves correspond to a probability of superiority
equal to Ps = 0.690, with a CI(Ps)=[0.463,0.867] in case
the calculation is performed according to a χ2

1 (0.95) = 3.84
criterion, and CI(Ps)=[0.456,0.871] in case the calculation
is performed according to a F1,39(0.95) = 4.09 criterion.
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Fig. 13 The figure on the left shows the log-likelihood profile (LLP),
according to a parametric (Thurstone) model, for the probability of
superiority, intersected at two levels (corresponding to a χ2

1 criterion
and an F1,39 criterion) to establish two distinct but similar estimates for
the confidence interval (CI) of this probability. The figure on the right

shows the ROC (in black) together with its 95% confidence region
as determined using empirical likelihood; the green boundaries cor-
respond to a χ2

1 criterion, while the red boundaries correspond to an
F1,19 criterion (usability data determined using a Likert scale)
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These estimates allow us to formulate the following report
on the statistical analysis, i.e., that there is an estimated
probability of Ps = 0.690, with a 95% confidence interval
equal to CI(Ps)=[0.463,0.867], according to a χ2

1 criterion,
or CI(Ps)=[0.456,0.871], according to an F1,39 criterion,
for participants to report a higher usability score for
the OS-X system than for the VISTA system, according
to an analysis using empirical likelihood with a uniform
smoothing kernel of width 1 (units on the usability scale).
According to this non-parametric EL analysis, this is a non-
significant difference as the chance level (Ps = 0.5) is
inside of these estimated CIs. A more precise conclusion
is that the effect is in between non-existing and 1 JND
(according to Table 2).

Conclusions

In their CHI 2012 paper (Kaptein & Robertson, 2012),
Kaptein and Robertson express the following recommen-
dations for future CHI authors, which we use to identify
some of the contributions of this paper and of the interactive
statistical program ILLMO:

• Bolder predictions predicting the direction and magni-
tude of effects would be beneficial: we have interpreted
this advice in the sense that not only the effect size
should be estimated, which is already provided by sev-
eral existing statistical methods, but that we should also
be able to derive the confidence interval for such an
effect size, as otherwise no inference can be made on
whether or not a hypothesised effect size can be rejected
based on the available experimental data.

• We should enable the researcher to calculate the
number of participants they require to detect an effect:
this is supported in the t tests executed by the ILLMO
program, by offering exactly this information; when
using CIs, we can use the “rule-of-thumb” that CIs will
approximately shrink by a factor of 2 when the number
of measurements increases by a factor of 4.

• It can be beneficial to calculate the probability of
the hypothesis given the data: while Kaptein and
Robertson argue in favour of using Bayesian analysis
for this purpose, we instead adopt the method of
multi-model comparison; the discussion about the pros
and cons of both alternative methods is ongoing, but
offering a software platform (ILLMO) that provides an
easy access to multi-model comparison, i.e., without
requiring the need to program (as would be required
when using R, for instance), can help to perform the
analyses that are needed to make this comparison. The
outputs from ILLMO can for instance be compared
with those from a software platform such as JASP

(see http://jasp-stats.org) that implements Bayesian
statistics.

• We encourage researchers, reviewers, programme
chairs and journal editors to work towards raising the
standard of reporting statistical results: we addressed
this by proposing formulations for how to summarise
the statistical analyses that we introduced, especially
when these analyses involved unfamiliar methods.

• It is good practice to interpret the non-standardised
sizes of the estimated effects: we adopted probability
of superiority as our preferred measure for effect size,
since we hold the opinion that it is easier to interpret
than the more traditional alternatives such as Cohen’s
d and the correlation coefficient R. The probability
of superiority corresponds to a simple experiment
that is easy to explain and understand, also for non-
statisticians: randomly take one outcome from each of
the two experimental conditions, it is the probability
that the highest outcome was indeed produced in the
condition that is hypothesised to produce the highest
scores (on average).

This paper has shown, for the relatively simple task of
comparing two experimental conditions, how the ILLMO
software program provides access, in a user-friendly way,
to a number of modern statistical methods that can provide
essential information, especially on effect size, that is often
lacking in more traditional methods. Some of the identified
advantages of the ILLMO environment are the following:

• a greater variety of probability distributions to choose
from (next to the default Gaussian distribution),

• the method of multi-model comparison that allows to
assign likelihoods to alternative models,

• the method of log-likelihood profiles (LLPs) and the
construction of (asymptotically correct) approximations
to confidence intervals for most parameters in paramet-
ric models (using Wilks’ theorem),

• the extension towards empirical-likelihood profiles
(ELPs) so that confidence intervals can also be created
in case of non-parametric models,

• the possibility to create ROCs for both parametric
models (using log-likelihood) and non-parametric
models (using empirical likelihood),

• a methodologically sound way of creating parametric
(Thurstone) models for ordinal data such as generated
by Likert scales.

The same methods introduced here for comparing two
experimental conditions can be extended to a range of other
statistical tasks such as simple and multiple regression,
nonlinear regression, multi-dimensional scaling, etc., as
evidenced by the material offered on the project website
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http://illmoproject.wordpress.com. Obviously, the range of
methods offered in ILLMO is more limited than the range
of methods offered through a platform such as R, which can
boast a huge community of developers and users. The aim
of ILLMO is instead to offer access to methods that can be
used to analyse frequently used experimental designs, and to
do this in a user-friendly and interactive way, so that a wider
range of users, especially those not keen on programming,
can also profit from such recent statistical methods.
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