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Abstract. Ferroptosis is a distinct type of regulated cell 
death characterized by iron overload and lipid peroxidation. 
Ferroptosis is regulated by numerous factors and controlled 
by several mechanisms. This cell death type has a relation‑
ship with the immune system, which may be regulated by 
damage‑associated molecular patterns. Ferroptosis partici‑
pates in the progression of autoimmune diseases, including 
autoimmune hepatitis, rheumatoid arthritis, systemic lupus 
erythematosus, inflammatory bowel disease, multiple scle‑
rosis, Parkinson's Disease, psoriasis and insulin‑dependent 
diabetes mellitus. The present review summarizes the role of 
ferroptosis in autoimmune disorders and discusses ferroptosis 
as a potential therapeutic target for autoimmune disease.
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1. Introduction

Since being named in 2012 by Dixon et al (1), ferroptosis has 
been probed in a wide range of pathologies and proposed as 
a novel therapeutic strategy for numerous diseases, including 
cancer (2,3), ischemia‑reperfusion injury (4,5) and neurode‑
generative disorder (6,7). Autoimmune disease, particularly 
rheumatoid arthritis (RA), systemic lupus erythematosus 
(SLE), multiple sclerosis (MS), insulin‑dependent diabetes 
mellitus (IDDM) and inflammatory bowel disease (IBD) (8,9), 
are heterogeneous with regard to prevalence, manifestation 
and pathogenesis. Accumulating evidence in recent times 
has shown an association of ferroptosis with the pathogen‑
esis and development of autoimmune diseases (10‑12). The 
present review aimed to summarize the association between 
ferroptosis and autoimmune disease, focusing on potential 
mechanisms and therapeutic strategies.

2. Overview of ferroptosis

Ferroptosis was proposed in 2012 as a distinctive type of 
non‑apoptotic cell death (1) characterized by iron overload and 
lipid peroxidation. This differs from other forms of regulated 
cell death. The primary feature of ferroptosis is mitochondrial 
shrinkage, which occurs alongside an increase in mitochon‑
drial membrane density and degeneration of mitochondrial 
crista but with no changes in morphology of the nucleus (1).

Several pathways, including the metabolism of iron, acid 
and lipid, have been implicated in ferroptosis (13). Excessive 
cytosolic Fe2+ catalyzes the Fenton reaction and activates 
iron‑dependent metabolic enzymes, leading to production of 
highly reactive hydroxyl radicals and oxidized polyunsatu‑
rated fatty acids (PUFAs), which results in the promotion of 
the accumulation of lipid reactive oxygen species (ROS) and 
ferroptosis. The metabolism of amino acids, especially the 
system Xc/glutathione (GSH)/GSH peroxidase 4 (GPX4) axis, 
is key to eliminating lipid ROS, with GPX4 regarded as a 
key regulator of ferroptosis. Additionally, GPX4‑independent 
pathways, such as the NADPH/ferroptosis suppressor protein 
1 (FSP1)/coenzyme Q10 and the GTP cyclohydrolase‑1/
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tetrahydrobiopterin/dihydrobiopterin axes, have also 
been implicated in the ferroptosis process in the past few 
years (14‑16) (Fig. 1).

3. Association between ferroptosis and the immune system

Two types of immunity exist in the body, innate and adap‑
tive. The innate immune system detects invading pathogens, 
while the adaptive immune system promotes a specific and 
long‑lasting protection against infection. Innate immune cells 
mainly include dendritic cells, macrophages and neutrophils, 
while the adaptive immune system generally contains T and B 
lymphocytes and nature killer (NK) cells (17).

In the last few years, more evidence has revealed a close 
association between ferroptosis and the immune system (18,19). 
Notably, autoimmune disease is initiated and propagated by 
the activation of self‑antigen‑reactive T cells (20), pointing 
to the crucial role of T cells in autoimmunity. In a study 
investigating ferroptosis in immunity, both antigen‑specific 
CD8+ and CD4+ T cells failed to expand and protect infection 
in T cell‑specific GPX4‑deficient mice (TΔGpx4/ΔGpx4), whereas 
GPX4‑deficient T cells rapidly accumulated lipid peroxides 
and underwent ferroptosis in vitro (21). Ferroptosis was found 
to be involved in immunotherapy‑activated CD8+ T cells, with 
increased ferroptosis contributing to the anti‑tumor efficacy of 
immunotherapy (22). Recently, the homeostasis of follicular 
helper T cells, a specialized subset of CD4+ T cells, was also 
shown to be regulated by ferroptosis (23).

Key features of ferroptosis, iron overload and lipid 
peroxidation, participate in immunity. Iron overload increases 
oxidative stress and DNA damage in T cells, leading to immune 
dysfunction (24), while lipid peroxidation is associated with 
intracellular ROS in regulatory T cells (25). Ferroptosis affects 
the viability of B cells, with Muri et al (26) demonstrating that 
GPX4 is key to the development, maintenance and responses 
of B1 and marginal zone B cells via suppression of ferrop‑
tosis. Moreover, the ferroptosis inducer erastin increases lipid 
peroxidation and promotes peripheral blood mononuclear cell 
proliferation and differentiation into B and NK cells (27).

In addition to its links to the adaptive immune system, 
ferroptosis also plays a key role in innate immunity. In tumor 
cells, exogenous circularly polarized magnetic field‑induced 
ferroptosis leads to the maturation of dendritic cells (28) and in 
immune‑competent mice, ferroptosis promotes phenotypical 
maturation of bone‑marrow‑derived dendritic cells (29). With 
regard to other innate immune cells, ferroptosis is associated 
with the infiltration of macrophages and neutrophils (30), 
while also regulating polarization of macrophages (31) and the 
recruitment of neutrophils (32).

4. Damage‑associated molecular patterns (DAMPs)

Although the pathology of autoimmune disease is complex, 
it is hypothesized that inflammation serves a key role in 
autoimmunity (33). DAMPs, endogenous molecules released 
by damaged tissue or dying cells, have been proved to be detri‑
mental in inflammatory response and lead to the development 
of inflammatory disorders (34,35). Autoimmune diseases, such 
as SLE (36) and IBD (37), are among the inflammatory disor‑
ders initiated by DAMPs. In the host, DAMPs either activate 

innate immune cells, leading to release of various cytokines 
and chemokines and activation of adaptive immune responses, 
or stimulate adaptive immune cells directly (35).

As a key part of regulated cell death, ferroptosis can stimu‑
late the release of DAMPs. Adenosine triphosphate (ATP) and 
high mobility group box 1 (HMGB1), two well‑characterized 
DAMPs, are released along during ferroptosis in murine 
fibrosarcoma MCA205 or glioma GL261 (29) and p53 
R273H‑expressing non‑small cell lung cancer cells (38). 
Cotreatment with erastin and celastrol initiates expression 
of heat shock proteins (HSPs) (39). Using the immunopre‑
cipitation assay, an interaction between HSP90 and GPX4 
has been demonstrated in a model of acute kidney injury 
(AKI) (40). Another DAMP, calreticulin, also participates in 
ferroptosis. In the head and neck squamous cell carcinoma, 
Zhao et al (41) found ferroptosis reverses immunosuppressive 
microenvironments by releasing calreticulin and HMGB1, 
while Van Loenhout et al (42) demonstrated that auranofin 
and plasma‑treated PBS mixture‑induced ferroptosis led 
to a significant increase in calreticulin, ATP and HMGB1. 
The aforementioned reports point to a close link between 
ferroptosis and DAMPs, which may partly explain the mecha‑
nism of ferroptosis‑mediated autoimmunity. Autoimmune 
diseases are also associated with cytokines and chemokines. 
In a mouse AKI model, ferrostatin‑1 was shown to prevent 
upregulation of IL‑33 (43). Additionally, liproxstatin‑1 allevi‑
ates radiation‑induced lung fibrosis via the downregulation of 
TGF‑β1 (44). Ferroptosis, therefore, could have an intimate 
relationship with autoimmune disease.

5. Ferroptosis and autoimmune disease

Autoimmune diseases are complicated and characterized by 
the development of specific autoantibodies and the presence 
of autoreactive T cells, leading to the impairment of sustained 
immune responses and organs (45). Recent studies have high‑
lighted the association between ferroptosis and autoimmune 
disease (Table I).

6. Ferroptosis and autoimmune hepatitis (AIH)

AIH is an immune‑mediated inflammatory liver disorder 
characterized by histological abnormality, as well as elevated 
aspartate aminotransferase, alanine aminotransferase and 
total IgG and the presence of autoantibodies (46).

In concanavalin A (ConA)‑induced hepatitis, redox‑active 
iron accumulation and malondialdehyde (MDA) are detected 
in the hepatic tissues of mice. Moreover, the expression of 
GPX4 and system xc‑ is markedly decreased in the liver of 
ConA‑treated mice and is accompanied by the downregulation 
of caveolin‑1 (47). In LO2 hepatocyte cell line, the overexpres‑
sion of caveolin‑1 results in the upregulation of the expression 
of system xc‑, suggesting that cavelolin‑1 protects against 
ConA‑induced AIH by inhibiting ferroptosis. In another study, 
levels of cyclooxygenase2 and acyl‑coenzyme A synthase 
long‑chain family member 4 (ACSL4) were shown to be 
upregulated in the liver tissue of S100‑induced AIH model 
mice, while the levels of GPX4 and ferritin heavy chain 1 
(FTH1) are downregulated (48). In addition, GPX4 knock‑
down via adeno‑associated virus injection aggravates severity 



EXPERIMENTAL AND THERAPEUTIC MEDICINE  26:  368,  2023 3

of S100‑induced AIH. The aforementioned studies suggested 
that ferroptosis is a possible mediator of AIH.

7. Ferroptosis and RA

RA is the most common autoimmune inflammatory arthritis 
in adults and is characterized by chronic destructive synovitis 
and multisystem disorder (49,50).

In the rheumatoid synovium and synovial fluid of patients 
with RA, the levels of iron accumulation and lipid peroxida‑
tion increase, while in a collagen‑induced arthritis (CIA) 
mouse model, selectively targeting fibroblasts in vivo to induce 
ferroptosis attenuates arthritis progression, indicating that 
ferroptosis inducers serve as candidates for RA treatment (51). 
Sulfasalazine, a U.S. Food and Drug Administration‑approved 
RA drug, is an effective inducer of ferroptosis (52). As shown 
by Ling et al (53), the expression of ACSL4 declines, while 
the expression of FTH1, GPX4, and cystine/glutamate anti‑
porter solute carrier family 7 member 11 are increased in the 
RA synovium of CIA model mouse compared with healthy 
control (53). Luo and Zhang (54) showed that in a lipopoly‑
saccharide‑induced synovitis cell model, MDA levels are 

increased, whereas GPX4 levels are decreased, representing 
an increase in ferroptosis in human synoviocytes; inhibition 
of ferroptosis may be a new therapeutic strategy for syno‑
vitis (54). Further studies are required to identify the exact role 
of ferroptosis in RA.

8. Ferroptosis and SLE

SLE is a multisystem autoimmune disease characterized by 
formation of autoantibodies, deposition of immune complexes 
and inflammation that primarily presents in women of repro‑
ductive age. The pathogenetic mechanisms of SLE are complex 
and this disorder is prone to relapse and remissions, leading to 
considerable morbidity and mortality (55,56).

Previous studies have examined the association between 
iron metabolism and SLE (57‑59). Li et al (60) investigated 
the direct association between ferroptosis and SLE; the study 
demonstrated ferroptosis of neutrophils in lupus‑prone mice 
and patients with SLE and hypothesized that neutrophil 
ferroptosis as an essential driver of neutropenia in SLE and 
treatment using specific ferroptosis inhibitors may ameliorate 
SLE severity and symptoms (60).

Figure 1. Signaling pathway of ferroptosis. Ferric iron is transferred into cells by TfR1, then converted to ferrous iron and released to the cytoplasm by 
STEAP3 and DMT1. Elevated labile iron pool catalyzes formation of phospholipid hydroperoxides via Fenton reaction. Free cytosolic PUFAs are converted to 
PUFA‑PLs with catalyzation by ACSL4 and LPCAT3, then PUFA‑PLs are oxidized by lipoxygenase 12/15, contributing to the accumulation of phospholipid 
hydroperoxides. Mitochondrial dysfunction results in increased ROS production, which may also contribute to lipid peroxidation. Cystine uptake through 
system xc‑ is used for synthesis of GSH. Moreover, FSP1/CoQ10 and GCH1/BH4/BH2 are two parallel GPX4‑independent pathways in suppression of ferrop‑
tosis. TfR1, transferrin receptor 1; DMT1, divalent metal transporter 1; NCOA4, nuclear receptor coactivator 4; PUFA, polyunsaturated fatty acid; ACSL4, 
acyl‑CoA synthetase long‑chain family member 4; LPCAT3, lysophosphatidylcholine acyltransferase 3; GSH, glutathione; FSP1, ferroptosis suppressor protein 
1; GCH‑1, guanosine triphosphate cyclohydrolase 1; BH4, tetrahydrobiopterin; BH2, dihydrobiopterin; PL, phospholipid; GSR, glutathione disulfide reductase; 
GSSG, glutathione oxidized; ROS, reactive oxygen species; GPX4, GSH peroxidase 4; CoQ10H2, reduced coenzyme Q10; ETC, electron transport chain.
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9. Ferroptosis and IBD

IBD, including Crohn's disease (CD) and ulcerative colitis 
(UC), is a complex chronic inflammation disorder that arises 
due to dysregulated immune response (61). Smoking, diet, 
lifestyle and behavior, as well as gut microbiota, are all key 
contributors to disease pathogenesis (62).

Mayr et al (63) found GPX4 activity is impaired and 
lipid peroxidation is augmented in small intestinal epithe‑
lial cells (IECs) of patients with CD. They also found that 
PUFA exposure induces lipid peroxidation and cytokine 
production by GPX4 small‑interfering RNA IECs, while 
the genetic deletion of ACSL4 abrogates PUFA‑induced 
cytokine production, suggesting that inflammatory cyto‑
kine production in IECs of patients with CD is driven by 
ferroptotic mechanisms (63). Xu et al (64) demonstrated 
significantly downregulated GPX4 and notably upregulated 
ACSL4 expression in the colonic biopsy specimens of 
patients with CD. In addition, MDA content and prosta‑
glandin‑endoperoxide synthase 2 (PTGS2) levels are higher 
in colon samples from mice with trinitrobenzene sulfonic 
acid‑induced colitis, pointing to a close association between 
ferroptosis and CD (64).

Ferroptosis has also been investigated in UC, with 
Xu et al (65) reporting its involvement in IEC death in UC (65). 
The aforementioned study found several ferroptosis‑associ‑
ated genes to be remarkably down‑ or upregulated in human 
colonic biopsy samples from patients with UC, while PTGS2 
is elevated and GPX4 diminished in colonic IECs from experi‑
mental colitis mice. Preventing ferroptosis through inhibiting 
the Nrf2/heme oxygenase‑1 signaling pathway may be a valu‑
able approach to inhibit progression of UC in dextran sulfate 
sodium (DSS)‑induced experimental colitis mice (66,67). The 
aforementioned findings suggested that ferroptosis is involved 
in IBD and could serve as a therapeutic target.

10. Ferroptosis and MS

MS is considered an autoimmune disorder of the central 
nervous system that is characterized by inflammation, 
demyelination and degeneration (68,69). mRNA levels of 
GPX4 in the brain of patients with MS are decreased, while 

the levels of GPX4 mRNA and protein are decreased and 
lipid peroxidation is enhanced in an experimental autoim‑
mune encephalomyelitis mouse model (70). Jhelum et al (71) 
investigated the underlying mechanism of cuprizone (CZ), a 
copper chelator, used to induce oligodendrocyte (OL) cell loss 
and demyelination, revealing that CZ treatment resulted in an 
increase in mRNA expression of nuclear receptor coactivator 
4, transferrin receptor 1 and PTGS2, as well as lipid peroxida‑
tion, and a decrease in the expression of GPX4 and system 
xc‑ in the brain tissue of experimental mice. Additionally, the 
CZ‑induced loss of OL and demyelination was prevented by 
ferrostatin‑1 (71). These results indicated that ferroptosis is a 
potential therapeutic target for MS.

11. Ferroptosis and Parkinson's disease (PD)

PD is one of the most common types of neurodegenerative 
disorder (72) and has also been proposed as an autoimmune 
disease (73). Numerous studies have examined the association 
between ferroptosis and PD (7,74,75).

In 2016, Do Van et al (7) reported the role of ferroptosis 
in PD for the first time, finding ferroptosis components in 
PD neuropathology. Moreover, the aforementioned study 
found dopaminergic neuronal loss is inhibited by ferrop‑
tosis‑specific inhibitors ferostatin‑1 and liproxstatin‑1 and 
that modulation of the ferroptotic signaling cascade is a 
possible target for drug candidates for PD. Ferroptosis occurs 
in the pathology of PD and they share several hallmarks, 
including iron overload, lipid peroxidation and decreased 
GSH levels (76‑78). Recently, Zuo et al (79) demonstrated 
that paraquat, a neurotoxin that increases the risk of PD, 
significantly induces iron accumulation in the cytoplasm 
and mitochondria of SH‑SY5Y human neuroblastoma 
cells via the ferritinophagy pathway; however, ferritin‑
ophagy‑mediated ferroptosis is significantly ameliorated by 
ferrostatin‑1, pointing to the inhibition of ferroptosis as a 
potential new strategy for the prevention of neurotoxicity or 
PD (79). Reagents targeting ferroptosis could be used in the 
treatment of PD in the future.

12. Ferroptosis and psoriasis

Psoriasis is a chronic immune‑mediated inflammatory skin 
disease characterized by hyperproliferation of keratinocytes 
and excessive infiltration of immune cells. Currently, it is 
considered a systemic disease associated with metabolic, 
arthritic and cardiovascular comorbidities (80).

A previous study showed a significant reduction in GPX4 
and elevation in Nrf2 downstream targets in psoriatic skin 
lesions compared with samples from healthy patients (81). 
Additionally, the mRNA levels of ACSL4, PTGS2 and TFR 
are much higher in psoriasis lesions than in healthy controls. 
Furthermore, in an imiquimod (IMQ)‑induced mouse model 
of psoriasis, immunohistochemical analysis uncovered 
notably increased ACSL4 levels and markedly decreased 
GPX4 levels in the basal epidermal layer and ferro‑
statin‑1 treatment attenuated IMQ‑induced psoriasis‑like 
dermatitis (82). Ferroptosis is, therefore, a potential physi‑
ological mechanism for eliminating inflammatory response 
in psoriasis.

Table I. Role of ferroptosis in autoimmune disease.

 effect
Disease Ferroptosis (Refs.)

Autoimmune hepatitis Promote (47,48)
Rheumatoid arthritis Inconsistent (51‑54)
Systemic lupus erythematosus Promoting (60)
Inflammatory bowel disease Promoting (63‑65)
Multiple sclerosis Promoting (70,71)
Parkinson's disease Promoting (76‑79)
Psoriasis Promoting (81,82)
Insulin‑dependent diabetes Promoting (88)
mellitus
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13. Ferroptosis and IDDM

IDDM is a chronic disorder stemming from autoimmune 
damage of pancreatic β cells (83). While ferroptosis is involved 
in cell death of the myocardium and renal tubules during 
diabetes (84‑87), the role of ferroptosis in the death of β cells 
is unknown. In 2018, Bruni et al reported massive ferroptosis 
in pancreatic islets isolated from IDDM patients, whereas the 
transplantable number of islet equivalents increased following 
addition of ferrostatin (88). Along with evidence that ferrop‑
tosis is induced in rat pancreatic β cells after exposure to 
tert‑butyl hydroperoxide (89), ferroptosis can be considered a 
possible mode of β cell destruction. However, more studies are 
required to determine the link between ferroptosis and β cell 
death.

14. Ferroptosis as a therapeutic target for autoimmune 
disease

As aforementioned, there is an association between ferroptosis 
and autoimmune disease. Therefore, targeting ferroptosis 
is a promising therapeutic option for autoimmune disease. 
Ferroptosis can primarily be inhibited by iron chelators and 
lipophilic antioxidants (1). The present review summarizes 
anti‑ferroptosis agents and their potential benefits in the treat‑
ment of autoimmune disorder (Table II).

15. Iron chelators

Deferoxamine (DFO) has been investigated in the treatment 
of several types of autoimmune disease. In patients with RA, 
DFO prevents synovial injury (90) and improves anemia (91). 
A pilot study showed that patients with MS tolerate a short 
course of DFO therapy relatively well (92), however, no effect 
on disease progression has been noted (93). In addition to its 
effect against RA and MS, DFO has been found to amelio‑
rate motor defects and pathology in a PD rat model (94). 
Deferiprone (DFP), another iron chelator, suppresses disease 
activity in a mouse model of MS (95). Additionally, DFP 
reportedly improves motor performance of patients with PD in 
a phase II clinical trial (96). DFP can ameliorate DSS‑induced 
UC in a mouse model by suppressing ferroptosis (67). The 
aforementioned studies indicate that iron chelators are prom‑
ising therapeutic options for autoimmune disease. However, 
larger clinal trials are needed to determine the value of iron 
chelators in the therapy of autoimmune disease.

16. Lipophilic antioxidants

Ferrostatin‑1 and liproxstatin‑1 are well‑known inhibitors 
of ferroptosis. Numerous studies have investigated these 
ferroptosis inhibitors in autoimmune diseases, including AIH, 
IBD and PD (48,97). To the best of our knowledge, however, 
examinations have yet to be conducted in models other than 
experimental mouse models. Hence, clinical trials must be 
performed to explore their roles in patients.

Vitamin E is a key lipid soluble antioxidant that can 
suppress ferroptosis by inhibiting 15‑lipoxygenase (98). 
Reports show that supplementation with vitamin E relieves 
joint pain in patients with RA (99). In patients with SLE, 

vitamin E is said to suppress autoantibody production. 
Moreover, vitamin E improves functional capacity and gait 
parameters in patients with relapsing‑remitting MS (100) and 
improves clinical signs and metabolic status in patients with 
PD (101). Furthermore, supplementation with vitamin E is a 
feasible option for the management of patients with severe 
forms of psoriasis as it decreases the markers of oxidative 
stress (102). Vitamin E treatment, therefore, may be a thera‑
peutic option for autoimmune diseases.

Selenium, an essential trace element with antioxidant 
properties, has been assessed as a potential treatment for 
autoimmune diseases. Supplementation with selenium relieves 
inflammatory reaction in patients with MS (103), IBD (104) 
and psoriasis (102). However, it has shown no significant 
clinical benefit against RA (105,106). In preclinical studies, 
selenium decreases loss of dopamine and slows the progres‑
sion of neurodegeneration during PD (107).

N‑acetylcysteine, a pharmaceutical drug with an 
anti‑ferroptosis property, has been investigated in the treatment 
of RA and SLE. In patients with RA, the oral administra‑
tion of N‑acetylcysteine relieves severity of joint pain and 
improves physical performance (108). In patients with SLE, 
N‑acetylcysteine inhibits lupus disease activity (109).

Polyphenols are natural antioxidants that prevent 
ferroptosis owing to their ROS scavenging property (110). 
Resveratrol, a well‑studied polyphenol, decreases disease 
activity score assessment for 28 joints in patients with 
RA (111), decreases the clinical colitis activity index score 
and improves quality of life in patients with UC (112,113) 
and exerts antidiabetic and antioxidant effects in patients 
with IDDM (114). Other polyphenols, such as pomegranate 
juice could alleviate disease activity of patients with 

Table II. Therapeutic options for autoimmune disease.

Reagent Mechanism Disease (Refs.)

Deferoxamine Iron chelation RA, PD (90,94)
Deferiprone Iron chelation MS, PD, (67,95,96)
  IBD
Ferrostatin‑1 Peroxidation AIH, IBD, (7,48,64)
 inhibition PD
Liproxstatin‑1 Peroxidation IBD, PD (7,67)
 inhibition
Selenium Peroxidation MS, IBD, (102‑104,
 inhibition PD, psoriasis 107)
N‑acetylcysteine Peroxidation RA, SLE (108,109)
 inhibition
Polyphenol Peroxidation RA, IBD, (111‑116)
 inhibition IDDM, PD
α‑tocopherol Peroxidation RA, MS, (100‑102)
 inhibition PD

RA, rheumatoid arthritis; PD, Parkinson's disease; MS, multiple 
sclerosis; IBD, inflammatory bowel disease; SLE, systemic lupus 
erythematosus; IDDM, insulin‑dependent diabetes mellitus; AIH, 
autoimmune hepatitis.
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RA (115), and licorice could improve symptoms in patients 
with PD (116).

Although the aforementioned experiments posited lipo‑
philic antioxidants as having potential role in the therapy of 
autoimmune disease, larger and more in‑depth studies are 
required to determine the exact impact of various polyphenols 
in the treatment of autoimmune disorder.

17. Conclusion

The present review summarized research on ferroptosis in 
autoimmune disorders and discussed ferroptosis as a prom‑
ising therapeutic target. Although autoimmune diseases are 
heterogeneous in manifestation, there are commonalities 
between these disorders with respect to ferroptosis. Among 
these key commonalities is inflammation (117,118). As an 
important part of regulated cell death, ferroptosis stimulates 
release of DAMPs and inflammatory cytokines, leading to 
activation of immune response and eventually promoting the 
development of autoimmune disease.

Recently, the role of ferroptosis in autoimmune diseases 
has been reviewed. Fan et al (11) highlighted crosstalk 
between ferroptosis and different immune cells and discussed 
the role of ferroptosis in autoimmune disease and Lai et al (10) 
also discussed how ferroptosis contributes to the pathogenesis 
of SLE, RA and IBD. However, the autoimmune diseases 
included in the aforementioned reviews are relatively limited 
and did not summarize the association between ferroptosis 
and autoimmune response. Hence, the present review is more 
comprehensive and may provide more information about the 
association between ferroptosis and autoimmune disease.

Even though recent evaluations have investigated ferrop‑
tosis in autoimmune disorders, the association between this 
cell death type and autoimmune diseases is relatively unde‑
veloped. Therefore, more studies are required to determine 
the association between ferroptosis and autoimmune disease, 
including Graves' disease, Hashimoto thyroiditis, coeliac 
disease, Addison disease and autoimmune myocarditis and 
polyendocrine syndrome type 2. Additionally, although 
numerous ferroptosis‑related reagents have been investigated 
in the treatment of various autoimmune diseases, the reported 
efficacy pertains mainly to basic studies, patient sample sizes 
and follow‑up periods were relatively limited. Hence, larger 
clinical trials must be performed to highlight and confirm the 
treatment values of ferroptosis‑associated regents.

In summary, ferroptosis plays a critical role in the patho‑
genesis of autoimmune diseases and is a promising therapeutic 
target for autoimmune diseases.
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