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INTRODUCTION 
 
The lymphatic vascular system functions to regulate 
tissue fluid transport and facilitate macromolecular 
absorption [1]. Tissue fluid is collected from the 
interstitial space by lymphatic capillaries and then 
transported through collector lymphatic vessels back into 
the blood stream [1, 2]. The recirculation of fluid and 
cells through extensive lymph transport is required  
for the maintenance of homeostasis [3, 4]. Lymphatic 
vessels are also key routes for the trafficking of immune 
cells from tissues to lymph nodes during immune 
responses [5]. 
 
The aging process induces changes in structure and 
function of lymphatic networks [6]. Lymphatic-related 
diseases are prevalent in elderly, such as lymphedema 
[7]. In 1960s, the specific “varicose bulges” in muscular 
lymphatic vessels were observed and this bulges were 
increased with age [8, 9]. Muscle cell atrophy, elastic 
elements destruction, and aneurysm-like formations were 
also found in aged lymphatic vessels [10–12]. Aging 
associated alterations in lymphatic contractility decrease  

 

pump efficiency which result in excessive retention of 
tissue fluid within interstitial spaces [13, 14]. Reduced 
responsiveness to inflammatory stimuli in aged 
lymphatic vessels decreases the normal capacity to react 
against foreign organisms [15]. The occurrence of high 
permeability is caused by the loss of glycocalyx and the 
dysfunction of junctional proteins [6, 16, 17]. In addition, 
increased caspase-3 activity, the dissociation of the VE-
cadherin/catenin complex and the low expression of actin 
cytoskeleton that occur in aged blood vessels may also be 
seen in aged lymphatic vessels [16, 18]. Knowledge of 
the regulatory mechanisms underlying in these disorders 
is critical to our understanding of the aging-related 
diseases of lymphatic vessels. 
 
Structure of lymphatic vessels and their functions in 
lymph transport 
 
The initial lymphatic vessels are dispersed in the 
interstitial space of parenchymal organs [6, 19]. These 
lymphatic capillaries are composed solely of a layer of 
lymphatic endothelial cells that are directly anchored to 
the extracellular matrix through filaments [2, 20–22]. 
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ABSTRACT 
 
Lymphatic vessels maintain body homeostasis by recirculation of fluid and cells. Cell senescence induces 
lymphatic dysfunction. Impaired contractile function is caused by low muscle cell investiture and decrease of nitric 
oxide in aged lymphatic collectors, leading to poor drainage of lymph. Aging-induced loss of endothelial glycocalyx 
and production of inflammatory cytokines increases permeability of lymphatic vessels. In addition, aging-
associated basal activation of mast cells delays immune response. In this review, we summarize the structural and 
pathological changes of aged lymphatic vessels, and discuss the underlying molecular mechanisms. 
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The distinctive oak leaf-shaped endothelial cells of 
initial lymphatics are loosely apposed with overlapping 
borders and linked with each other by discontinuous, 
button-like junctions [4, 23]. Regions between buttons 
are open to allow the entry of fluid and cells without 
repetitive formation and dissolution of intercellular 
junctions [4]. These specific structures may function as 
lymphatic primary valves that prevent the tissue fluid 
taken up by lymphatic capillaries to be released back 
into the interstitial space [24] (Figure 1B). 
 
Blind-ended lymphatic capillaries converge into the 
larger collecting lymphatic vessels [4, 25]. Lymphatic 
collectors are comprised of spindle-shaped endothelial 
cells with a complete basement membrane covered by 
one or more muscle layers [4, 25] (Figure 1C). The 
secondary valve structures inside the collecting lymphatic 
vessels separate two adjacent lymphangions to prevent 
the back-flow of lymph and to overcome opposing 
pressure gradients [26–28]. Collecting lymphatic 
endothelial cells are connected to each other through 

continuous zipper-like junctions, similar to those in blood 
vessels [4]. The transition from the button-like junctions 
of initial lymphatics to zippers in collecting lymphatics is 
typically abrupt in individual vessels [4]. 
 
The constituents of lymph include extravasated fluid, 
macromolecules and immune cells [2]. These elements 
in peripheral tissues enter initial lymphatic vessels 
through the opening of primary valves or the vesicular 
transport of endothelial cells [4, 24, 29]. Lymphatic 
collectors gather initial lymphatic fluid and propel 
lymph forward by spontaneous contractions of the 
surrounding muscle layers [30]. This driving force 
promotes the unidirectional flow of lymph fluid into the 
afferent lymphatic vessels of lymph nodes [1, 31]. The 
afferent lymphatic vessels convey lymph into the sub-
capsular sinus and along the lymph node sinus toward 
the efferent lymphatic vessels [1, 32]. The lymph then 
drains into the thoracic duct or the right lymphatic duct, 
and returns to venous circulation through left and right 
subclavian veins, respectively [1, 33, 34] (Figure 1A). 

 

 
 

Figure 1. Lymph transport along lymphatic vessels. (A) Unidirectional lymph flow route: lymphatic capillaries collect peripheral tissue 
fluid and converge into larger collecting vessels, then lymph drains into the lymph node from the afferent lymphatic vessels and flows out 
from the efferent lymphatic vessel. Afterwards lymph fluid flows through the thoracic duct and the right lymphatic trunk, eventually enters 
into venous circulation. Arrows indicate the direction of lymph flow. (B) Interstitial fluid, macromolecules and immune cells which 
extravasate from blood vessels are collected by lymphatic capillaries. Initial lymphatics are composed of a layer of oak leaf-shaped 
endothelial cells and lack of muscle layers. (C) Lymphatic collectors contain intraluminal valve and SMC layers that enable the unidirectional 
lymph flow. 
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Aging-associated changes in collector lymphatic 
muscle cells investiture 
 
The primary function of collector lymphatic vessels are 
to transport lymph back into the blood circulatory 
system [2]. The intrinsic contractile activities generated 
by lymphatic muscle cells determine the forward 
movement of lymph against an adverse pressure gradient 
[26, 27]. The lymphangion, the structural unit of 
lymphatic collectors, is divided into three parts: pre-
valve zone, valve zone, and post-valve zone [35, 36]. 
Independent contraction of lymphangions propagates the 
peristalsis-like wave [37]. 
 
Studies on aged lymphatic vessels have demonstrated  
that the aging process changes lymphatic muscle cell 
composition [10]. As shown in images of mesenteric 
lymphatic vessels (MLV) immunohistochemically labeled 
for actin, zones located upstream (pre-valve zones) and 
above (valve zones) lymphatic valves exhibit significantly 
less muscle cell investiture with discontinuous and 
irregular muscle cell organization in aged groups [10]. 
These low muscle cell investiture zones consist of 
longitudinally-oriented muscle cells which connect 
adjacent lymphangions [10]. Muscle cells in these zones 
may have an impact on lymphatic valve gating and 
electrical coupling between lymphangions, while aging 
associated changes in longitudinally oriented muscle cells 
may alter these two functions [10, 38, 39]. In the elderly, 
decreased number of muscle cells surrounding lymphatic 
valve may limit the ability of these cells to mediate bio-
directional propagation of contractile waves [10, 38]. In 
addition, loss of muscle cells may lead to decrease in 
lymphatic productivity (mainly through the reduction of 
contractile frequency), impaired lymphatic valve closure 
and subsequent reflux of lymph in aged lymphatic 
collector vessels [39]. Compromised pathogen transport 
by aged lymphatic collectors has been shown [6], and 
pathogens may spread in the opposite direction of normal 
lymph flow due to possible disruption of lymphatic valve 
gating [10]. Furthermore, the thin-walled low muscle cell 
investiture zones in aged lymphatic vessels may transform 
into aneurysm-like formations at high pressure [10]. The 
aneurysm-like formations are the ideal places for the 
development of low-velocity turbulent lymph flow, and 
the accumulation of various molecules, pathogens, and 
cancer cells [10]. These noxious substances may 
disseminate across the thin lymphatic wall, and decrease 
the ability of immune system to control infectious in 
aging. Further experimental work are needed to confirm 
these perspectives. 
 
On the contrary, the downstream (post-valve zones) 
lymphatic valves surrounded by circularly-oriented 
muscle cells do not show any significant aging-
associated difference in muscle cell investiture [10]. 

Muscle cells in these zones constitute 92–95% percent of 
total vessel length with a relatively consistent muscle 
investiture even in aged groups [10]. As the major cells 
to generate the contractile force, muscle cells in post-
valve zones are necessary for lymph pump activity [40]. 
Since the high muscle cell investiture of post-valve 
zones was not affected by aging, the aging-associated 
inhibition of amplitude of lymphatic contractility is not 
as prominent as the aging-associated reduction of 
lymphatic contractile frequency under resting condition 
[41, 42]. 
 
The aging process reduces the levels of proteins that 
regulate muscle contraction [6]. Proteomic profiling of 
rat mesenteric lymphatic vessels was performed on 9-
month-old (adult) and 24-month-old (aged) rats [6]. The 
muscle contractile proteins (troponin, and myosin), 
cytoskeleton-associated proteins (actin, gelsolin, and 
dynein), and myosin binding proteins are substantially 
reduced in the lymphatic collectors isolated from aged 
rats [6]. Na+, K+, and Ca++ channels, which are 
involved in generation of muscle cell action potential 
and induction of cell depolarization, are also decreased 
in lymph collectors of 24-month-old rats [6]. Down-
regulation of muscle contraction proteins may mediate 
aging-inhibited lymphatic pump activity. 
 
Aging-associated alteration of NO–dependent 
regulatory mechanisms 
 
NO-dependent regulatory mechanisms control lymphatic 
contractility and lymph flow in lymphatic vessels [42]. 
Under normal conditions, there are multiple sources of 
nitric oxide (NO) in the lymphatic vasculature [26, 43–
46]: 1) endothelial NO synthase (eNOS) from lymphatic 
endothelial cells; 2) inducible NO synthase (iNOS) from 
immune cells or lymphatic muscle cells; and 3) neuronal 
NO synthase (nNOS) from the perivascular lymphatic 
nerves. The role of nNOS in regulating lymphatic 
contractions still requires further exploration. The 
following section focuses on NO production from eNOS 
and iNOS. 
 
eNOS in lymphatic endothelial cells is required for 
maintaining normal contractile events under 
physiological conditions [46]. During the contraction 
cycle, the intrinsic spontaneous pumping activities 
promote sustained forward flow which change pulsatile 
shear stress [47]. The lymphatic endothelium is highly 
sensitive to flow/stress and potentially generates NO 
[26]. The phasic generation of NO acts on lymphatic 
muscle layers concomitantly with the reduction of 
contractile frequency and tone [30, 48]. This 
spontaneous transient suppression of pump events is 
essential for increased diastolic filling of lymphangions 
[49]. NO inhibits vasomotion primarily through the NO-
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induced production of cyclic GMP (cGMP) and the 
subsequent activation of both cGMP- and cAMP-
dependent protein kinases (PKG and PKA) [49, 50]. 
The NO/cGMP regulatory pathway inhibits Ca++ 
release from intramyocellular stores and affects the 
pacemaker events of lymphatic muscle cells, leading to 
a decrease in contractile amplitude and frequency [49, 
51, 52]. Gasheva et al compared the NO-dependent self-
regulatory mechanism between an adult group and an 
aged group in the thoracic duct (TD) [13]. In adult rats, 
NO is produced from eNOS activity in the lymphatic 
endothelial cells in response to imposed flow [45], 
(Figure 2A). With an increase in imposed flow, the 
enhanced eNOS activity mediates the inhibition of the 
lymph pump in adult rats [48]. This inhibition reduces 
lymphatic pacemaker activity and contraction frequency 
[13]. This kind of spontaneous transient depolarization 
is essential for increased diastolic filling and the 
subsequent production of a larger contraction amplitude 
[45]. In contrast, the TD segment in old rats behaves 
differently in response to the imposed flow [13] (Figure 
2B). No significant inhibition of lymph pump occurs in 
the aged group at high levels of imposed flow [13]. 
Furthermore, the contraction frequency and fractional 
lymph flow is unchanged in comparison with the adult 
group [13]. This aging-related alteration illustrates that 
the self-regulatory adjustment of lymphatic vessels is 
reduced to the changes in lymph flow [45]. Further 
experiments demonstrated that the reversal of 
eNOS/iNOS activity causes contractile functional 
impairment in the aged group [13]. 
 

A chronic inflammatory environment often exists in the 
elderly [53, 54]. Excessive NO produced by 
CD45+CD11b+Gr-1+ myeloid cells overwhelms the 
spatial and temporal NO gradients produced by eNOS 
during inflammation [13, 43]. iNOS- derived NO may 
cause continuous relaxation of peri-lymphatic smooth 
muscle cells (SMCs), increase of vessel diameter, and 
decrease of inotropy, leading to reduction of contraction 
strength [43]. Therefore, we proposed that increased 
iNOS activity in the aged causes lymphatic vessels to be 
less responsive to imposed flow due to the presence of 
chronic inflammatory environments. In addition, NO is 
synthesized from L-arginine as a substrate for NO 
synthases, particularly for eNOS [55]. Ageing-
induced up-regulation of arginase, the enzyme 

that degrades L-arginine, reduces L-arginine 

available for eNOS [56]. Thus, synthesis of NO is 
compromised in the circulation of the elderly [57]. 
Decreased eNOS activity leads to the loss of ability to 
regulate imposed flow, and consequently, the lymphatic 
vessels of aged rats are unable to adapt their pumping 
ability to transport the increasing level of lymph flow [13, 
45]. Quantitative analyses also found an aging-related 
reversal in eNOS/iNOS expression in the TD segment 
[13]. The data showed a significant decrease in the 
relative levels of eNOS and a dramatic increase in the 
iNOS levels in old rats [13]. Lower sensitivity to the 
imposed flow induced by iNOS causes difficulties in the 
maintenance of the lymphatic contraction efficiency and 
adequate diastolic filling [11, 13]. Therefore, the 
lymphatic vessels of aged rats fail to appropriately adapt 
their contractility to various preload/ after load challenges. 
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Figure 2. NO–dependent regulatory mechanisms in aged lymphatic vessels. (A) In adult lymphatic vessels, the enhanced eNOS 
activity mediates the transient inhibition of contraction frequency to adapt the load by the increase of imposed flow. (B) In aged lymphatic 
vessels, increased iNOS level renders the contractile parameters unchanged in response to increased imposed flow. 
Aging-related alteration of glycocalyx and 
intercellular junctions of lymphatic vessels 
 
The lymphatic endothelial cell surface is covered by  
the glycocalyx layer on the lumen side [6]. The  
main components of the substrate layer bind to the  
endothelial membrane through several “backbone” 
molecules [58]. These molecules contain proteoglycans 
with a core protein and one or more long-branched 
glycosaminoglycan side-chains, as well as glycoproteins 
with short-branched carbohydrate side-chains [58–60]. 
Embedded in and on top of the grids of proteoglycans 
and glycoproteins are soluble components from blood 
stream [58, 61], which are also the components of lymph 
fluid. The glycocalyx functions as a barrier between 
lymphatic fluid and the endothelium to prevent immune 
cells and pathogens from adhering to the endothelium [6, 
62, 63]. Zolla et al reported a significant loss of 
glycocalyx with a reduction in thickness and destruction 
in continuity in lymphatic endothelial membranes from 
aged rat [6]. This observation was in contrast with the 
intact, continuous layer covering cell membranes from 
adult lymphatic vessels [6, 18] (Figure 3A). The global 
proteomic analysis of ultrastructural changes of 
glycocalyx composition also demonstrated a dramatic 
difference between the adult and aged groups [6]. The 
thin glycocalyx layer is impaired in its ability to limit 
certain pathogens from adhering to the endothelial  
cell membrane and becomes hyperpermeable in the 
lymphatic vessels from aged rats [62, 64]. Thus in aged 
lymphatic vessels, pathogens could escape more easily 
from the collectors into surrounding tissue, along  
with an increased leakage of lymph fluid and immune 
cells [6, 65]. 
 
The effect of aging-related hyperpermeability is also 
observed in blood vessels. Adherens junctions consisting 
of vascular endothelial cadherin (VE-cadherin) and β-
catenin maintain intercellular permeability in both blood 
vessels and lymphatic vessels [16, 17, 66]. VE-cadherin 
is a type of trans-membrane protein which connects 
adjacent endothelial cells through calcium-dependent 
homophilic binding of its extracellular domain [67]. 
Another component, β-catenin, is an intracellular protein 
that links cadherin with the actin cytoskeleton [16]. 
Studies have found that aging process may affect all of 
the adherens junctional proteins [68]. First, global 
proteomic profiling of the lymphatic vessels from aged 
rats revealed a significant decrease in cadherins [6]. The 
downregulation of cadherins expression results in a 
decreased number of adherens junction complexes [18, 
69]. In contrast, β-catenin is a key regulator of barrier 
integrity and a known substrate for caspase 3, which is an 

effector caspase in the apoptotic signaling pathway [70–
73]. Recent research found that increased activity of the 
intrinsic apoptotic signaling pathway in aged vessels 
leads to high expression of proapoptotic members (Bak, 
Bax) [18]. Caspase 3 is activated by Bak and mediates 
barrier dysfunction through the disruption of β-catenin 
[16, 18]. This series of reactions eventually causes 
dissociation of the VE-cadherin/ β-catenin complex and 
results in vascular hyperpermeability [18, 74] (Figure 
3B). In addition to adherens junctions, tight junctions are 
an equally important determinant of vascular 
permeability of blood vessels and lymphatic vessels [68]. 
As part of the tight junction, occludin and claudin-5 
showed significantly low expression level in senescent 
endothelial cells [68, 75]. In recent studies, cytosolic 
phospholipase A2α (cPLA2α), regarded as a critical 
protein in the formation and maintenance of tight 
junctions, also exhibited reduced expression levels in 
senescent endothelial cells [68, 76]. We hypothesize that 
the mechanism of intercellular hyperpermeability caused 
by the disruption of endothelial cell-cell junctions in aged 
blood vessels may also exist in aged lymphatic collectors. 
Further investigations are needed to delineate the detailed 
mechanisms related to impaired barrier function in aged 
lymphatic vessels. 
 
Aging-related changes in the composition and 
functionality of mast cells 
 
Located in tissues adjacent to lymphatic vessels, mast 
cells produce, store and release numerous vasoactive 
mediators [15, 77, 78]. The vasoactive molecules serve as 
initiators of the immune response [78]. By releasing 
various inflammatory molecules, sensitized mast cells 
recruit certain types of immune cells to counteract the 
acute invasion of foreign pathogens and allergens [79]. 
Histamine, as the major mast cell-derived substance, is 
necessary to activate nuclear factor-κB (NF-κB) [80, 81]. 
Proper function of the mast cell/histamine/ NF-κB axis is 
crucial for the reactions of lymphatic vessels to pro-
inflammatory stimuli [82, 83]. However, the aging 
process modifies the normal status of mast cells and 
alters the response to acute inflammation [82]. Further 
studies revealed that under resting conditions a higher 
degree of pre-activation of mast cells is located close to 
MLVs in aged groups [82], (Figure 4A). In basal 
conditions, the number of activated mast cell in all 
mesenteric segments is significantly higher in 24-month-
old rats compared with 9-month-old rats [15, 82] (Figure 
4B). Substantial inflammatory mediators, such as 
histamine, are released due to increased pre-activation of 
mast cell degranulation [15, 82]. Subsequently, activated 
mast cells and histamine release stimulate NF-κB 
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signaling, which increases the production of cytokines in 
lymphatic tissues from aged rats [82, 84]. Eventually, 
high basal concentrations of cytokines and massive 

inflammatory factors indicate aging-associated chronic 
inflammatory environment [54]. Pro-inflammatory 
cytokines and LPS induces lymphatic endothelial cell 

 
 

Figure 3. Glycocalyx layer and intercellular junctions of lymphatic vessels during the aging process. (A) In adult lymphatic 
vessels, the intact, continuous glycocalyx layer covers lymphatic endothelial cells. Detailed view in the box shows the normal glycocalyx layer 
and intercellular junctions. (B) Aged lymphatic vessels display thin, discontinuous glycocalyx layer. Detailed view in the box shows a significant 
loss of glycocalyx and adherens/tight junctions. Increased pro-apoptotic factor bak activates caspase-3 to disrupt the downstream protein β-
catenin, which leads to decreased adherens junctions and impaired barrier function. 
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Figure 4. Mast cells in peri-lymphatic tissues. (A) Lower level pre-activation of mast cells in adult peri-lymphatic tissues under resting 
conditions. (B) In aged peri-lymphatic tissues, increased number of mast cells are activated and secret massive amounts of histamine, leading 
to hyperpermeability of lymphatic vessels. 
monolayer barrier dysfunction and hyperpermeability 
[85]. In addition, the high osmotic pressure in aged 
lymphatic tissue caused by inflammatory cytokines, may 
contribute to the formation of lymphedema, but it 
remains to be proven by additional experimental work. 
 
An in vivo model of lipopolysaccharide (LPS) induced 
acute peritoneal inflammation of adult (9-month-old) 
and aged (24-month-old) rats showed that the mean 
number of activated mast cells increases in both age 
groups [82]. However, the changes between untreated 
and LPS-treated groups are much less in aged rats [15, 
82], signifying the decreased reactivity of mesenteric 
mast cells to acute inflammation [82]. Activated mast 
cells in peri-lymphatic tissue from aged rats under basal 
conditions may limit the availability of sufficient 
numbers of mast cells for acute stimulation [15]. 
Consequently, no significant increase of histamine/NF-
κB activation is observed in aged mesenteric tissue in 
response to acute inflammation [82]. The compromised 
mast cell/histamine/ NF-κB activation in the elderly 
diminishes the sensitization of CD11b positive cells, and 
decreases the release of NF-κB-regulated cytokines [82, 
86]. Given that the CD11b positive cells could be 
macrophages, monocytes, and active neutrophils [87, 
88], the alteration of the functional status of mast  
cells eventually decreases the recruitment, proper 
trafficking, and the activation of immune cells in aged 
mesenteric tissue [89]. Taken together, mast cells 
showed higher basal activation under resting conditions 
and a reduced response to acute inflammatory stimuli, 
which contributes to the aging-associated decrease in 
immune response and increase in susceptibility to 
infection [15, 90]. 
 
CONCLUSIONS 
 
In this review, we summarize the anatomical and 
functional changes in aged lymphatic vessels. The aging-
associated remodeling of the vascular wall is 
characterized by decreased muscle cells and enlarged 
lymphatic diameter, which lead to contractile 
dysfunction. In addition, eNOS/iNOS disturbances 
diminish contractile ability with increased extrinsic 
lymph flow. Aging-related hyperpermeability, resulting 
from decreased glycocalyx and intercellular junctions, 
contributes to bacterial escape in aged lymphatic 
vasculature. Meanwhile, aging induces the basal 
activation of peri-lymphatic mast cells, restricting the 
recruitment of immune cells and affecting the reactions 
to acute inflammation. Thus, aging is a major risk factor 
for decreased pump activity, increased permeability, and 
delayed immune response in lymphatic system. 

Understanding the mechanisms underlying lymphatic 
aging is crucial for the treatment of vascular diseases in 
the elderly. 
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