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Abstract

 

The 

 

��� 

 

T cell receptor (TCR) HA1.7 specific for the hemagglutinin (HA) antigen peptide
from influenza A virus is HLA-DR1 restricted but cross-reactive for the HA peptide presented
by the allo-major histocompatibility complex (MHC) class II molecule HLA-DR4. We report
here the structure of the HA1.7/DR4/HA complex, determined by X-ray crystallography at a
resolution of 2.4 Å. The overall structure of this complex is very similar to the previously re-
ported structure of the HA1.7/DR1/HA complex. Amino acid sequence differences between
DR1 and DR4, which are located deep in the peptide binding groove and out of reach for di-
rect contact by the TCR, are able to indirectly influence the antigenicity of the pMHC surface
by changing the conformation of HA peptide residues at position P5 and P6. Although TCR
HA1.7 is cross-reactive for HA presented by DR1 and DR4 and tolerates these conformational
differences, other HA-specific TCRs are sensitive to these changes. We also find a dependence
of the width of the MHC class II peptide-binding groove on the sequence of the bound pep-
tide by comparing the HA1.7/DR4/HA complex with the structure of DR4 presenting a
collagen peptide. This structural study of TCR cross-reactivity emphasizes how MHC sequence
differences can affect TCR binding indirectly by moving peptide atoms.

Key words: T cell receptor • MHC class II • cross-reactivity • antigen recognition • X-ray 
crystallography

 

Introduction

 

The MHC-restricted recognition of antigen peptides by
TCRs is a central event in the cellular immunity against
pathogens and in the immune surveillance of cancer cells. It
is also directly involved in immunological diseases, such as
autoimmune diseases, hypersensitive reactions, and allore-
active responses after organ transplantations. The recent
crystal structures of TCRs in complex with peptide antigen
presented by MHC class I and class II molecules identify
atomic contacts between the TCR on one side and the an-
tigen peptide and the MHC molecule on the other side and
give a detailed picture of the structural diversity of this in-
teraction (1–7). Although the different structures represent
different biological situations (immune response against
pathogens, positive selection in the thymus, alloreaction)

no characteristic structural features attributable to the par-
ticular biological situation are obvious. The overall mode
of TCR binding to pMHC is rather similar for all these
structures. The extremely variable CDR3s are located over
the center of the pMHC surface and make contacts with
the antigen peptide as well as with the MHC 

 

�

 

-helices,
whereas the less variable CDR loops contact the termini of
the antigen peptide and residues of the MHC helices adja-
cent to it (CDR1s) or exclusively contact the central parts
of the MHC helices (CDR2s). Although in all these com-
plexes TCRs bind to pMHC in a similar overall orienta-
tion and topology, the shapes and chemical properties of
the interacting surfaces in these complexes are highly di-
verse and no conserved contacts between the CDR loops
of the TCR and the pMHC exist that could determine this
orientation (for a review, see references 8 and 9).

Based on the structures of the TCR–pMHCI com-
plexes, recent mutational studies addressed the functional
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importance of the atomic contacts between the TCR and
the pMHCI systematically by mutating residues of the
TCR, antigen peptide, and MHC molecule involved in in-
termolecular contacts and correlating changes in protein
conformation and thermodynamic and kinetic stability of
the interaction with the outcome of the biological response
(e.g., phosphorylation patterns of TCR and ZAP-70,
cytolytic activity, cytokine production). These studies
showed that (i) the outcome of the biological response cor-
related fairly well with kinetic properties of the TCR–
pMHC interaction (for example, references 10–12; for a
review, see references 13 and 14), (ii) the response does not
correlate with structural changes at the interface (minor
structural changes can have a dramatic effect on the biolog-
ical response) (10, 15), and (iii) the importance of atomic
contacts for functional binding can be similar for all con-
tacts at the interface in some cases but vary strongly in oth-
ers (16–18). Similar systematic experiments for TCRs
bound to antigen peptide presented by MHC class II mole-
cules have not been reported.

We recently solved the crystal structure of the human

 

���

 

 TCR HA1.7 in complex with an immunodominant
peptide epitope of hemagglutinin 

 

*

 

(HA) (HA306–318:
PKYVKQNTLKLAT) from influenza A virus H3N2 pre-
sented by the MHC class II molecule DR1 (4). HA is
bound in an extended conformation deep in the binding
groove of DR1 by a dozen hydrogen bonds between con-
served DR1 residues of the 

 

�

 

-helices and peptide main
chain carbonyl and amide groups (19). Burying of the HA
peptide side chains of Y308 (P1) in a deep pocket and of
Q311 (P4), T313 (P6), L314 (P7), and L316 (P9) in more
shallow pockets of DR1 establishes peptide binding speci-
ficity (20, 21). However, the HA peptide binds promiscu-
ously and can be presented by most of the frequently oc-
curring DR alleles. Due to differences in shape and
chemical properties of the P4, P6, P7, and P9 pockets, HA
residues at the corresponding positions are of varying im-
portance for HA binding to these DR alleles, whereas
Tyr308 at position P1 is always the dominant anchor resi-
due (20, 22–24).

The interaction between the HA antigen peptide and
TCR HA1.7 is dominated by charged interactions be-
tween the three lysine residues of HA at position P-1, P3,
and P8 and glutamate and aspartate residues in CDR3

 

�

 

and CDR1

 

�

 

 of TCR HA1.7 (4, 25). These charged inter-
actions are conserved in the recognition of the HA pep-
tide by other TCRs (21, 25–27). Contacts by TCR
HA1.7 to these three lysines and to other residues that
point upward from the DR1/HA surface (Val309 (P2),
Asn312 (P5), and Leu314 (P7) are important for functional
binding (21, 27–30).

Although TCR HA1.7 is DR1-restricted (DRA1,
DRB1

 

*

 

0101), it is cross-reactive with HA peptide pre-
sented by the allo-MHC class II molecule HLA-DR4
(DRA1, DRB1

 

*

 

0401) (26, 31–33). However, other HA-
specific TCRs are known that do not show this cross-reac-

 

tive behavior (26, 34). To understand the basis of the cross-
reactivity of HA1.7 and that of other TCRs we determined
the X-ray structure of TCR HA1.7 in complex with
DR4/HA at a resolution of 2.4 Å. The structure is very
similar to the TCR HA1.7/DR1/HA structure. However,
local conformational changes of HA peptide residues in-
duced by MHC allelic differences are observed which ob-
viously are tolerated by TCR HA1.7 but sensed by other
TCRs. Comparison with the DR4/Col structure indicates
a conformational difference in the DR4 molecule that de-
pends on the sequence of the bound antigen peptide.

 

Materials and Methods

 

Protein Expression, Purification, and Crystallization.

 

Empty
HLA-DR4 (DRA

 

*

 

0101, DRB1

 

*

 

0401) and HLA-DM were
overexpressed from stable Schneider cell lines (35–37) and TCR
HA1.7 with the HA306–318 antigen peptide linked to residue
D1 of the TCR 

 

�

 

-chain via an octapeptide linker was refolded
from 

 

Escherichia coli 

 

inclusion bodies (4). The HA-HA1.7/DR4
complex was assembled by loading the HA peptide that is part of
the p-TCR HA-HA1.7 onto empty DR4 with the help of the
peptide exchange catalyst HLA-DM and purified as described
previously (4). The addition of HLA-DM during complex for-
mation increased the yield of the assembled complex by a factor
of 

 

�

 

4–10.

 

Crystallization, Structure Determination, and Refinement.

 

HA-
HA1.7/DR4 crystals were obtained by streak seeding sitting
drops of 1 

 

�

 

l of protein (10 mg/ml) and 1 

 

�

 

l of well solution
(13% PEG 8000, 1 M NaCl, 100 mM Hepes, pH 7.0) with crys-
tals of HA-HA1.7/DR1 after 12 h preequilibration of the drops
at 18

 

�

 

C (4). Crystals are monoclinic, space group C2, with a 

 

�

 

143.8 Å, b 

 

�

 

 73.3 Å, c 

 

�

 

 123.0 Å, 

 

�

 

 

 

�

 

 108.5

 

�

 

 and one complex
molecule per asymmetric unit.

After briefly soaking the crystals in 20% glycerol, 16% PEG
8000, 1 M NaCl, 100 mM Hepes, pH 7.0, and flash cooling in
liquid nitrogen, X-ray diffraction data were collected from a sin-
gle cryocooled crystal (100K; 20.0–2.4 Å resolution) (see Table I)
at the BIOCARS station 14-BM-C at the APS at Argonne Na-
tional Laboratory using 1 Å wavelength X-rays and a Quantum4
CCD detector. Data processing was performed with HKL2000
(38).

The structure of the complex was determined by molecular
replacement using the program AMoRe (39) and the refined co-
ordinates of the HA-HA1.7/DR1 complex (4) as search models.
Solutions for the TCR HA1.7 and DR4/HA were found in in-
dependent rotation and translation searches (R 

 

�

 

 31.4, corr. co-
eff. 

 

�

 

 74.2). Rigid-body refinement of the individual domains of
this model with CNS (40) yielded R

 

free

 

 

 

�

 

 31.1% (R

 

work

 

 

 

�

 

29.5%) used all the data between 20 and 2.4 Å resolution.
To avoid model bias, sigma-A-weighted (2mF

 

o

 

-DF

 

c

 

) simu-
lated annealing omit maps (composite omit maps) and (mF

 

o

 

-DF

 

c

 

)
electron density maps (41) were used for model building and cor-
rection in 

 

O

 

 (42). For all residues that are different between DR4
and DR1 unambiguous electron density could be observed in the
initial maps. For the calculation of the R

 

free

 

 value during refine-
ment the same reflections were set-aside in the test set as during
the refinement of the HA-HA1.7/DR1 structure (4).

Simulated annealing torsion angle dynamics, positional, and
individual B factor refinement was performed in CNS using a
maximum likelihood (ML) target. A bulk solvent correction and
anisotropic B-factor tensor were applied throughout the refine-

 

*
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ment. After the R

 

free

 

 had dropped to 26.4% (R

 

work

 

 

 

�

 

 23.1%) wa-
ter molecules were added. The final model includes 813 of 855
residues and 305 water molecules. Weak or no electron density
was observed for residues 105–113 of DR4

 

�

 

, residues 130–132
of the HA1.7 C

 

�

 

 domain, the last 10 residues of the C

 

�

 

 as well as
the C

 

�

 

 domain, for 0–3 residues at the N- or COOH termini of
the different chains and for the octapeptide linker between the
HA peptide and the HA1.7

 

�

 

 chain (see Table I). Electron density
corresponding to the N-linked carbohydrates at Asn78

 

�

 

,
Asn118

 

�

 

, and Asn19

 

�

 

 was observed, but only one (Asn78

 

�

 

,
Asn19

 

�

 

) or two (Asn118

 

�

 

) monosaccharide units could be reli-
ably modeled at each position.

 

Protein Database Code.

 

The coordinates have been deposited
in the PDB under entry code 1J8H.

 

Results

 

Structural Overview over the Complex.

 

A stable complex
between the 

 

���

 

 TCR HA1.7 and DR4/HA was prepared
as described recently for the TCR HA1.7/DR1/HA com-
plex, exploiting the strategy of flexibly linking the HA an-
tigen peptide to the V

 

�

 

 chain of the TCR (4). Crystals of
the complex were of space group C2 and isomorphous to
crystals of the TCR HA1.7/DR1/HA complex. The
structure was solved by molecular replacement using the
TCR HA1.7/DR1/HA complex as the search model and
great care was taken to avoid model bias by the search
model (Materials and Methods). For all allelic differences
between DR4 and DR1 unambiguous electron density
could be observed in the initial electron density maps. The
structure was refined to a final R value of 0.208 and R

 

free

 

value of 0.245 at a resolution of 2.4 Å (Table I).
The structures of the TCR HA1.7/DR4/HA complex

and the TCR HA1.7/DR1/HA complex (4) are very sim-
ilar (RMSD for C

 

�

 

 atoms is 0.34 Å). The TCR HA1.7
binds similarly to DR4/HA and to DR1/HA with the V

 

�

 

domain binding to the NH

 

2

 

-terminal half of the HA pep-
tide and the center and COOH-terminal half of the 

 

�

 

1

 

�

 

-helix and the V

 

�

 

 domain binding to the COOH-termi-
nal half of the peptide and to the center and COOH-ter-
minal half of the 

 

�

 

1 

 

�

 

-helix (Fig. 1). Only small conforma-
tional differences are observed in the polypeptide mainchain
of the HA peptide and the MHC class II molecule around
polymorphic residues (see below).

 

Allelic Differences between DR1 and DR4 Determine the HA
Peptide Conformation.

 

Although the allelic differences be-
tween DR1 and DR4 are not accessible for direct contact
by the TCR, these residues nevertheless influence the anti-
genic properties of the pMHC complex by inducing con-
formational differences in the peptide antigen. There are 15
allelic differences in the DR 

 

�

 

-chain between DR1
(DRB1

 

*

 

0101) and DR4 (DRB1

 

*

 

0401) (Fig. 2 A). Nine of
the allelic differences are located in the 

 

�

 

-strands that form
the floor of the peptide binding groove and thereby, to-
gether with the allelic difference at position 71

 

�

 

 in the
center of the 

 

�

 

1 

 

�

 

-helix, determine the differences in size
and chemical properties of the P4, P6, P7, and P9 peptide
binding pockets (19, 24, 35, 43) (Fig. 2 B). The remaining
five polymorphic positions are located in the linker be-

tween the 

 

�

 

1 and 

 

�

 

2 domain and in the 

 

�

 

2 domain itself,
distant (at least 25 Å) from the interface with the TCR.
Despite these allelic differences the HA peptide is bound in
the same register in the DR4 peptide binding groove com-
pared with the DR1/HA complex, but with some confor-
mational differences. From residue P4 (Gln311) to P7
(Leu314) the HA peptide is bound slightly deeper in the
groove of DR4 and with conformational differences in the
peptide mainchain compared with HA bound to DR1.
In addition, conformational differences are seen in the
sidechains of residue P5 (Asn312) and P6 (Thr313) (Fig. 3).

Polymorphic residues around the P6 pocket influence
the conformation of peptide residue P6 Thr (Fig. 3 A). In
contrast to HA bound to DR1, the sidechain of P6 Thr
points into the P6 pocket of DR4 due to a rotation of –148
degrees about the C

 

�

 

-C

 

�

 

 bond (Chi 1). This rotation leads
to the formation of a hydrogen bond between the P6 Thr

 

�

 

-hydroxyl group and His13

 

�

 

 N

 

	

 

2 atom (Fig. 3 A). Since
this hydrogen-bonding partner is absent in DR1 (His13

 

�

 

 is
replaced by Phe) and the P6 pocket is shallower in DR1
(Val11

 

�

 

 at the bottom of the P6 pocket is replaced by
Leu), the Thr 

 

�

 

-hydroxyl group points upward toward the
TCR (Fig. 3 A). In DR4, the whole P6 Thr residue is
bound slightly deeper in the peptide-binding groove com-
pared with DR1 (C

 

�

 

 of P6 Thr in this structure is 

 

�

 

0.6 Å
deeper in the groove compared with the DR1 structure).

 

Table I.

 

Crystallographic Data

 

(A) Data Statistics
Resolution (Å) 20.0–2.4 (2.49–2.40)
No. unique reflections 46705
Multiplicity 4.5 (4.2)
Completeness 96.9 (96.7)
Average I/

 




 

I 20.6 (4.3)
R

 

merge

 

 (%) 5.8 (33.0)

(B) Refinement statistics (20.0–2.4 Å)
No. of reflections (free) 43905 (2280)
R

 

work

 

 (R

 

free

 

) 0.208 (0.245)
Rmsd bonds (Å) 0.007
Rmsd angles (degree) 1.38

(C) Average B factors
Protein atoms (Å

 

2

 

) 45.6
Sugars (Å

 

2

 

) 83.7
Water molecules (Å

 

2

 

) 48.4

Anisotropic B factors (Å

 

2

 

)
B11

 

 �

 

 

 

�

 

6.19, B22 

 

�

 

 

 

�

 

1.06,
B33 

 

�

 

 7.25
Bulk solvent correction B 

 

�

 

 38.4Å

 

2

 

, k 

 

� 0.35 e/Å3

Rrange � (�hkl|l�<l>|)/(�hkl<l>), hkl � {independent Miller indices}.
Rfree � (�h|Fo�Fc|)/(�hFo), h � {free set, 5% of reflections}.
Rwork � (�h|Fo�Fc|)/(�hFo), h � {working set}.
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The TCR HA1.7 does not contact the P6 Thr sidechain in
either case, but other TCR are sensitive to this difference
(see below).

There is also a conformational difference in peptide resi-
due P5 Asn. In the TCR HA1.7/DR4/HA structure the
residue P5 Asn is slightly tipped and moved toward the �1
�-helix compared with the TCR HA1.7/DR1/HA struc-
ture (Fig. 3 B). The C�, C�, and C� atoms of P5 Asn in
the TCR HA1.7/DR4/HA structure are moved by 0.7 Å,
1.0 Å, and 1.3 Å, respectively, compared with the TCR
HA1.7/DR1/HA structure (coordinate error from Luzzati
plot: 0.3 Å). This location of the mainchain residues P4 to
P6 (Gln311 to Thr313) of the antigen peptide is identical
to the location of the mainchain residues P4 to P6 of the
collagen peptide in the DR4/Col structure (35).

The difference is caused by residue Lys71� of the DR4
�-chain, which in order to form a hydrogen bond with the
mainchain carbonyl group of peptide residue P5 Asn pulls
the carbonyl further into the peptide binding groove and
thereby tips and moves the whole residue toward the �1
�-helix. In DR1, the longer sidechain of Arg 71� can form
the same hydrogen bond with the P5 mainchain carbonyl
group in a more horizontal orientation (Fig. 3 B). The al-
lelic differences of the DR residues 11� (L and V), 13� (F

and H), 26� (L and F), and 28� (E and D) are also in the
vicinity of this peptide conformational difference.

In HA1.7/DR4/HA the HA bound to DR4 lacks one
hydrogen bond between N�2 of P5 Asn and the carbonyl
oxygen of residue Thr97� of the TCR V� chain, relative
to HA1.7/DR1/HA (Fig. 3 B), but has a new hydrogen
bond to O	1 of residue Gln70� of the DR4 �1 �-helix.

Differences in the Conformation of DR4 Bound to HA and
Col Peptides. The conformation of the DR4 peptide-
binding groove depends on the sequence of the bound
peptide. The conformation and location of the polypeptide
main chain of the MHC class II peptide-binding groove is
very similar for the structures of DR1/HA (19), TCR
HA1.7/DR1/HA (4), and the TCR HA1.7/DR4/HA
presented here. The RMSD of the MHC peptide binding
groove of these structures is �0.5 Å and the largest differ-
ence in the C� positions of the polypeptide mainchain is
�1 Å (RMSD: DR1/HA and TCR HA1.7/DR1/HA:
0.38 Å; DR1/HA and TCR HA1.7/DR4/HA: 0.46 Å;
TCR HA1.7/DR1/HA and TCR HA1.7/DR4/HA:
0.29 Å; calculated using residue 5 to 80 of DR1A and 5 to
90 of DR1B). However, the peptide-binding groove of
DR4 in the DR4/Col structure (35) is considerably nar-
rower, due to movements of the �1 �-helix near residues

Figure 1. The structures of TCR HA1.7 bound to
HLA-DR1 and HLA-DR4 are very similar. Superposition
of the TCR V domains and the MHC class II antigen pep-
tide binding groove of the TCR HA1.7/DR4/HA struc-
ture (blue) and the TCR HA1.7/DR1/HA structure (red;
reference 4). The figure was created with MOLSCRIPT
(reference 75).
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62� to 70� of the DR4 �-chain, a region adjacent to the
P4 and P7 pocket (Fig. 4). Compared with DR4 in the
TCR HA1.7/DR4/HA structure, the groove is 2 Å or
12% narrower (the distance between the CA atoms of resi-
due 65� and 67� is 14.0 Å in DR4/Col and 16.0 Å in
TCR HA1.7/DR4/HA).

Discussion
Cross-Reactivity of the HA1.7 TCR with the HA Peptide

Bound to DR4 and to DR1. The T cell line HA1.7 recog-
nizes the HA306–318 antigen peptide from influenza A
presented by HLA-DR1 (DRA*0101, DRB1*0101) and is
also cross-reactive with the HA peptide presented by
HLA-DR4 (DRA*0101, DRB1*0401) and other DR4 al-
leles (Table II) (31, 32, 44). We recently solved the struc-
ture of the HA1.7-TCR/DR1/HA complex (4) and com-
pare the structure of the same TCR in complex with
DR4/HA here. The recognition of a peptide/MHC pair
by a TCR usually depends on the sequence of the antigen
peptide and the MHC molecule at those positions that are

directly contacted by the TCR (34, 45–49). Data also sug-
gest that the antigenic properties of the pMHC surface can
be modulated by residues not in direct contact by the
TCR (34, 49–55) (for a review, see reference 56). The
conformation and antigenicity of the bound peptide is not
only strongly influenced by MHC residues that form the
peptide binding pockets, but also by the peptide anchors
that point into these pockets. Even subtle changes in these
anchors can interfere with the T cell response (51). We
have seen here how MHC and peptide residues not in-
volved in direct contact by the TCR alter the antigenic
properties of a peptide/MHC surface by the mutual influ-
ence of the conformation of the bound peptide and the
MHC molecule.

In the structures of both TCR HA1.7 bound to DR1/
HA and bound to DR4/HA, the TCR binds virtually
identically to the pMHC surface and the low RMSD of
the C� atoms (0.32 Å) indicates that the overall structures
of both complexes are very similar. However, small struc-
tural differences occur locally around MHC residues that
differ between the DRB1*0101 and DRB1*0401 alleles.

Figure 2. Allelic sequence differences between DR1
and DR4 are not accessible for direct contact by the TCR.
(A) Sequence alignment of the DR1 (DRB1*0101) and
DR4 (DRB1*0401) �-chains. For DR4 only the 15 resi-
dues differences are shown. (B) Allelic differences in the
peptide-binding groove of DR1 (top row; reference 4) and
DR4 (bottom row). Those residues that are different be-
tween DR1 and DR4 and map to the surface of the pep-
tide-binding groove are colored. The HA peptide (yellow)
is shown as a stick model in the partial view (left) and as a
solvent accessible surface in the view of the whole pep-
tide binding groove (right). Figures were prepared with
GRASP (reference 76).
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These residues are mainly located at the bottom of the
peptide binding groove or in the �1 �-helix with the
sidechain pointing into the peptide binding groove so that
after binding of the HA peptide they are buried away
from the TCR (Fig. 2 B). Despite the similarity at the
pMHC surface, HA-specific T cell lines exist that are not
cross-reactive for HA presented by DR1 and DR4 (Table
II) (26, 34).

TCR Recognition of Small Structural Differences near P5 and
P6, not Recognized by the HA1.7-TCR. Although the HA
peptide binds in the same register to DR1 and DR4, the
center and COOH-terminal half of the peptide binds
deeper in the groove and closer to the �1 �-helix of DR4.
These slight differences are caused by allelic differences in
the �-chain sequence, which are mostly located under pep-
tide residues P5 to P9 (Fig. 3). Published T cell activity and

Figure 3. DR1 and DR4 allelic sequence differ-
ences cause conformational differences in the HA
peptide structure. Changes around HA peptide res-
idue P6 Thr313 (A) and P5 Asn312 (B) when pre-
sented by DR1 (left; reference 4) and DR4 (right).
The conformation of the HA antigen peptide
(yellow) bound to DR1 and DR4 (gray) depends
on polymorphic MHC residues (magenta) and in-
fluences recognition by the TCR (green) (Van-
der-Waals contacts: dashed black lines; potential
hydrogen bonds: dashed red lines). Side views into
the peptide binding groove are shown with the HA
peptide N- to COOH-terminal direction from
right to left in A and left to right in B. To allow a
better view into the peptide binding groove, the
helix in front (�1 domain �-helix in A and �1 do-
main �-helix in B), which would otherwise block
the view, are rendered transparent. Figures were
prepared with MOLSCRIPT (reference 75) and
Raster3D (reference 77).

Figure 4. The sequence of the bound peptide deter-
mines the width of the DR4 peptide-binding groove.
Differences between the structure of the �1 �-helix from
residue 62� to 70� in DR4 presenting the HA peptide
(yellow) and presenting the collagen II peptide, Col 1168–
1180 (red, reference 35). The structure of DR4/HA was
determined in complex with a TCR, while DR4/Col
was not. The figure was prepared with MOLSCRIPT
(reference 75).
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mutagenesis data indicate that the differences in the
sidechains of peptide residues P5 and P6, not recognized by
the HA1.7-TCR, can be recognized by other TCR. (21,
34) (Fig. 3).

His13� is found in all DR4 alleles but is replaced by
Phe in all DR1 alleles, resulting in a difference in the con-
formation of the P6 Thr sidechain (Fig. 3 A). TCR HA1.7
binds both DR4/HA and DR1/HA, tolerating this struc-
tural difference in the HA peptide, apparently because it
does not make a contact to the P6 Thr sidechain. How-
ever, other TCRs are sensitive to this difference (34). 4/5
T cell lines examined by Fu and colleagues (34) were sen-
sitive to changes around the P6 pocket. The HA-specific
DR4-restricted TCRs, 3BC6.6, and KM1HA27 (34), are
not cross-reactive with HA presented by DR1 (Table II).
In these two cases, mutation of His13� at the bottom of
the P6 pocket of DR4 to Phe, typically found at this posi-
tion in DR1, interferes with T cell activation (Table II,
and reference 34). This substitution in DR4 probably dis-
rupts the P6 Thr-His13� hydrogen bond and results in a
P6 Thr conformation similar to that seen with DR1 (Fig.
3 A). Based on the two HA1.7-TCR/DR/HA structures,
we suggest that the lack of cross-reactivity to DR1 and
DR4 HA complexes of the 3BC6.6 and KM1HA27
TCRs is based, at least partly, on sensing the conforma-
tional difference in the conformation of the P6 Thr
sidechain. Tolerance to changes in peptide conformation
and peptide sequence at positions that are not contacted by
the TCR have been described earlier for other TCR/pep-
tide pairs (6).

The additional polymorphism of residue 11�, which is
located at the bottom of the P6 pocket and determines its
depth, seems less likely to influence the conformation of
the P6 Thr sidechain (Fig. 3 A). Residue 11� is Val in all
DR4 alleles and Leu in DR1 alleles, so that the pocket is
deeper in DR4. With a Leu at position 11�, as in DR1,
the pocket is still deep enough to accommodate a Thr
sidechain pointing into the pocket as in DR4.

The orientation of the Thr sidechain facing into the P6
pocket of DR4 and the formation of an additional hydro-
gen bond with His13� that should stabilize peptide binding
is supported by experiments with peptide display libraries.

These studies show that small sidechains with hydroxyl
groups (Ser, Thr), i.e., those that are able to form a hydro-
gen bond with His13�, are preferred at peptide position P6
for binding to DR4, whereas Ala and Gly are preferred for
binding to DR1 (24). A Thr at position P6 seems to be the
second most important peptide residue for peptide binding
to DR4 after the large hydrophobic sidechain at peptide
position P1, whereas the P6 position is of less importance
for peptide binding to DR1 (23, 57, 58).

A conformational difference was also observed in peptide
residue P5 Asn (Fig. 3 B). When bound to DR4 the
sidechain of P5 Asn is tipped toward and closer to the �1
�-helix. This difference is probably caused by the DR
polymorphism at position 71�. Residue 71� is a Lys in
DR4 (DRB1*0401) and an Arg in DR1 (DRB1*0101) and
in both cases forms a hydrogen bond with the mainchain
carbonyl of P5 Asn. Since in DR4 the Lys sidechain is
shorter it apparently “pulls” P5 Asn further into the pep-
tide-binding groove and closer to the �1 �-helix in order
to form the hydrogen bond. Although this difference dis-
rupts another hydrogen bond between the sidechain of P5
Asn and the TCR HA1.7 in the HA1.7-TCR/DR1/HA
complex, the HA1.7-TCR is nevertheless cross-reactive,
tolerating one less hydrogen bonded interaction. However,
the conservative mutation of residue Lys 71� to Arg in
DR4 (Table II) and the substitution seen in DR7 (Lys 71�
to Arg) can interfere with the recognition by three out of
five DR4- and DR7-restricted HA-specific T cell lines that
were examined, (21, 34). With other peptide antigens, the
effect of the substitution at position 71� of DR7 (Lys 71�
to Arg) is less pronounced (55, 59). The two TCR that bind
DR4/HA but not DR1/HA, 3BC6.6 and KM1HA27,
both lose recognition of DR4 as the result of mutations in
DR4 to DR1-like residues in the P5 pocket (Q70R or
K71R)(Table II), suggesting that this small structural differ-
ence at P5 Asn is sensed by these TCR but not by the
HA1.7-TCR.

The positively charged residue Lys/Arg at position 71�
plus other residues in its vicinity, Leu67 — — Gln70 Lys/
Arg71, collectively described as the shared epitope, have
been implicated in being responsible for the susceptibil-
ity to rheumatoid arthritis in patients that carry the
DRB1*0101, DRB1*0401, or DRB1*0404 allele (refer-
ences 60 and 61; for a review, see reference 62).

The promiscuous binding of an antigen peptide to
many different MHC class II molecules an their recogni-
tion by cross-reactive and cross-restricted T cells is not
unique to the HA system. The P2 peptide from tetanus
toxin (TT) shows a similar promiscuous binding to many
different DR molecules. P2 TT peptide-specific T cells
are known that are cross-reactive (less specific) and can
recognize P2 TT in the context of many different DR al-
leles, whereas others are more specific (cross-restricted)
and can recognize P2 TT only in the context of a particu-
lar MHC allele. This includes such T cells that can distin-
guish between P2 TT presented by DR1 and P2 TT pre-
sented by DR4 (59, 63), very similar to the case described
above.

Table II. Activation of HA-specific T Cell Lines

HA1.7a 3BC6.6b KM1HA27b

DR1 � � �

DR4 � � �

DR4 H13F � �

DR4 K71R � �

DR4 Q70R � �

aData from Eckels et al. (reference 31).
bData from Fu et al. (reference 34).
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The Conformation of DR4 Depends on the Sequence of the
Bound Antigenic Peptide. In addition to the modulation of
the TCR recognition of the HA peptide MHC class II res-
idues in the peptide binding groove, we also observed a
conformational change in DR4 that depends on the se-
quence of the bound peptide. The peptide binding groove
of DR4 presenting the collagen peptide (35) is up to 2 Å
smaller compared with the groove of DR4 presenting the
HA peptide and bound by the TCR HA1.7. It is unlikely
that these conformational differences are caused by the
binding of the HA1.7 TCR since no structural changes
were observed in DR1 upon binding the HA1.7 TCR (4,
19). Instead it appears that the width of the peptide-bind-
ing groove is determined by the sequence of the bound
peptide. The sidechains of the collagen peptide in the pep-
tide binding pockets in the DR4/Col structure are consid-
erably smaller compared with the sidechains of HA peptide
(P1: Met versus Tyr; P4: Asp versus Gln; P6: Ala versus
Thr; P7: Ala versus Leu; P9: Gly versus Leu). The nar-
rower peptide-binding groove in the DR4/Col structure
can therefore be explained by a collapse of DR4 around
those peptide binding pockets that are only partially occu-
pied by peptide sidechains (35). The region of residue 62�
to 70� which moves the most and the corresponding re-
gion in MHC class I molecules (148� to 155�) have been
identified earlier as having a degree of conformational free-
dom (2, 64–68).

These effects may also be important for attempts to opti-
mize peptides in vaccines for tighter binding to the MHC
by changing anchor residues (69 and references cited
therein), as those “optimized” peptide vaccines may have
different conformations, and hence different antigenic
properties when bound to the MHC molecule compared
with the actual (original) antigen.

Subtle changes in the conformation or sequence of the
pMHC molecule even in residues not directly contacted by
the TCR can have a large effect on the biological response
(34, 49–55, 66) (for a review, see reference 56). The fact
that MHC residues that are buried deep in the binding
groove can change the conformation of the bound peptide
and thereby change the antigenicity of the pMHC surface
may also be important in alloreactive T cell responses.

T cell alloreactivity, the major cause of organ transplant
rejection and graft-versus-host disease, is the reaction of
1–10% of all T cells with nonself pMHC molecules against
which they have not been previously negatively selected
during development in the thymus (70). Mechanisms for
the large T cell response in alloreactivity range from models
where the TCR interaction is dominated by contacts with
the allo-MHC to models where the TCRs interact mostly
with the antigenic peptides (peptides that cannot be pre-
sented by self-MHCs but can be presented by the allo-
MHC) (references 71 and 72; for a review, see references
73 and 74). The observation of different bound peptide
conformations resulting from residues of the MHC mole-
cule that are out of reach for the TCR, might also be im-
portant in the alloreactive T cell response. T cells that have
been negatively selected or are not reactive against self-

peptides presented by self-MHC molecules, may recognize
those same peptides bound to an allo-MHC, where they
could adopt different conformations, as seen in the HA
peptide studied here. If the self- and allo-MHC molecule
have identical residues on the part of the surface that is
contacted by the TCR, so that contacts used during posi-
tive selection may be conserved, and differ mainly in resi-
dues buried in the peptide-binding groove, as in the case of
DR1 and DR4, presented here, the opportunity for cross-
reactivity might be enhanced.

This structural study of TCR cross-reactivity empha-
sizes that in addition to the peptide and MHC residues
that are contacted by TCRs, the dependence of the con-
formation of the bound peptide and of the MHC mole-
cule on peptide and MHC residues inaccessible to direct
contact by the TCR plays an important role in determin-
ing T cell activation.
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