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Abstract

Purpose

Ultrasound methods for kidney stone imaging suffer from poor sensitivity and size overesti-

mation. The study objective was to demonstrate feasibility of non-linear ultrasound beam-

forming methods for stone imaging, including plane wave synthetic focusing (PWSF), short-

lag spatial coherence (SLSC) imaging, mid-lag spatial coherence (MLSC) imaging with inco-

herent compounding, and aperture domain model image reconstruction (ADMIRE).

Materials and methods

The ultrasound techniques were evaluated in an in vitro kidney stone model and in a pilot

study of 5 human stone formers (n = 6 stones). Stone contrast, contrast-to-noise ratio

(CNR), sizing, posterior shadow contrast, and shadow width sizing were compared among

the different techniques and to B-mode. CT imaging within 60 days was considered the gold

standard stone size. Paired t-tests using Bonferroni correction were performed to evaluate

comparing each technique with B-mode.

Results

Mean CT measured stone size was 6.0mm (range 2.9–12.2mm) with mean skin-to-stone

distance 10.2cm (range 5.4–16.3cm). Compared to B-mode, stone contrast was best with

ADMIRE (mean +12.2dB), while SLSC and MLSC showed statistically improved CNR. Siz-

ing was best with ADMIRE (mean +1.3mm error), however this was not significantly

improved over B-mode (+2.4mm). PWSF performed similarly to B-mode for stone contrast,

CNR, SNR, and stone sizing. In the in vitro model, the shadow contrast was highest with

ADMIRE (mean 10.5 dB vs 3.1 dB with B-mode). Shadow sizing was best with SLSC (mean

error +0.9mm ± 2.9), however the difference compared to B-mode was not significant.
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Conclusions

The detection and sizing of stones are feasible with advanced beamforming methods with

ultrasound. ADMIRE, SLSC, and MLSC hold promise for improving stone detection, shadow

contrast, and sizing.

Introduction

Kidney stones are highly and increasingly prevalent.[1] Diagnostic imaging is the primary

means for the diagnosis, surveillance, and management of kidney stones.[2, 3] Ultrasound has

several advantages over gold standard computerized tomography (CT) including its portabil-

ity, accessibility, and avoidance of ionizing radiation exposure.[2] Among pediatric popula-

tions and pregnant women with kidney stones, several guideline panels recommend

ultrasound as the first-line imaging modality for stone disease.[3–5] Despite the advantages

with ultrasound, it suffers from poorer sensitivity (24–69%), diminished specificity (82–91%),

and overestimation of stone size of approximately 2-3mm compared to CT. [6–12] It is not

surprising that the role of ultrasound is currently limited to screening in the acute setting and

surveillance.[2–4, 13–15] Improving the detection and sizing tasks would provide kidney

stone patients more of the benefits inherent to ultrasound imaging.

Our group has been investigating several novel ultrasound imaging methods using advanced

beamforming techniques that may hold promise for improving ultrasound’s capability to charac-

terize kidney stones.[16] These include short-lag spatial coherence (SLSC) imaging, aperture

domain model image reconstruction (ADMIRE), mid-lag spatial coherence (MLSC) imaging

with incoherent compounding, and plane wave synthetic focusing (PWSF).[17–21] SLSC and

ADMIRE are both non-linear ultrasound image formation methods that have both been shown

to improve image quality that address the ubiquitous but understudied problem of reverberation

and multipath scattering in clinical ultrasound. We developed MLSC—also a non-linear image

formation method—specifically for improving ultrasound’s sensitivity to stones by enhancing

coherent scatterers like stones, while suppressing the scattering from soft tissue.[16] In addition,

we implement these methods in conjunction with synthetic aperture imaging. Specifically, we use

angled plane wave transmit beams, which we refer to as plane wave synthetic focusing (PWSF),

but in other literature, this is also referred to as plane wave compounding.[21] Here we use linear

versus nonlinear in the mathematical sense to distinguish beamformers with nonlinear processing

steps such as SLSC, ADMIRE and MLSC from beamformers such as delay and sum that utilize

only linear processing.[22–25] The use of linear versus nonlinear in this manuscript does not

imply anything about the physical acoustics of the imaging environment.

In our initial work in an in vitro model, we demonstrated that MLSC improved stone con-

trast and sizing compared to B-mode, while ADMIRE and SLSC also demonstrated improve-

ments in sizing.[16] A limitation of the model was the lack of depths >8cm that would be

expected for skin-to-stone distances in vivo. Therefore, the purpose of this study was to per-

form a feasibility study of advanced beamforming techniques in human stone formers to eval-

uate stone contrast and sizing error compared to gold standard CT. We also further investigate

performance of these techniques for stone shadow contrast and shadow width sizing in vitro.

Materials and methods

In vivo study

Participants. We performed a prospective pilot study of kidney stone formers to investi-

gate stone contrast and sizing error with standard B-mode, SLSC, ADMIRE, MLSC, and
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PWSF (Fig 1). The details of these methods have been previously described.[16] We recruited

5 kidney stone formers (Table 1) meeting the following inclusion and exclusion criteria: Inclu-

sion criteria included CT imaging within 60 days demonstrating at least one�1mm renal

stone measured in one dimension in one kidney. We limited the interval from CT to 60 days

to minimize the potential for stone growth or spontaneous passage during this period. Exclu-

sion criteria included vulnerable populations including children, incarceration status, preg-

nancy, inability to give informed consent, and serious illness likely to cause death within 5

years. The Vanderbilt University Institutional Review Board approved this study (IRB#

170001). Both written and verbal informed consent were obtained prior to enrollment into the

study.

Data collection. During the study visit, participants underwent a renal ultrasound study

using a research ultrasound system (Verasonics Vantage 128 system, Verasonics, Inc., Red-

mond, WA; C5-2 curvilinear probe). The Verasonics systems was used to acquire raw channel

Fig 1. In vivo kidney stone case with standard B-mode and under the advanced beamforming methods. This patient had a CT scan showing a 14cm skin-to-stone

distance, which is notable since depths>10cm are generally considered challenging with clinical ultrasound. PWSF is similar to B-mode except transmit focusing is

performed everywhere in the image. Under ADMIRE, SLSC, and MLSC, the stone (yellow arrow) appears more echogenic. MLSC also suppresses the signal from the

surrounding tissue.

https://doi.org/10.1371/journal.pone.0203138.g001
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data from angled plane wave transmissions ranged between -30˚ and 30˚ spaced by 1˚ using a

center frequency of 2MHz with a 1 cycle transmit pulse. The channel data were processed off-

line in MATLAB (Natick, MA) using the following beamforming methods: standard B-mode

with a fixed transmit focus, SLSC, ADMIRE, MLSC, and PWSF (see S1 File and S1 Fig for

descriptions for algorithms). We assumed a sound speed of 1540 m/sec through tissue.

Ultrasound images of each stone in the transverse (axial) and longitudinal (coronal) orien-

tations were obtained by a physician unblinded to CT imaging to ensure the same stone was

measured. Separately, the widths of the corresponding stones on clinical CT were measured in

the respective orientations to determine size. The CT measurements were considered to be the

gold standard.

Stone contrast. The contrast of the stone with respect to the tissue background was calcu-

lated to determine how visible the stone was relative to the surroundings. The region of inter-

est (ROI) of the background was selected near the same depth as the stone and of a similar size

(ROI) (Fig 2). Both measurements were selected manually. This measurement is independent

Table 1. Demographics and stone characteristics.

Subject Age Sex Laterality CT skin-stone distance (cm) BMI (kg/m2) CT measured size (mm)

1 60 M Left 12.1 36.9 5.9

2 65 F Right 16.3 42.3 6.3

3 74 F Right 10.0 24.4 2.9

4 58 M Right 5.4 22.6 4.2

5 51 F Right 10.0 25.5 12.2

5 - - Left 7.5 25.5 4.7

Mean 10.2 29.5 6.0

SD 3.8 8.1 3.3

https://doi.org/10.1371/journal.pone.0203138.t001

Fig 2. Region of interest (ROI) selection for stone and tissue background. Two examples are shown for selection of stone (dotted line) and background (solid

rectangle).

https://doi.org/10.1371/journal.pone.0203138.g002
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of machine post-processing algorithms such as gain. The stone contrast values were calculated

using the following formula:

contraststone ¼ 20 � log
10

mstone

mbackground

where μ is the mean intensity of the stone or background.

Stone sizing error. Accuracy of stone sizing was assessed by calculating the error (mea-

surement error = ultrasound measured stone size–stone size on CT) for each measurement.

The sizing error was calculated by subtracting the ultrasound measured size from the CT mea-

sured width in the same orientation. The ROI selection for the stone was performed similarly

as described for stone contrast.

In vitro study for posterior shadowing

Experimental setup and imaging protocol. Human calcium-based kidney stones were

obtained during surgical extraction with ureteroscopy or percutaneous nephrolithotomy.

Composition was determined with infrared spectroscopy to confirm calcium content. Excess

stones meant to be discarded and without any patient identifiers were collected for this study.

All stones (n = 12, mean size 8.0 mm, range 2-18mm) were rehydrated and de-gassed at

least 24hrs prior to imaging. Stones were placed on top of gelatin phantoms while immersed in

a water bath. The gelatin phantoms were embedded with graphite to add diffuse scattering.

The transducer (L7-4 linear array) was mounted above the stone and oriented to measure the

maximum long axis length of the stone. Each stone was imaged at 8 cm using the Verasonics

ultrasound system. Raw channel data were recorded from angled plane wave transmissions

(-30˚ and 30˚ spaced by 1˚) using a center frequency of 5.2MHz and a 1 cycle transmit pulse.

We assumed a sound speed of 1480 m/sec. The channel data were processed offline as

described previously with each of the beamforming methods (Fig 3).

Shadow contrast and sizing error. Similar to the stone contrast measurement, the

shadow contrast was calculated using the following formula:

contrastshadow ¼ � 20 � log
10

mshadow

mgel

where μ is the mean intensity of the shadow or gelatin background. We introduced a negative

into this realization of contrast so that higher contrast always signifies improvement.

To provide an objective assessment of shadow width and minimize user bias, under each

method the shadow borders in the ultrasound images were identified blinded to the CT mea-

surement results and using an automated segmentation algorithm implemented in Matlab.

[26] This method iteratively assigns all pixels in the image to a class based on the intensity of

the pixel and those surrounding it (Fig 4). This initial segmentation requires minimal user

input, which allows for greater consistency and accuracy compared to manual sizing methods.

Fig 3. B-mode, PWSF, SLSC, MLSC, and ADMIRE images of a 10mm stone at 8cm depth. Note the posterior shadow

appears below each of the stones.

https://doi.org/10.1371/journal.pone.0203138.g003
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The lateral distance was determined as the difference between the average edge of the shadow

on either side of the stone in the area 1 cm below the stone. Shadow sizing error was deter-

mined similarly by calculating the error (measurement error = ultrasound measured shadow

width–manual measured stone width) for each measurement.

Statistical analysis. Contrast, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR),

and sizing error values were compared among the different methods. Differences in contrast

compared to B-mode were calculated by subtracting the contrast measurements. CNR was

determined by the difference in the brightness of the stone to the background divided by the

total variance of the background and stone:

CNRstone ¼ 20 � log
10

jmstone � mbackgroundj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

stone þ s2
background

q

In other words, it is more indicative of the ability to detect meaningful change in contrast

than the contrast metric alone. SNR was calculated as described by Smith et al. and indicates

the detectability of the stone.[27] Repeated paired Student’s t-tests were used to analyze the

differences of each group compared to B-mode, with a Bonferroni adjusted p<0.0125 consid-

ered significant. For sizing error, repeated paired Student’s t-tests were used to analyze the

differences of each group compared to CT, with a Bonferroni adjusted p<0.01 considered

significant.

Results

Overall, six stones were imaged in five human subjects, with mean CT-measured stone size 6.0

mm (range 2.9–12.2mm) and skin-to-stone distance measured on CT 10.2cm (range 5.4–

16.3cm) (Table 1).

For stone contrast (Table 2, Fig 5), ADMIRE (+12.2 dB, p = 0.010) was statistically better

compared to B-mode for stone contrast. SLSC (p = 0.002) and MLSC (p = 0.016) were both

Fig 4. Schematic of automated algorithm to isolate shadow borders based on pixel intensity. A) Original processed image. B) Segmentation algorithm is applied. C)

Shadow is selected based on segmentation and depth below stone (up to 1 cm). D) Lateral width is calculated as difference between the average edges of the shadow.

https://doi.org/10.1371/journal.pone.0203138.g004
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statistically better compared to B-mode for stone CNR. SLSC (p<0.001) and MLSC (p<0.001)

were both statistically better compared to B-mode for stone SNR. For stone sizing (Table 3, Fig

6), mean sizing error was best with ADMIRE (+1.3mm), however there was no statistically sig-

nificant improvement when compared with B-mode (+2.4mm).

For posterior shadow contrast in the in vitro study, contrast was highest with ADMIRE,

and significantly improved compared to B-mode (mean 10.5 dB vs 3.1 dB, respectively; p =

<0.001) (Table 4, Fig 7). With MLSC, a shadow was not visible. Using the shadow to size the

stone resulted in the least error with SLSC (mean error +0.9mm ± 2.9), however there were no

significant differences seen comparing SLSC to B-mode (mean error -2.2mm ± 1.1). B-mode

Table 2. Stone contrast performance with each technique relative to B-mode.

Relative to B-Mode PWSF SLSC MLSC ADMIRE

Contrast (dB) Mean -0.5 -4.0 11.3 12.2 a

SD 1.9 7.0 10.0 7.5

CNR (dB) Mean -0.4 5.9 b 4.8 c -2.8

SD 1.3 3.6 2.9 1.7

SNR Mean -0.2 5.6 d 4.2 d 0.1

SD 0.5 3.0 1.7 0.5

a ADMIRE vs B-mode, p = 0.010
b SLSC vs B-mode, p = 0.002
c MLSC vs B-mode, p = 0.016
d vs B mode. P<0.001

https://doi.org/10.1371/journal.pone.0203138.t002

Fig 5. Stone contrast comparing each technique. Stone contrast (dB) is best with ADMIRE. SLSC and MLC also

show improved SNR and CNR compared to B-mode.

https://doi.org/10.1371/journal.pone.0203138.g005
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was the only method that was observed to be significantly different compared to the measured

size of the stones (p = 0.010).

Discussion

We demonstrate the feasibility of advanced ultrasound beamforming for kidney stone contrast

and sizing in this pilot study. Improvements in stone detection can, in part, be made by

improving stone contrast relative to the surrounding tissue environment. In this study, stone

contrast was highest with ADMIRE in the human stone formers, while CNR was best with

SLSC and MLSC. These beamforming methods appear to address the kidney stone problem

differently. ADMIRE models wavefronts from approximate points of origin to effectively sup-

press image degradation from bright scatterers within the tissue and multiple reflections from

bright structures located near the transducer such as abdominal wall fascial layers. MLSC sup-

presses spurious points of coherence that occurs in the short lags thereby suppressing the ech-

oes from the tissue environment. It should be worth noting that these methods are more than

simply manipulating the “gain”, rather these are distinct methods from traditional delay-and-

sum B-mode.

Table 3. Sizing performance with each technique compared to CT.

Relative to CT� B-Mode PWSF SLSC MLSC ADMIRE

Sizing error (mm) Mean 2.4 2.0 4.3 3.8 1.3

SD 3.1 2.7 3.3 4.1 2.5

�No significant differences seen among methods

https://doi.org/10.1371/journal.pone.0203138.t003

Fig 6. Stone sizing error using CT as the gold standard. ADMIRE had the least mean sizing error (mean +1.3mm

error), but when compared to B-mode (mean +2.4mm error), the difference was not statistically significant.

https://doi.org/10.1371/journal.pone.0203138.g006
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ADMIRE also holds promise to reduce sizing error from ultrasound, and more study is

needed to determine whether there is a clinically meaningful benefit. It is reasonable that the

ability to more sharply define the borders of the stone will reduce stone sizing error. Consider-

ing the typical stone-sizing error with B-mode of 2-3mm compared to non-contrast CT,[9, 11,

12] even small improvements in ultrasound performance may have significant clinical impact.

Notably, often the decision to observe or perform surgical intervention is on the order of

millimeters.

Adjuncts to standard B-mode have been introduced to improve standard B-mode ultra-

sound performance, but the impact has been modest. The detection of the “twinkling artifact”

on color Doppler mode has been shown to increase detection sensitivity and specificity.[28–

30] However, the clinical utility of this technique has been limited by the lack of twinkling in

over 25% of stones and a high false-positive rate up to 60%.[28, 31] The presence of a shadow

behind the stone, termed the “posterior acoustic shadow”, is associated with high specificity

(95%) but poor sensitivity (31%).[31] While it has been shown to improve the sizing measure-

ment closer to 1-mm error, a significant proportion of stones<5mm do not have a detectable

shadow[32, 33] In our human pilot study, posterior acoustic shadowing was visible in 4 of 6

stones under a clinical ultrasound system, but was not visible under the research ultrasound

Table 4. Shadow contrast performance with each technique relative to B-mode.

Relative to B-mode PWSF SLSC MLSC ADMIRE

Shadow contrast (dB) Mean 0.29 4.6� n/a 7.4�

SD 0.9 3.1 4.8

�SLSC (p<0.001) and ADMIRE (p<0.001) demonstrated significantly improved shadow contrast compared to B-mode.

https://doi.org/10.1371/journal.pone.0203138.t004

Fig 7. Shadow contrast comparing the different ultrasound methods. Contrast of the shadow (dB) was highest with

ADMIRE. With MLSC, a shadow was not visible.

https://doi.org/10.1371/journal.pone.0203138.g007
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system. The reasons for this are unclear and may include more sensitive transducers and more

sophisticated B-mode post-processing for the clinical scanner. ADMIRE appeared to demon-

strate the best shadow contrast in vitro, however this finding would need to be replicated in a

larger population human stone formers.

A separate confounding factor to stone imaging is the sound speed mismatch. In general

sound speed inhomogeneity is known to induce degradation in ultrasound imaging. The role

of sound speed has not been studied specifically for stones, but in general the faster speed of

sound in stones—about 33% greater than tissue—will result in an underestimation of the axial

length. In the lateral dimension the speed of sound will induce a slightly wider measurement,

which has been characterized for delay and sum beamforming generally and more recently in

ADMIRE.[34–36] It is less clear how this sound speed mismatch will impact SLSC or MLSC

because this has not been characterized. Finally, the role of sound speed in interfering with the

lateral sizing is related to the integrated sound speed along the propagation path. Because the

stones are generally fairly small, this will work to mitigate the effect of stone sound speed on

sizing error.

In this work we implemented SLSC, ADMIRE, and MLSC methods in conjunction with

PWSF, which is a synthetic transmit focusing method. Earlier works have indicated that PWSF

can enhance both SLSC and ADMIRE.[18, 37] With SLSC, synthetic aperture methods are

known to increase the depth of field. With ADMIRE, synthetic aperture methods produce a

more uniform speckle texture throughout the image. However, both of these methods would

produce similar performance with a fixed focus transmit beam if the focus was within the kid-

ney. MLSC was also implemented with plane waves but not with PWSF. Implementing MLSC

with plane waves is a natural choice because MLSC requires an incoherent transmit beam.

MLSC could also be implemented with a fixed focus beam, but in this case it would be impor-

tant to position the focus well outside the kidney. This would ensure that the transmit beam is

relatively incoherent within the kidney itself.

These advanced beamforming methods were each designed to address image degradation

mechanisms inherent to ultrasound when applied to the complex heterogeneous environment

found during in vivo imaging. These mechanisms include multiple scattering, bright off-axis

scattering, phase aberration and gross sound speed mismatch.[38–49] Therefore, because

these methods were developed to address challenging imaging environments, one would

expect that the performance of these methods would be robust to clinical challenges such as

increased skin to stone distance (e.g. central obesity), reverberation from the abdominal wall

and other structures, and complex stone geometries (e.g. other than smooth/round). In addi-

tion, primary goal in this work was to evaluate in vivo feasibility so the methods compared

here were implemented in Matlab without a significant concern for efficiency. However, the

speed of these methods have been considered elsewhere and in many cases real time imple-

mentations have already been developed.[50–52] In this case we assume that real-time imple-

mentations of SLSC will be consistent with real-time implementations of MLSC, but because

of the order of operations MLSC will always be slightly slower. Future work is needed to refine

roles of different beamforming methods for specific kidney stone imaging tasks and validation

of these results in a more robust clinical study.

Conclusions

The advanced ultrasound beamforming methods ADMIRE, MLSC, and SLSC appear to

improve kidney stone contrast compared to standard B-mode ultrasound. ADMIRE also holds

promise for reducing stone sizing error and enhancing the detection of the posterior acoustic

Non-linear beamforming ultrasound methods for kidney stone imaging
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shadow. These technologies may enable broader adoption of ultrasound methods for kidney

stone care, and further study is needed to refine and validate these techniques.

Supporting information

S1 File. Detailed descriptions of the ultrasound beamforming methods.

(DOCX)

S1 Fig. Schematic of each of our advanced beamforming methods. The methods start by

transmitting incoherent beams at various angles. Plane waves are shown here as an example of

an incoherent beam. Delays are applied. Then, the transmissions are summed and processed

to create an ultrasound image. PWSF achieves transmit focusing at all depths instead of at just

a single depth as in standard B-mode. ADMIRE is a model-based beamforming approach that

explicitly integrates physics into B-mode image formation. MLSC is sensitive to only intrinsic

tissue coherence from objects like stones and suppresses other features including most tissue.

SLSC creates images correlated to the phase of the ultrasound wavefronts across the transducer

surface, as compared to B-mode where images are sensitive to amplitude.

(TIF)

S2 File. Abbreviations used.

(DOCX)
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